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1  Introduction 
 
Many scientific simulations are long-running 

and computationally expensive. It is very time-  
consuming to restart a simulation from scratch if it 
dies prematurely. To prevent restarting from the be-
ginning, a mechanism called checkpointing is used to 
save the state of the simulation periodically. Check-
point and restart strategies have been under continu-
ous investigation in the simulation, systems, and da-
tabase communities. Chandy (1975) and Nicola (1995) 
provided excellent overviews of checkpointing and 
recovery strategies. 

Long-running scientific simulations would 
benefit from this simple checkpointing mechanism 
that provides automatic restart or recovery in re-
sponse to faults and failures, and enables dynamic 
load balancing and improved resource utilization 
through simulation migration (Kohl and Papadopou-
las, 1998; Huang et al., 2004). 

However, it is typically not a trivial task to de-
termine the optimal interval between contiguous 
checkpoints. Excessive checkpointing would result in 
performance degradation and thus longer completion 
time, while deficient checkpointing would incur ex-
pensive recovery overheads and thus again longer 
completion time. Therefore, a trade-off must be made 
to determine the optimal checkpoint interval so that 
the total execution time can be minimized. We define 
checkpoint interval to be the time between two con-
secutive checkpoints. In this paper, we present 
mathematical models that analytically determine the 
optimal checkpoint interval.  

 
 

2  Execution of a simulation 
 
Fig. 1 shows the execution of a long-running 

scientific simulation, where each xc or rxc is called an 
execution segment. We call it an xc-segment or 
rxc-segment, respectively. The execution lifecycle of 
a simulation may include a sequence of checkpoints 
and possible restarts. Failures may occur any time 
during the execution of simulations. Once a failure 
occurs, the failure is detected and the simulation is 
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restarted from the most recent checkpoint. Some-
times, we may even want to continue a previously 
completed simulation so that more simulation data 
can be produced and studied. When a simulation 
completes, its final state is checkpointed (Fig. 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 

The total execution time of a simulation can be 
partitioned into the following four parts: 

1. Work time (denoted by Twork): time needed to 
complete a simulation based on the assumption that 
the simulation never crashes and thus no checkpoint is 
necessary. 

2. Checkpoint time (denoted by Tcheckpoint): time 
spent to write checkpoint data to files or databases. 

3. Redo time (denoted by Tredo): time spent to 
redo the simulation from the most recent checkpoint 
to the point of failure. 

4. Restart time (denoted by Trestart): time needed 
to detect the failures and restore simulation states 
from checkpoint data (either data files or databases) 
so that redo can proceed. 

The total execution time (denoted by Ttotal) is 
thus 

total work checkpoint redo restartT T T T T .             (1) 

 
For scientific simulations, Twork is either explic-

itly specified by the user as an input or can be derived 
implicitly based on some terminating conditions. We 
denote Twork by N, and the checkpoint interval to be 
determined by x. To analytically derive the optimal 
checkpoint interval x*, we make the following  
assumptions: 

1. The average time before a crash occurs is M, 
and crashes occur according to a Poisson process with 
rate 1/M. More precisely, (1) crashes occur randomly, 
but with a long-term average of one crash per M time 

units; (2) the likelihood of a crash is independent of 
the past history; (3) crashes are rare in a very short 
time interval, and there is a negligible chance of more 
than one crash in a very short time interval. This as-
sumption is widely used in the literature related to 
checkpointing strategies, such as Tantawi and 
Ruschitzka (1983), Gelenbe and Hernandez (1990), 
and Kwak et al. (2001). Based on this assumption, the 
probability that a simulation successfully completes t 
time units is p(t)=e−t/M. 

2. Assume the checkpoint time is c and the re-
start time is r, where c and r are constants for all xc- or 
rxc-segments. 

