
Xiao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(12):891-900 891

Optimizing checkpoint for scientific simulations*

Xi-sheng XIAO1,2, Ying-ping HUANG‡3, Xi-hui ZHANG3
(1Economics & Management College, Southwest Jiaotong University, Chengdu 610031, China)

(2Industrial and Commercial College, Guizhou University of Finance and Economics, Guiyang 550003, China)

(3College of Business, University of North Alabama, Florence, AL 35632, USA)

E-mail: davidshiau@qq.com; yhuang@una.edu; xzhang6@una.edu

Received May 12, 2012; Revision accepted Sept. 3, 2012; Crosschecked Nov. 12, 2012

Abstract: It is extremely time-consuming to restart a long-running simulation from the beginning when a failure occurs.
Checkpointing is a viable solution that enables simulations to be resumed from the point of failure. We study three models to
determine the optimal checkpoint interval between contiguous checkpoints so that the total execution time is minimized and we
demonstrate that optimal checkpointing can facilitate self-optimizing. This study greatly advances our knowledge of and practice
in optimizing long-running scientific simulations.

Key words: Checkpoint, Long-running, Optimizing, Simulation
doi:10.1631/jzus.C1200135 Document code: A CLC number: O242

1 Introduction

Many scientific simulations are long-running

and computationally expensive. It is very time-
consuming to restart a simulation from scratch if it
dies prematurely. To prevent restarting from the be-
ginning, a mechanism called checkpointing is used to
save the state of the simulation periodically. Check-
point and restart strategies have been under continu-
ous investigation in the simulation, systems, and da-
tabase communities. Chandy (1975) and Nicola (1995)
provided excellent overviews of checkpointing and
recovery strategies.

Long-running scientific simulations would
benefit from this simple checkpointing mechanism
that provides automatic restart or recovery in re-
sponse to faults and failures, and enables dynamic
load balancing and improved resource utilization
through simulation migration (Kohl and Papadopou-
las, 1998; Huang et al., 2004).

However, it is typically not a trivial task to de-
termine the optimal interval between contiguous
checkpoints. Excessive checkpointing would result in
performance degradation and thus longer completion
time, while deficient checkpointing would incur ex-
pensive recovery overheads and thus again longer
completion time. Therefore, a trade-off must be made
to determine the optimal checkpoint interval so that
the total execution time can be minimized. We define
checkpoint interval to be the time between two con-
secutive checkpoints. In this paper, we present
mathematical models that analytically determine the
optimal checkpoint interval.

2 Execution of a simulation

Fig. 1 shows the execution of a long-running

scientific simulation, where each xc or rxc is called an
execution segment. We call it an xc-segment or
rxc-segment, respectively. The execution lifecycle of
a simulation may include a sequence of checkpoints
and possible restarts. Failures may occur any time
during the execution of simulations. Once a failure
occurs, the failure is detected and the simulation is

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

‡ Corresponding author

* Project supported by the National Science Foundation of USA and
the Information Technology Research (ITR/AP-DEB) (No. 0112820)
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Xiao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(12):891-900 892

restarted from the most recent checkpoint. Some-
times, we may even want to continue a previously
completed simulation so that more simulation data
can be produced and studied. When a simulation
completes, its final state is checkpointed (Fig. 1).

The total execution time of a simulation can be
partitioned into the following four parts:

1. Work time (denoted by Twork): time needed to
complete a simulation based on the assumption that
the simulation never crashes and thus no checkpoint is
necessary.

2. Checkpoint time (denoted by Tcheckpoint): time
spent to write checkpoint data to files or databases.

3. Redo time (denoted by Tredo): time spent to
redo the simulation from the most recent checkpoint
to the point of failure.

4. Restart time (denoted by Trestart): time needed
to detect the failures and restore simulation states
from checkpoint data (either data files or databases)
so that redo can proceed.

