
Fan et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(11):816-827 816 

 

 

 

 

A GPU-based multi-resolution algorithm for  

simulation of seed dispersal* 
 

Jing FAN†, Hai-feng JI, Xin-xin GUAN, Ying TANG†‡ 
(School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China) 

†E-mail: fanjing@zjut.edu.cn; tangying@gmail.com 

Received May 23, 2012;  Revision accepted Aug. 9, 2012;  Crosschecked Oct. 12, 2012 

 

Abstract:    In forest dynamics models, the intensive computation and load involved in the simulation of seed dispersal can be-
come unbearably huge for large-scale forest analysis. To solve this problem, we propose a multi-resolution algorithm to compute 
seed dispersal on GPU. By exploiting the computation parallelism of seed dispersal, the computation of the whole forest plot is 
divided into multiple small plot cells, which are computed independently by parallel threads on GPU. To further improve the 
calculation efficiency with limited threads scale for GPU computation, we propose a hierarchical method to cluster the plot cells 
into a multi-resolution form according to the biological curves of tree seed dispersal. Experimental results show that our algorithm 
not only greatly reduces computational time but also obtains comparably correct results as compared to the naive GPU algorithm, 
which makes it especially suitable for large-scale forest modeling. 
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1  Introduction 
 

Forest dynamics models are powerful tools for 
effectively simulating forest evolution processes on 
the computer without the need to perform real-world 
experiments. In forest dynamics models tree devel-
opment undergoes several stages from seed to death, 
which are seed, seedling, youth, and adult (Pacala et 
al., 1993; Govindarajan et al., 2004; Kunstler, 2011). 
During all these stages, the initial establishment step, 
i.e., seed dispersal, determines population spread and 
local abundance across landscape and is very impor-
tant for the accuracy of the following developmental 
stages. In spatially explicit forest dynamics models 
(Bugmann, 2001; Govindarajan et al., 2004), adult 

trees produce seeds and distribute them across the 
uniformly divided forest plot of explicit coordinates 
during the seed dispersal stage. The plot cell is re-
garded as an independent calculation target and used 
to index the tree positions (Clark et al., 2001; Go-
vindarajan et al., 2007). The computation of dispersed 
seeds at a specific location is closely related to the 
sizes of the adult trees which produce seeds and the 
distances between those adult trees and the target 
location. As the vital spatio-temporal component of 
forest simulation, the calculation of seed dispersal is 
very time-consuming since to calculate the quantity 
of seeds distributed across the forest we have to 
traverse all adult trees for each target location. The 
time complexity is proportional to the product of the 
plot size and the number of adult trees. When the 
number of trees increases or the size of the forest 
becomes larger, the amount of data and computation 
involved in seed dispersal becomes enormous and 
unacceptable; e.g., it requires 5 h to simulate the  
100 m×100 m forest plot with 2500 trees with pure 
CPU implementation and without acceleration.  
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To efficiently compute the seed dispersal of adult 
trees, we design a novel GPU (graphics processing 
unit) algorithm which uses the spatial coherence of 
adult trees and target plot cells to achieve higher 
computational efficiency and consume fewer re-
sources. We organize the data including trees and plot 
cells into multi-resolution form by adopting the hier-
archical data clustering method. The hierarchical data 
and computation are properly mapped to the CUDA 
(NVIDIA Corporation, 2007) parallel computing 
structure, and the reasonable threads scheduling is 
proposed to optimize the running process of seed 
dispersal on CUDA. Compared with our previous 
work of GPU implementation without data clustering 
(Tang et al., 2011), the method in this paper effec-
tively increases the simulation efficiency at the same 
scale of thread and forest, which makes our algorithm 
scalable for the computation of large-scale forest. The 
experiments performed for forest plots of various 
scales show that our method not only achieves a 
higher speed-up ratio than the previous GPU method, 
but also obtains results with comparable accuracy and 
less resource waste. 