Let n be the expected number of failures occur-
ring during the execution of a simulation, and let f be 
the fraction of redo time over the time of an execution 
segment when a crash occurs. At this point, we also 
assume that crashes do not occur during an rxc- 
segment; i.e., crashes do not occur immediately after 
a restart. However, this assumption will be removed 
in Section 5 when we present the best model. Based 
on the above assumptions, we have the following 
facts: 
 

Twork=N, Tcheckpoint=Nc/x, 
Tredo=(x+c)fn, Trestart=rn. 

 
Note that the number of execution segments 

without failures is N/x; thus, the total checkpoint time 
is Tcheckpoint=Nc/x.

  The expected total execution time is now 
 

Ttotal=N+Nc/x+(x+c)fn+rn.              (2) 
 

We need to derive n and f, so that we can ana-
lytically determine x to minimize Ttotal. We obtain the 
following: 

1. The probability of successfully completing an 
xc-segment without a crash is p(x+c)=e−(x+c)/M. 

2. Therefore, the expected number of execution 
segments to complete N time units is 

 

( ) /e .
( )

x c MN N

xp x c x



 

 
3. Thus, the expected number of failures n is 

 

( ) /(e 1).
( )

x c MN N N
n

xp x c x x
   


 

Fig. 1  Execution of scientific simulation
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4. Suppose z is the time of an execution segment 
(which could be either x+c or r+x+c). The distribution 
of failures occurring at t  after the most recent check-
point is 

 

 ( + )/ / /

0

( ) e / e (1 e )t iz M t M z M

i

d t M M .


  



    

 
5. Therefore, the expected point of failure be-

tween 0 and z is 
 

/

0
/ /0

e d
( ) ( )d .

(1 e ) (1 e )

z t M
z

z M z M

t t z
E z td t t M

M



   
 




 
 
6. Thus, the expected fraction of redo over z time 

units is 
 

 

/ 1( ) / (1 e ) .z Mf z M z                   (3) 

 
Before we substitute n and f into Eq. (2), let us 

examine some properties of f. Letting y=M/z and 
g(y)=y+(1−e1/y)−1, we have the following lemma: 
Lemma 1    g(y)=y+(1−e1/y)−1 (y>0) is monotonically 
increasing and lim ( ) 1/2

y
g y


 . 

Proof    To prove that g(y) is monotonically increasing, 

it suffices to prove 
d ( )

0.
d

g y

y
  In fact, 
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1/

21/

1/ 1/(2 )
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
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Expanding both sides of the last inequality using 
Taylor series, then 
 

  11/

2

(e 1) 1 1/(2 ) ( 1)!y i

i

y y i y
 



      
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2
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
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It is easy to see 2i>i+1 when i≥2, and thus (i+1)!yi< 
2ii!yi. Therefore y(e1/y−1)>e1/(2y), and hence g(y) is 
monotonically increasing. And 
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Fig. 2 confirms that for fixed checkpoint interval 

x, the average fraction of redo over an execution 
segment converges to 1/2 as M increases to positive 
infinity. Fig. 2 is generated through experiments on 
running simulations. Next, we derive our models to 
determine the optimal checkpoint intervals for auto-
nomic Web-based simulations. 
 
 

 
 
 
 
 
 
 
 

 
3  Model I 

 
We assume that M is sufficiently large compared 

to x, c, r. By Lemma 1, we see that (x+c)f  
is approximately 1/2. Substituting f=1/2 and n= 
(N/x)(e(x+c)/M−1) into Eq. (2), we obtain 
 

( + )/
total ( ) (e 1).

2
x c MNc x c N

T x N r
x x

      
 

  (4) 

 
We need to find x* so that Ttotal(x) is minimized, 

which suffices to calculate x such that totald ( )
0.

d

T x

x
  

Fig. 2  Average fraction of redo over an execution segment 
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We then have 
 

   ( )/ 2e ( 2 ) ( 2 ) 2 0x c M x c r x c r M r c M .       
 

(5) 
 

It is unlikely to find an exact solution for this 
equation analytically. To solve it asymptotically, we 
need the following lemma: 
Lemma 2    −ln y≈1−y, if 0<y<1 and y≈1.  