The total execution time (denoted by Ttotal) is
thus

total work checkpoint redo restartT T T T T .    (1)

For scientific simulations, Twork is either explic-

itly specified by the user as an input or can be derived
implicitly based on some terminating conditions. We
denote Twork by N, and the checkpoint interval to be
determined by x. To analytically derive the optimal
checkpoint interval x*, we make the following
assumptions:

1. The average time before a crash occurs is M,
and crashes occur according to a Poisson process with
rate 1/M. More precisely, (1) crashes occur randomly,
but with a long-term average of one crash per M time

units; (2) the likelihood of a crash is independent of
the past history; (3) crashes are rare in a very short
time interval, and there is a negligible chance of more
than one crash in a very short time interval. This as-
sumption is widely used in the literature related to
checkpointing strategies, such as Tantawi and
Ruschitzka (1983), Gelenbe and Hernandez (1990),
and Kwak et al. (2001). Based on this assumption, the
probability that a simulation successfully completes t
time units is p(t)=e−t/M.

2. Assume the checkpoint time is c and the re-
start time is r, where c and r are constants for all xc- or
rxc-segments.

Let n be the expected number of failures occur-
ring during the execution of a simulation, and let f be
the fraction of redo time over the time of an execution
segment when a crash occurs. At this point, we also
assume that crashes do not occur during an rxc-
segment; i.e., crashes do not occur immediately after
a restart. However, this assumption will be removed
in Section 5 when we present the best model. Based
on the above assumptions, we have the following
facts:

Twork=N, Tcheckpoint=Nc/x,
Tredo=(x+c)fn, Trestart=rn.

Note that the number of execution segments

without failures is N/x; thus, the total checkpoint time
is Tcheckpoint=Nc/x.

 The expected total execution time is now

Ttotal=N+Nc/x+(x+c)fn+rn. (2)

We need to derive n and f, so that we can ana-
lytically determine x to minimize Ttotal. We obtain the
following:

1. The probability of successfully completing an
xc-segment without a crash is p(x+c)=e−(x+c)/M.

2. Therefore, the expected number of execution
segments to complete N time units is

() /e .
()

x c MN N

xp x c x




3. Thus, the expected number of failures n is

() /(e 1).
()

x c MN N N
n

xp x c x x
   



Fig. 1 Execution of scientific simulation

Time

x

x

x

x

x

x

x

x

x

r

r

r

c

c

c

c

c

c

c

c

c

Restart time: r
Checkpoint interval: x
Checkpoint time: c

x

x

x

Xiao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(12):891-900 893

4. Suppose z is the time of an execution segment
(which could be either x+c or r+x+c). The distribution
of failures occurring at t after the most recent check-
point is

 (+)/ / /

0

() e / e (1 e)t iz M t M z M

i

d t M M .


  



  

5. Therefore, the expected point of failure be-

tween 0 and z is

/

0
/ /0

e d
() ()d .

(1 e) (1 e)

z t M
z

z M z M

t t z
E z td t t M

M



   
 




6. Thus, the expected fraction of redo over z time

units is

/ 1() / (1 e) .z Mf z M z    (3)

Before we substitute n and f into Eq. (2), let us

examine some properties of f. Letting y=M/z and
g(y)=y+(1−e1/y)−1, we have the following lemma:
Lemma 1 g(y)=y+(1−e1/y)−1 (y>0) is monotonically
increasing and lim () 1/2

y
g y


 .

Proof To prove that g(y) is monotonically increasing,

it suffices to prove
d ()

0.
d

g y

y
 In fact,

 
1/

21/

1/ 1/(2)

d () e
0 1 0

d (1 e)

(e 1)>e

y

y

y y

g y

y y

y .

   


 

Expanding both sides of the last inequality using
Taylor series, then

  11/

2

(e 1) 1 1/(2) (1)!y i

i

y y i y
 



    

and

1/(2) 1

2

e 1 1/(2) (2 !) .y i i

i

y i y






  

It is easy to see 2i>i+1 when i≥2, and thus (i+1)!yi<
2ii!yi. Therefore y(e1/y−1)>e1/(2y), and hence g(y) is
monotonically increasing. And

 

 

 

1/

1

1

0

1

0

1

1

1

0

1

1

1

1

(e 1) 1
lim () lim

e 1

(!) 1 1

 lim
(!) 1

(1)!
 lim

(!)

1/2 (2)!
lim 1/2

1 (1)!

y

y

/ yy

i

i

y i

i

i

i

y
i

i

i

i

y i

i

y
g y

i y y

i y

i y

i y

i y
.

i y

 





 



 


 



 


 



 



 

  
 






 
 

 













Fig. 2 confirms that for fixed checkpoint interval

x, the average fraction of redo over an execution
segment converges to 1/2 as M increases to positive
infinity. Fig. 2 is generated through experiments on
running simulations. Next, we derive our models to
determine the optimal checkpoint intervals for auto-
nomic Web-based simulations.

3 Model I

We assume that M is sufficiently large compared

to x, c, r. By Lemma 1, we see that (x+c)f
is approximately 1/2. Substituting f=1/2 and n=
(N/x)(e(x+c)/M−1) into Eq. (2), we obtain

(+)/
total () (e 1).

2
x c MNc x c N

T x N r
x x

      
 

 (4)

We need to find x* so that Ttotal(x) is minimized,

which suffices to calculate x such that totald ()
0.

d

T x

x


Fig. 2 Average fraction of redo over an execution segment
CI: checkpoint interval

0 5 10 15 20 25

Average time step before crash (×104)

CI=256
CI=2048

CI=512 CI=1024
CI=4096 CI=8192

0.50

0.40

0.30

0.20

0.10

0

F
ra

ct
io

n
of

 r
ed

o

Xiao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(12):891-900 894

We then have

   ()/ 2e (2) (2) 2 0x c M x c r x c r M r c M .       

(5)

It is unlikely to find an exact solution for this
equation analytically. To solve it asymptotically, we
need the following lemma:
Lemma 2 −ln y≈1−y, if 0<y<1 and y≈1.

Proof Use
0

ln(1)
lim 1.
x

x

x


 

By Lemma 2, Eq. (4) can be written as

2

2

(2) (2)
ln

(2)

(2) (2)
 1

(2)

x c x c r x c r M

M c r M

x c r x c r M
.

c r M

    
 



   
 



With standard algebraic calculations, the above
equation can be simplified to (x+c)2=2(M+r)c. Thus,

2()x M r c c.   (6)

Hence, we have the following:
Theorem 1 The optimal checkpoint interval for
minimizing total execution time is

* 2() ,x M r c c  

and the expected total execution time is Ttotal(x

*).

4 Model II

Instead of approximating f with 1/2, we

now substitute f=M/(x+c)+(1−e(x+c)/M)−1

and n=
(N/x)(e(x+c)/M−1) into Eq. (2), and we obtain

total ()/

()/

1
() ()

1

 (e 1).

x c M

x c M

Nc M
T x N x c r

x x c e

N

x





            

 

After standard algebraic transformations, the above
equation can be simplified as

() /
total

()
() (1).x c MN M r

T x e
x


  (7)

Again, to minimize Ttotal(x), we take the first deriva-
tive of Eq. (7) and let it be zero, or equivalently,

()/ ln(1 /).x c M x M    (8)

If x* is the solution to the above equation, then

2
total

2 2

d () ()
0.

d ()

T x N M r

x Mx M x



 


 


 Hence, x* achieves

the minimum for Ttotal(x). This is based on the fact that
if the first derivative f ′(x)=0 and the second derivative
f ″(x)>0, then x is a local minimum. It is far from
trivial to solve Eq. (8) analytically. However, it is
extremely simple to solve it numerically based on the
fact in the following lemma:
Lemma 3 Eq. (8) has one and only one solution in
the interval (0, M).
Proof Let g(x)=(x+c)/M+ln(1−x/M). Then g(0+)=
c/M>0 and g(M−)=(M+c)/M+ln(0+)=−∞<0.

Since g(x) is continuous, there exists x in the
interval (0, M) such that g(x)=0.