Proof    Use 
0

ln(1 )
lim 1.
x

x

x


   

By Lemma 2, Eq. (4) can be written as 
 

2

2

( 2 ) ( 2 )
ln

( 2 )

( 2 ) ( 2 )
        1

( 2 )

x c x c r x c r M

M c r M

x c r x c r M
.

c r M

    
 



   
 


 

 
With standard algebraic calculations, the above 
equation can be simplified to (x+c)2=2(M+r)c. Thus, 
 

2( )x M r c c.                         (6) 

 
Hence, we have the following: 
Theorem 1    The optimal checkpoint interval for 
minimizing total execution time is  
 

* 2( ) ,x M r c c  
 

 
and the expected total execution time is Ttotal(x

*). 
 

 
4  Model II 

 
Instead of approximating f with 1/2, we  

now substitute f=M/(x+c)+(1−e(x+c)/M)−1

 

and n= 
(N/x)(e(x+c)/M−1) into Eq. (2), and we obtain 

 

total ( )/

( )/

1
( ) ( )

1

              (e 1).

x c M

x c M
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 

 

 
After standard algebraic transformations, the above 
equation can be simplified as

 

( ) /
total

( )
( ) ( 1).x c MN M r

T x e
x


            (7) 

 
Again, to minimize Ttotal(x), we take the first deriva-
tive of Eq. (7) and let it be zero, or equivalently, 

 

( )/ ln(1 / ).x c M x M                  (8) 

 
If x* is the solution to the above equation, then 

2
total

2 2

d ( ) ( )
0.

d ( )

T x N M r

x Mx M x



 


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
 Hence, x* achieves 

the minimum for Ttotal(x). This is based on the fact that 
if the first derivative f ′(x)=0 and the second derivative 
f ″(x)>0, then x is a local minimum. It is far from 
trivial to solve Eq. (8) analytically. However, it is 
extremely simple to solve it numerically based on the 
fact in the following lemma: 
Lemma 3    Eq. (8) has one and only one solution in 
the interval (0, M). 
Proof    Let g(x)=(x+c)/M+ln(1−x/M). Then g(0+)= 
c/M>0 and g(M−)=(M+c)/M+ln(0+)=−∞<0.  

Since g(x) is continuous, there exists x in the 
interval (0, M) such that g(x)=0. 

Furthermore, 
1d ( ) 1 (1 / )

0
d

g x x M

x M

 
   for any 

x(0, M), which means that g(x) is monotonically 
decreasing in the interval (0, M). Hence, there exists 
one and only one x such that g(x)=0. Thus, the lemma 
holds. 

From the proof of the above lemma, given values 
of M and c, we can numerically solve equation g(x)=0 
using a simple bisection algorithm. In the following 
algorithm, ε is typically chosen as 0.0001: 

 

1   set tlo=0 and thi=M 
2   while (thi−tlo>ε) do 
3           tmi=(tlo+thi)/2 
4           if g(tlo)g(tmi)>0 then 
5               tlo=tmi 
6           else 
7               thi=tmi 
8           end if 
9   end while 
 

Even if we cannot solve Eq. (8) analytically, we 
can solve it asymptotically. To find an asymptotic 
solution, we consider two cases: 
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Case I: c/M→0+, or cM, i.e., the checkpoint 

time c is much less than the average time before crash 
M. Then x/M→0+, according to Eq. (8). Thus, 
 

2 2( )/ ln(1 / ) / /(2 ),x c M x M x M x M     
  

and then we obtain 
 

2x Mc.                              (9) 
 
Case II: Now we consider the general case. Let 

2 /d c M and y=x/M. Write y as 

 

0

n
n

n

y a d .