Furthermore,
1d () 1 (1 /)

0
d

g x x M

x M

 
  for any

x(0, M), which means that g(x) is monotonically
decreasing in the interval (0, M). Hence, there exists
one and only one x such that g(x)=0. Thus, the lemma
holds.

From the proof of the above lemma, given values
of M and c, we can numerically solve equation g(x)=0
using a simple bisection algorithm. In the following
algorithm, ε is typically chosen as 0.0001:

1 set tlo=0 and thi=M
2 while (thi−tlo>ε) do
3 tmi=(tlo+thi)/2
4 if g(tlo)g(tmi)>0 then
5 tlo=tmi
6 else
7 thi=tmi
8 end if
9 end while

Even if we cannot solve Eq. (8) analytically, we
can solve it asymptotically. To find an asymptotic
solution, we consider two cases:

Xiao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(12):891-900 895

Case I: c/M→0+, or cM, i.e., the checkpoint

time c is much less than the average time before crash
M. Then x/M→0+, according to Eq. (8). Thus,

2 2()/ ln(1 /) / /(2),x c M x M x M x M     

and then we obtain

2x Mc. (9)

Case II: Now we consider the general case. Let

2 /d c M and y=x/M. Write y as

0

n
n

n

y a d .




  (10)

From Case I, we see that y→d as d→0. Thus, we

have a0=0 and a1=1. Expanding ln(1−x/M) using
Taylor series, Eq. (8) becomes

2

2

/2 (/) 0.n

n

d y n




  (11)

To obtain an asymptotic solution, we now let

y=d+a2d
2+a3d

3+o(d3) (where a2 and a3 are the coef-
ficients to be determined and o(d3) is the higher order
of d3) and expand Eq. (11). Note that we are certainly
able to approximate the solution to higher orders.
However, this suffices to demonstrate the idea of
obtaining an asymptotic solution. Equating the terms
of powers with d, we have a2=−1/3 and a3=1/36. Thus,
y=d−d2/3+d3/36+o(d3). Therefore,

 2 1 2 / 3 /(18)x Mc c M c M .   (12)

Now let x* be the only root of Eq. (8). Then we have

*() /

total * *

1 1 /
() .

1 /

x c Me r M
T N M r N

x x M

  
  



Hence, we have the following theorem:
Theorem 2 The optimal checkpoint interval x* that
minimizes the total execution time is asymptotically

 2 1 2 / 3 /(18) .Mc c M c M  The expected total

execution time is N(1+r/M)/(1−x*/M). Note that the
optimal checkpoint interval is independent of the
restart time r.

5 Model III

In Models I and II, we assume that no failure

occurs during rxc-segments. In this section, we re-
move this assumption so that crashes may occur in
both xc- and rxc-segments.

The probability that an rxc-segment completes
without a failure is e−(r+x+c)/M. Thus, the probability
that a failure does occur in an rxc-segment is
1−e−(r+x+c)/M. For a simulation with total execution
time units Ttotal and average time before crash M, the
expected number of failures is Ttotal/M.

Therefore, the expected number of failures oc-
curring in rxc-segments is nrxc=Ttotal(1−e−(r+x+c)/M)/M,
and the expected number of failures occurring in
xc-segments is nxc=Ttotale

−(r+x+c)/M/M. Note that a re-
start time r is added after a failure in an xc-segment,
while a restart time r is not added after a failure in an
rxc-segment since it is already included. Therefore
the total execution time is now

Ttotal(x)=N+Nc/x+[(x+c)2f+r]nxc+(r+x+c)2fnrxc.

Substituting f, nxc, and nrxc into the above equation and
simplifying it, we obtain

Ttotal(x)=MNer/M(e(x+c)/M−1)/x. (13)

As before, we take the first derivative and let it be
zero. Then we obtain (x+c)/M=−ln(1−x/M).

Surprisingly, we have the same minima for
Model III as for Model II. Hence, we have the fol-
lowing theorem:
Theorem 3 The optimal checkpoint interval that
minimizes the total execution time is asymptotically

 2 1 2 / 3 /(18)* Mc c M c .x M  The expected

total execution time is Ner/M/(1−x*/M). Note that the
optimal checkpoint interval is independent of the
restart time r.