                           (10) 

 
From Case I, we see that y→d as d→0. Thus, we 

have a0=0 and a1=1. Expanding ln(1−x/M) using 
Taylor series, Eq. (8) becomes 

 

2

2

/2 ( / ) 0.n

n

d y n




                  (11) 

 
To obtain an asymptotic solution, we now let 

y=d+a2d
2+a3d

3+o(d3) (where a2 and a3 are the coef-
ficients to be determined and o(d3) is the higher order 
of d3) and expand Eq. (11). Note that we are certainly 
able to approximate the solution to higher orders. 
However, this suffices to demonstrate the idea of 
obtaining an asymptotic solution. Equating the terms 
of powers with d, we have a2=−1/3 and a3=1/36. Thus, 
y=d−d2/3+d3/36+o(d3). Therefore, 
 

 2 1 2 / 3 /(18 )x Mc c M c M .         (12) 

 
Now let x* be the only root of Eq. (8). Then we have 

 
*( ) /

total * *

1 1 /
( ) .

1 /

x c Me r M
T N M r N

x x M

  
  



 
 
Hence, we have the following theorem: 
Theorem 2    The optimal checkpoint interval x* that 
minimizes the total execution time is asymptotically 

 2 1 2 / 3 /(18 ) .Mc c M c M   The expected total 

execution time is N(1+r/M)/(1−x*/M). Note that the 
optimal checkpoint interval is independent of the 
restart time r. 
 
 
5  Model III 

 
In Models I and II, we assume that no failure 

occurs during rxc-segments. In this section, we re-
move this assumption so that crashes may occur in 
both xc- and rxc-segments. 

The probability that an rxc-segment completes 
without a failure is e−(r+x+c)/M. Thus, the probability 
that a failure does occur in an rxc-segment is 
1−e−(r+x+c)/M. For a simulation with total execution 
time units Ttotal and average time before crash M, the 
expected number of failures is Ttotal/M. 

Therefore, the expected number of failures oc-
curring in rxc-segments is nrxc=Ttotal(1−e−(r+x+c)/M)/M, 
and the expected number of failures occurring in 
xc-segments is nxc=Ttotale

−(r+x+c)/M/M. Note that a re-
start time r is added after a failure in an xc-segment, 
while a restart time r is not added after a failure in an 
rxc-segment since it is already included. Therefore 
the total execution time is now 
 

Ttotal(x)=N+Nc/x+[(x+c)2f+r]nxc+(r+x+c)2fnrxc. 
 
Substituting f, nxc, and nrxc into the above equation and 
simplifying it, we obtain 
 

Ttotal(x)=MNer/M(e(x+c)/M−1)/x.           (13) 
 
As before, we take the first derivative and let it be 
zero. Then we obtain (x+c)/M=−ln(1−x/M). 

Surprisingly, we have the same minima for 
Model III as for Model II. Hence, we have the fol-
lowing theorem: 
Theorem 3    The optimal checkpoint interval that 
minimizes the total execution time is asymptotically 

 2 1 2 / 3 /(18 )* Mc c M c .x M   The expected 

total execution time is Ner/M/(1−x*/M). Note that the 
optimal checkpoint interval is independent of the 
restart time r. 

We find that Ttotal in Models II and III achieves 
its minimum values at the same argument value (more 
information can be found at http://en.wikipedia.org/ 
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wiki/Arg_max). Let T2=Ttotal(x
*) in Model II and 

T3=Ttotal(x
*) in Model III. Then 

 

/
3 2

2

1 / /( ! )
e

1
1 / 1 /

n n
r M

n

r M r n M
T

.
T r M r M





 
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 


 

 
This means that although Models II and III reach 

minima at the same argument value, the expected total 
execution time is longer in Model III than in Model II. 

Note that 
0

lim 1.
1

x

x

e

x



 Thus, T2≈T3 if the restart time 

r is far less than M. 
 