We find that Ttotal in Models II and III achieves
its minimum values at the same argument value (more
information can be found at http://en.wikipedia.org/

Xiao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(12):891-900 896

wiki/Arg_max). Let T2=Ttotal(x
*) in Model II and

T3=Ttotal(x
*) in Model III. Then

/
3 2

2

1 / /(!)
e

1
1 / 1 /

n n
r M

n

r M r n M
T

.
T r M r M





 
  

 



This means that although Models II and III reach

minima at the same argument value, the expected total
execution time is longer in Model III than in Model II.

Note that
0

lim 1.
1

x

x

e

x



 Thus, T2≈T3 if the restart time

r is far less than M.

6 Experiments and discussion

A Java simulation is developed to experiment
with and evaluate the above three models. The
simulation generates random points of failure ac-
cording to a Poisson process with rate 1/M, and then
outputs the total execution time as a function of N, M,
r, x, and c. We run the simulation 1000 times for
each distinct combination of N, M, r, x, and c. The
complete code that generates all experiment data can
be downloaded from http://bizresearch.una.edu/
research/checkpointcode.zip.

Now we present the following experiments:
Experiment 1 We set N=10 000, M=2000, r=20, and
c=10. The experiment results are shown in Fig. 3.
Since r and c are very small compared to M, we find
that all three models are good matches of the simula-
tion results. In other words, there is little difference
between the three models if r/M and c/M are small.
The predicted optimal checkpoint interval for Model I
is 191, and the predicted optimal checkpoint intervals
for Models II and III are 193.

Experiment 2 Now we increase the checkpoint time
c in Experiment 1 and set N=100 000, M=2000, r=20,
and c=100. The experiment results are shown in Fig. 4.
We find that Model I deviates from the simulation
results. However, both Model II and Model III are still
in good agreement with the simulation results. Since

rM, there is no distinguishable difference between

Models II and III. The predicted checkpoint interval
for Model I is 536. The predicted optimal checkpoint
intervals for Models II and III are 568.

Experiment 3 We increase the restart time r in
Experiment 2 and set N=100 000, M=2000, r=200,
and c=100. The experiment results are shown in Fig. 5.
We find that both Model I and Model II deviate from
the simulation results. However, Model III is still in
good agreement with the simulation results. The pre-
dicted checkpoint interval for Model I is 563. The
predicted checkpoint intervals for Models II and III
are 568.

From the above three experiments, we see that

Model III is the best one to match the simulation
results among all three models. When the restart time

Fig. 3 Experiment 1 with N=10 000, M=2000, r=20, and
c=10

Fig. 4 Experiment 2 with N=100 000, M=2000, r=20, and
c=100

Fig. 5 Experiment 3 with N=100 000, M=2000, r=200, and
c=100

Xiao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(12):891-900 897

r and checkpoint c are both far less than M, the three
models are all in good agreement with the simulation
results.

Next we experiment on how the changes of av-
erage time before crash M, checkpoint time c, and
restart time r affect the choice of optimal checkpoint
interval. The optimal checkpoint interval for the
simulation is obtained as follows: first we calculate
the optimal checkpoint interval x* from Model II (or
Model III, since they are the same); then we run the
simulation 1000 times for each checkpoint interval in
a wide neighborhood (for example, from x*−100 to
x*+100) of x*, and the checkpoint interval that results
in least total execution time is chosen.
Experiment 4 We set N=100 000, r=20, and c=100,
and let M range from 1000 to 3000. Fig. 6 shows the
experiment results of the relationship between M and
the optimal checkpoint interval x*. From the figure,
we see that x* monotonically increases as M increases
for all three models. The optimal checkpoint interval
calculated from Model II (or Model III) is in good
agreement with that from the simulation.