 
6  Experiments and discussion 
 

A Java simulation is developed to experiment 
with and evaluate the above three models. The 
simulation generates random points of failure ac-
cording to a Poisson process with rate 1/M, and then 
outputs the total execution time as a function of N, M, 
r, x, and c. We run the simulation 1000 times for 
each distinct combination of N, M, r, x, and c. The 
complete code that generates all experiment data can 
be downloaded from http://bizresearch.una.edu/ 
research/checkpointcode.zip. 

Now we present the following experiments: 
Experiment 1    We set N=10 000, M=2000, r=20, and 
c=10. The experiment results are shown in Fig. 3. 
Since r and c are very small compared to M, we find 
that all three models are good matches of the simula-
tion results. In other words, there is little difference 
between the three models if r/M and c/M are small. 
The predicted optimal checkpoint interval for Model I 
is 191, and the predicted optimal checkpoint intervals 
for Models II and III are 193. 
 
 
 
 
 
 
 
 
 
 
 

Experiment 2    Now we increase the checkpoint time 
c in Experiment 1 and set N=100 000, M=2000, r=20, 
and c=100. The experiment results are shown in Fig. 4. 
We find that Model I deviates from the simulation 
results. However, both Model II and Model III are still 
in good agreement with the simulation results. Since 

rM, there is no distinguishable difference between 

Models II and III. The predicted checkpoint interval 
for Model I is 536. The predicted optimal checkpoint 
intervals for Models II and III are 568. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Experiment 3    We increase the restart time r in 
Experiment 2 and set N=100 000, M=2000, r=200, 
and c=100. The experiment results are shown in Fig. 5. 
We find that both Model I and Model II deviate from 
the simulation results. However, Model III is still in 
good agreement with the simulation results. The pre-
dicted checkpoint interval for Model I is 563. The 
predicted checkpoint intervals for Models II and III 
are 568. 
 
 
 
 
 
 
 
 
 
 

 
 
From the above three experiments, we see that 

Model III is the best one to match the simulation 
results among all three models. When the restart time 

Fig. 3  Experiment 1 with N=10 000, M=2000, r=20, and 
c=10 

Fig. 4  Experiment 2 with N=100 000, M=2000, r=20, and 
c=100 

Fig. 5  Experiment 3 with N=100 000, M=2000, r=200, and 
c=100 
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r and checkpoint c are both far less than M, the three 
models are all in good agreement with the simulation 
results. 

Next we experiment on how the changes of av-
erage time before crash M, checkpoint time c, and 
restart time r affect the choice of optimal checkpoint 
interval. The optimal checkpoint interval for the 
simulation is obtained as follows: first we calculate 
the optimal checkpoint interval x* from Model II (or 
Model III, since they are the same); then we run the 
simulation 1000 times for each checkpoint interval in 
a wide neighborhood (for example, from x*−100 to 
x*+100) of x*, and the checkpoint interval that results 
in least total execution time is chosen. 
Experiment 4    We set N=100 000, r=20, and c=100, 
and let M range from 1000 to 3000. Fig. 6 shows the 
experiment results of the relationship between M and 
the optimal checkpoint interval x*. From the figure, 
we see that x* monotonically increases as M increases 
for all three models. The optimal checkpoint interval 
calculated from Model II (or Model III) is in good 
agreement with that from the simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
Experiment 5    We set N=100 000, M=2000, and 
r=20, and let c range from 100 to 300. Fig. 7 shows 
the experiment results of the relationship between c 
and the optimal checkpoint interval x*. From the fig-
ure, we see that x* monotonically increases as c in-
creases for all three models. The optimal checkpoint 
interval calculated from Model II (or Model III) is in 
good agreement with that from the simulation. 
Experiment 6    We set N=100 000, M=2000, and 
c=100, and let r range from 100 to 300. Fig. 8 shows 
the experiment results of the relationship between r 
and the optimal checkpoint interval x*. From the fig-
ure, we see that x* monotonically increases as r in-
creases for Model I, while staying constant for Mod-

els II and III. The simulation shows that x* is almost 
constant, which confirms that the choice of optimal 
checkpoint interval is independent of the restart time r. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From these experiments, we conclude that 
Model III is a good model so we can use it to calculate 
the optimal checkpoint interval and predict the total 
execution time of a simulation. M and c for a specific 
scientific simulation can be determined empirically 
by running the simulation a sufficient number of 
times. For example, in our case study of the natural 
organic matter (NOM) simulation (please check 
http://www.nd.edu/~nom for more information about 
the National Science Foundation (NSF)-funded NOM 
project), M is determined by running the simulation 
many times without checkpointing, and c is deter-
mined easily by calculating the average time spent on 
checkpointing. 