Experiment 5 We set N=100 000, M=2000, and
r=20, and let c range from 100 to 300. Fig. 7 shows
the experiment results of the relationship between c
and the optimal checkpoint interval x*. From the fig-
ure, we see that x* monotonically increases as c in-
creases for all three models. The optimal checkpoint
interval calculated from Model II (or Model III) is in
good agreement with that from the simulation.
Experiment 6 We set N=100 000, M=2000, and
c=100, and let r range from 100 to 300. Fig. 8 shows
the experiment results of the relationship between r
and the optimal checkpoint interval x*. From the fig-
ure, we see that x* monotonically increases as r in-
creases for Model I, while staying constant for Mod-

els II and III. The simulation shows that x* is almost
constant, which confirms that the choice of optimal
checkpoint interval is independent of the restart time r.

From these experiments, we conclude that
Model III is a good model so we can use it to calculate
the optimal checkpoint interval and predict the total
execution time of a simulation. M and c for a specific
scientific simulation can be determined empirically
by running the simulation a sufficient number of
times. For example, in our case study of the natural
organic matter (NOM) simulation (please check
http://www.nd.edu/~nom for more information about
the National Science Foundation (NSF)-funded NOM
project), M is determined by running the simulation
many times without checkpointing, and c is deter-
mined easily by calculating the average time spent on
checkpointing.

One more interesting finding about Model III is
the following lemma:
Lemma 4 Let

/ ()/() e (e 1)/ ,r M x c MT x NM x  (14)

where c>0, r>0, and (0,).x M Supposing x*=

0
arg min (),

x M
T x

 
 and then for any t>0 such that 0<x*−t<

Fig. 6 Experiment 4 with N=100 000, r=20, and c=100

Fig. 7 Experiment 5 with N=100 000, M=2000, and r=20

Fig. 8 Experiment 6 with N=100 000, M=2000, and c=100

Xiao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(12):891-900 898

x*+t<M, we have T(x*−t)>T(x*+t).
Proof The proof is omitted since it is straightforward.

Lemma 4 means that an under-predicted
checkpoint interval results in longer total execution
time than an equivalent over-predicted one. This
conclusion can be confirmed from Figs. 3–5.

7 Real application of Model III

Model III has been extensively applied in the
NSF-funded interdisciplinary project—the NOM
project (http://www.nd.edu/~nom). NOM is a het-
erogeneous mixture of organic molecules found in
terrestrial and aquatic environments—from forest
soils and streams to coastal rivers and marshes to the
open ocean. NOM plays a vital role in ecological and
biogeochemical processes, including chemical buff-
ering, mineral dissolution/precipitation, photochem-
istry, and microbial nutrition. This project consists of
an interdisciplinary team of environmental (biology,
chemistry, geology) and IT scientists that is devel-
oping a stochastic model for the time-dependent
evolution of NOM in the environment. The scientific
objectives are to produce both a new methodology
and a specific program for predicting the properties of
NOM over time as it evolves from precursor mole-
cules to eventual mineralization. The methodology
being developed is a mechanistic, stochastic simula-
tion of NOM transformations, including biological
and non-biological reactions, as well as adsorption,
aggregation, and physical transport. It employs recent
advances in agent-based simulation, Web-based de-
ployment of scientific applications, collaboratory for
sharing simulations and data, and scalable Web-based
database management systems to improve the reli-
ability of the stochastic simulations and to facilitate
analysis of the resulting large datasets using data-
mining techniques. The stochastic synthesis model of
NOM evolution is being developed as a dialogue
between coding and numerical testing on the one hand
and environmental data-based testing on the other.
Initially, a simple model program was coded to
simulate ‘steady state’ transformations of NOM in a
stable environment. This program was made available
to applications scientists in biology and geochemistry,
who tested the behavior of the model for fidelity to
laboratory data and field observation, and who di-
rected the parameterization of the model and the in-

clusion or deletion of various molecular transforma-
tions (e.g., hydrolysis, photolysis, absorption, and
microbial consumption). The program is being modi-
fied as indicated by these tests, and additional code
modules will be added to simulate NOM transport (in
soil, ground, or surface waters) and the response of
the biological community. We make the Web-based
simulation available to external investigators.

The Web-based system delivers long-running
scientific simulations available to scientists across the
US. The system was carefully designed to be highly
reliable and scalable using grid computing technolo-
gies. In other words, the system was intended to be
self-healing, i.e., being able to recover from errors.
The state data of the simulation were periodically
archived to a database and the simulation will be able
to restart from the most recent checkpoint to the fail-
ure point. The checkpoint interval was determined by
using Model III. The simulation system has been
approved to be very reliable and have served external
investigators since 2004.

8 Related works on checkpointing

Analytically determining optimal checkpoint
dates back to as early as 1974 when Young (1974)
presented a first-order approximation to the optimum
checkpoint interval. The first-order approximation

was 2 ,cM which coincides with the special case in

Eq. (9). Our work extends this result to more general
cases.

In Duda (1983), Shin et al. (1987), and Kulkarni
et al. (1990), a model with Poisson failure is consid-
ered to determine the optimal number of checkpoints,
which minimizes the expected execution time of a
program, with an assumption that no failure occurs
during the checkpoint and restart phases. The same
model was extended by Grassi et al. (1992) in which
the optimal number of checkpoints relies on the dis-
tribution of the program execution time. Tantawi and
Ruschitzka (1983) considered a model with a general
distribution of failures and allowed failures to occur
during the checkpoint and restart phase. This gener-
ality yields a model that needs to compute an infinite
number of integrals, which is computationally in-
tractable. A simpler model is proposed by preventing
failures from occurring during checkpoint and restart.
However, this simplification still results in computing

Xiao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(12):891-900 899

an infinite number of non-linear equations. Thus, an
even simpler model is then proposed by imposing
more constraints which assume that the execution
time between two successive checkpoints is constant
and that the expected restart time equals the mean
checkpointing time. With this simplification, an
iteration algorithm with dynamic programming is
used to compute an approximation of the optimal
number of checkpoints. Ling et al. (2001) used a
variational calculus approach to derive an explicit
formula that links the optimal checkpointing fre-
quency with a general failure rate, with the objective
of globally minimizing the total expected cost of
checkpointing and recovery. The results show that the
optimal checkpointing frequency is proportional to
the square root of the failure rate.

More recently, Kwak and Yang (2012) presented
an analytical model to derive the optimum number of
checkpoints with the objective of maximizing the
probability of completing all tasks within deadlines,
where they assumed that the transient faults follow a
Poisson distribution. Ji et al. (2011) proposed a heu-
ristic algorithm for checkpoint placement with the
objective to improve application performance. This
checkpoint mechanism was inserted into application
source code so that the application can restart auto-
matically and transparently. Cao et al. (2011) took
advantage of the frequently consistent applications to
develop checkpoint recovery algorithms that obtain
lower overheads and reduce latency by trading space
in main memory.

Our work differs from the aforementioned work
in several ways: (1) our simple assumption (failures
occur according to a Poisson process) yields a simple
cost function which is easy to solve numerically using
a simple bisection algorithm, and (2) experiments on
simulation show that the model is in good agreement
with simulations.

9 Summary

In this paper, three models are discussed to de-
termine the optimal checkpoint interval and predict
total execution time for long-running scientific
simulations. We can draw the following conclusions
from the discussions:

1. Model III is the best model to calculate the

optimal checkpoint interval and predict total execu-
tion time.

2. The choice of checkpoint interval is inde-
pendent of the restart time r; however, the predicted
total execution time is exponentially dependent on r.
Therefore, the total execution time can be reduced
dramatically if a failure can be detected and restart
can be accomplished quickly.

3. An under-predicted checkpoint interval results
in longer total execution time than an equivalent
over-predicted one; therefore, we would rather choose
a larger checkpoint interval if it is not possible or is
too difficult to calculate the optimal.

The ability to restart an abortive simulation from
the most recent checkpoint is a basic requirement for
developing and deploying autonomic Web-based
simulations (Huang and Madey, 2005). In particular,
it helps to achieve self-healing and self-optimizing
features of autonomic Web-based simulations.