One more interesting finding about Model III is 
the following lemma: 
Lemma 4    Let 
 

/ ( )/( ) e (e 1)/ ,r M x c MT x NM x             (14) 
 

where c>0, r>0, and (0, ).x M  Supposing x*=
 

0
arg min ( ),

x M
T x

 
 and then for any t>0 such that 0<x*−t< 

Fig. 6  Experiment 4 with N=100 000, r=20, and c=100 

Fig. 7  Experiment 5 with N=100 000, M=2000, and r=20

Fig. 8  Experiment 6 with N=100 000, M=2000, and c=100
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x*+t<M, we have T(x*−t)>T(x*+t). 
Proof    The proof is omitted since it is straightforward.  

Lemma 4 means that an under-predicted 
checkpoint interval results in longer total execution 
time than an equivalent over-predicted one. This 
conclusion can be confirmed from Figs. 3–5. 

 
 

7  Real application of Model III 
 

Model III has been extensively applied in the 
NSF-funded interdisciplinary project—the NOM 
project (http://www.nd.edu/~nom). NOM is a het-
erogeneous mixture of organic molecules found in 
terrestrial and aquatic environments—from forest 
soils and streams to coastal rivers and marshes to the 
open ocean. NOM plays a vital role in ecological and 
biogeochemical processes, including chemical buff-
ering, mineral dissolution/precipitation, photochem-
istry, and microbial nutrition. This project consists of 
an interdisciplinary team of environmental (biology, 
chemistry, geology) and IT scientists that is devel-
oping a stochastic model for the time-dependent 
evolution of NOM in the environment. The scientific 
objectives are to produce both a new methodology 
and a specific program for predicting the properties of 
NOM over time as it evolves from precursor mole-
cules to eventual mineralization. The methodology 
being developed is a mechanistic, stochastic simula-
tion of NOM transformations, including biological 
and non-biological reactions, as well as adsorption, 
aggregation, and physical transport. It employs recent 
advances in agent-based simulation, Web-based de-
ployment of scientific applications, collaboratory for 
sharing simulations and data, and scalable Web-based 
database management systems to improve the reli-
ability of the stochastic simulations and to facilitate 
analysis of the resulting large datasets using data- 
mining techniques. The stochastic synthesis model of 
NOM evolution is being developed as a dialogue 
between coding and numerical testing on the one hand 
and environmental data-based testing on the other. 
Initially, a simple model program was coded to 
simulate ‘steady state’ transformations of NOM in a 
stable environment. This program was made available 
to applications scientists in biology and geochemistry, 
who tested the behavior of the model for fidelity to 
laboratory data and field observation, and who di-
rected the parameterization of the model and the in-

clusion or deletion of various molecular transforma-
tions (e.g., hydrolysis, photolysis, absorption, and 
microbial consumption). The program is being modi-
fied as indicated by these tests, and additional code 
modules will be added to simulate NOM transport (in 
soil, ground, or surface waters) and the response of 
the biological community. We make the Web-based 
simulation available to external investigators. 

The Web-based system delivers long-running 
scientific simulations available to scientists across the 
US. The system was carefully designed to be highly 
reliable and scalable using grid computing technolo-
gies. In other words, the system was intended to be 
self-healing, i.e., being able to recover from errors. 
The state data of the simulation were periodically 
archived to a database and the simulation will be able 
to restart from the most recent checkpoint to the fail-
ure point. The checkpoint interval was determined by 
using Model III. The simulation system has been 
approved to be very reliable and have served external 
investigators since 2004. 