References
Cao, T., Vaz Salles, M., Sowell, B., Yue, Y., Demers, A., Ge-

hrke, J., White, W., 2011. Fast Checkpoint Recovery Al-
gorithms for Frequently Consistent Applications. Proc.
ACM SIGMOD Int. Conf. on Management of data,
p.265-276. [doi:10.1145/1989323.1989352]

Chandy, K., 1975. A survey of analytic models for rollback and
recovery strategies. Computer, 8(5):40-47. [doi:10.1109/
C-M.1975.218955]

Duda, A., 1983. The effects of checkpointing on program
execution times. Inf. Process. Lett., 16(5):221-229. [doi:
10.1016/0020-0190(83)90093-5]

Gelenbe, E., Hernandez, M., 1990. Optimum checkpoints with
age dependent failures. Acta Inf., 27(6):519-531. [doi:
10.1007/BF00277388]

Grassi, V., Donatiello, L., Tucci, S., 1992. On the optimal
checkpointing of critical task and transaction-oriented
systems. IEEE Trans. Software Eng., 18(1):72-77. [doi:10.
1109/32.120317]

Huang, Y., Madey, G., 2005. Autonomic Web-Based Simula-
tions. Proc. 38th Annual Simulation Symp., p.160-167.
[doi:10.1109/ANSS.2005.15]

Huang, Y., Xiang, X., Madey, G., 2004. A Self Manageable
Infrastructure for Supporting Web-Based Simulations.
Proc. 37th Annual Simulation Symp., p.149-156. [doi:10.
1109/SIMSYM.2004.1299478]

Ji, Y., Jiang, H., Chaudhary, V., 2011. A heuristic checkpoint
placement algorithm for adaptive application-level
checkpointing. Int. J. Appl. Sci. Technol., 1(6):50-61.

Kohl, J., Papadopoulas, P., 1998. Efficient and Flexible Fault
Tolerance and Migration of Scientific Simulations Using
CUMULVS. Proc. SIGMETRICS Symp. on Parallel and
Distributed Tools, p.60-71. [doi:10.1145/281035.281042]

Xiao et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(12):891-900 900

Kulkarni, V.G., Nicola, V.F., Trivedi, K.S., 1990. Effects of
checkpointing and queuing on program performance.
Commun. Stat. Stoch. Models, 6(4):615-648. [doi:10.
1080/15326349908807166]

Kwak, S., Yang, J., 2012. Optimal checkpoint placement on
real-time tasks with harmonic periods. J. Comput. Sci.
Technol., 27(1):105-112. [doi:10.1007/s11390-012-1209-0]

Kwak, S.W., Chio, B.J., Kim, B.K., 2001. An optimal check-
pointing strategy for real time control systems under
transient faults. IEEE Trans. Reliab., 50(3):293-301. [doi:
10.1109/24.974127]

Ling, Y., Mi, J., Lin, X., 2001. A variational calculus approach
to optimal checkpoint placement. IEEE Trans. Comput.,
50(7):699-708. [doi:10.1109/12.936236]

Nicola, V., 1995. Checkpointing and the Modeling of Program
Execution Time. In: Lyu, M.R. (Ed.), Software Fault
Tolerance. John Wiley & Sons, Chichester, England,
p.167-188.

Shin, K.G., Lin, T., Lee, Y., 1987. Optimal checkpointing of
real-time tasks. IEEE Trans. Comput., 36(11):519-531.

Tantawi, A.N., Ruschitzka, M., 1983. Performance Analysis of
Checkpointing Strategies. Proc. ACM SIGMETRICS
Conf. on Measurement and Modeling of Computer Sys-
tems, p.129.

Young, J.W., 1974. A first order approximation to the optimum
checkpoint interval. Commun. ACM, 17(9):530-531. [doi:
10.1145/361147.361115]

New Section “Highlights” Available Online

Highlights of published articles, selected on the basis of the quality of their
scientific achievements and potential impact, are presented on the home-
page of JZUS at http://www.zju.edu.cn/jzus