 
 

8  Related works on checkpointing 
 

Analytically determining optimal checkpoint 
dates back to as early as 1974 when Young (1974) 
presented a first-order approximation to the optimum 
checkpoint interval. The first-order approximation 

was 2 ,cM  which coincides with the special case in 

Eq. (9). Our work extends this result to more general 
cases. 

In Duda (1983), Shin et al. (1987), and Kulkarni 
et al. (1990), a model with Poisson failure is consid-
ered to determine the optimal number of checkpoints, 
which minimizes the expected execution time of a 
program, with an assumption that no failure occurs 
during the checkpoint and restart phases. The same 
model was extended by Grassi et al. (1992) in which 
the optimal number of checkpoints relies on the dis-
tribution of the program execution time. Tantawi and 
Ruschitzka (1983) considered a model with a general 
distribution of failures and allowed failures to occur 
during the checkpoint and restart phase. This gener-
ality yields a model that needs to compute an infinite 
number of integrals, which is computationally in-
tractable. A simpler model is proposed by preventing 
failures from occurring during checkpoint and restart. 
However, this simplification still results in computing 
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an infinite number of non-linear equations. Thus, an 
even simpler model is then proposed by imposing 
more constraints which assume that the execution 
time between two successive checkpoints is constant 
and that the expected restart time equals the mean 
checkpointing time. With this simplification, an  
iteration algorithm with dynamic programming is 
used to compute an approximation of the optimal 
number of checkpoints. Ling et al. (2001) used a 
variational calculus approach to derive an explicit 
formula that links the optimal checkpointing fre-
quency with a general failure rate, with the objective 
of globally minimizing the total expected cost of 
checkpointing and recovery. The results show that the 
optimal checkpointing frequency is proportional to 
the square root of the failure rate. 

More recently, Kwak and Yang (2012) presented 
an analytical model to derive the optimum number of 
checkpoints with the objective of maximizing the 
probability of completing all tasks within deadlines, 
where they assumed that the transient faults follow a 
Poisson distribution. Ji et al. (2011) proposed a heu-
ristic algorithm for checkpoint placement with the 
objective to improve application performance. This 
checkpoint mechanism was inserted into application 
source code so that the application can restart auto-
matically and transparently. Cao et al. (2011) took 
advantage of the frequently consistent applications to 
develop checkpoint recovery algorithms that obtain 
lower overheads and reduce latency by trading space 
in main memory. 

Our work differs from the aforementioned work 
in several ways: (1) our simple assumption (failures 
occur according to a Poisson process) yields a simple 
cost function which is easy to solve numerically using 
a simple bisection algorithm, and (2) experiments on 
simulation show that the model is in good agreement 
with simulations. 

 
 

9  Summary 
 

In this paper, three models are discussed to de-
termine the optimal checkpoint interval and predict 
total execution time for long-running scientific 
simulations. We can draw the following conclusions 
from the discussions:  

1. Model III is the best model to calculate the 

optimal checkpoint interval and predict total execu-
tion time. 

2. The choice of checkpoint interval is inde-
pendent of the restart time r; however, the predicted 
total execution time is exponentially dependent on r. 
Therefore, the total execution time can be reduced 
dramatically if a failure can be detected and restart 
can be accomplished quickly.  

3. An under-predicted checkpoint interval results 
in longer total execution time than an equivalent 
over-predicted one; therefore, we would rather choose 
a larger checkpoint interval if it is not possible or is 
too difficult to calculate the optimal. 

The ability to restart an abortive simulation from 
the most recent checkpoint is a basic requirement for 
developing and deploying autonomic Web-based 
simulations (Huang and Madey, 2005). In particular, 
it helps to achieve self-healing and self-optimizing 
features of autonomic Web-based simulations. 
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