 
 

2  Related work 
 

Since the calculation of seed dispersal is a time 
consuming process, Govindarajan et al. (2007) or-
ganized the plot and trees as quad trees to reduce the 
amount of data required for acceleration. They im-
plemented the quad-tree data structure to approxi-
mately calculate the seed dispersal on CPU and 
achieved a speed-up ratio of 1–20 compared with the 
direct CPU algorithm for different plot scales. Al-
though the result of acceleration is quite good, there is 
still much room to improve the speed-up ratio by 
taking advantage of parallelism in seed distribution 
computation. With the rapid development of GPU and 
the high-performance parallel computing architecture 
CUDA, the parallel computing strategy has been used 
in more and more general purpose applications to 
improve their computing speed (Stone et al., 2007; 
Nickolls et al., 2008; Du et al., 2010; Mielikainen et 
al., 2011; Xia et al., 2011). In the calculation of seed 
dispersal, each plot cell is not influenced by the sur-
rounding plot cells. Besides, for a certain target plot 
cell each adult tree independently contributes their 

seeds without inter-influence. By exploiting the above 
computation independence of each plot cell and of 
each adult tree, the parallel seed dispersal algorithm is 
implemented on a GPU and the computation speed is 
greatly improved compared with previous CPU im-
plementation (Tang et al., 2011). With a forest plot of 
250 m×400 m, it is able to complete the process of 
seed dispersal calculation about 1000 times faster 
than the CPU calculation. The above GPU imple-
mentation shoots threads for each adult tree and plot 
cell to make the computation parallel. However, when 
the plot becomes larger and the number of trees in-
creases greatly, the number of threads exceeds the 
limited capacity of the GPU’s resource and reduces 
simulation efficiency. 

To further improve the GPU algorithm of dis-
persal and more effectively use the limited threads 
resource, the arrangement of threads in the GPU 
should be optimized. Considering the seed number 
produced by adult trees based on the biological curve 
of the seed dispersal model, there are some calcula-
tions on GPU which can be simplified by exploiting 
the spatial coherence of adult trees and the target plot 
cells. To reduce the computational load of the GPU, 
we can cluster the adult trees which are far from the 
target cell as a node to make an approximate calcula-
tion. This method is very similar to the Barn-Hut 
approximate algorithm (Barnes and Hut, 1986) which 
is applied in the astronomical N-body simulation. The 
simulation of N-body is a system of bodies (particles) 
in which each body interacts with every other body 
continuously. If there are N bodies, it needs to iterate 
over other N−1 bodies to complete the one target 
body’s force calculation, like the situation of our 
simulation of seed dispersal. In the implementation of 
simulation of N-body on GPU, there are several kinds 
of optimization algorithms derived from the Barn-Hut 
algorithm. The first algorithm was proposed by 
Nyland et al. (2007), called the i-parallel method. 
Also, there are other improved algorithms proposed 
based on this method, such as j-parallel (Hamada et 
al., 2007), w-parallel (Hamada et al., 2009), and 
jw-parallel (Wang et al., 2011). All the GPU methods 
mentioned above have better performance than the 
direct GPU algorithm for N-body simulation.  

However, all of these algorithms reduce the 
thread number by increasing the number of time steps 
(loops) for unit thread, which increases the total time 
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for simulation when the number of bodies is large. For 
simulation of N-body this may be acceptable, since 
the execution time does not increase sharply and can 
be tolerated. But the time required increases dra-
matically when this method is applied in the simula-
tion of seed dispersal because of the poor capability of 
dealing with branches on GPU. There is no condi-
tional branch for the calculation of the N-body com-
putational kernel. However, the simulation of seed 
dispersal has many branching operations. So, our 
method does not increase the number of time steps to 
reduce the thread number like N-body. 

Furthermore, for N-body simulation all the 
bodies are equal in computational position and the 
information of the body stored can be reused in the 
implementation. In our seed dispersal simulation, the 
plot cells and adult trees play different roles in cal-
culation. Plot cells are divided into different resolu-
tions for indexing and recording the density of the 
seed, while adult trees play the role of devoting seeds 
to the forest in all directions. We need only to store 
results and the plot cell index. So, the strategies of 
defining the thread block and grid size on a GPU in 
our simulation are different from those in N-body 
calculation. However, the shared memory allocation 
methods for source bodies calculated in the threads of 
these algorithms can be applied for the allocation of 
locations of trees or clustered nodes and these  
allocation methods are used in the multi-resolution 
algorithm.  

 
 

3  Seed dispersal model 
 

In forest simulation, the plot is modeled as a 
fixed rectangle and divided into uniform grid cells 
(Fig. 1). We use X-Y coordinates to represent the plot 
rectangle M. Positive X coordinate increases to the 
east, while positive Y coordinate increases to the north. 
Each plot cell is defined as M(i, j). The side length of 
the grid cell determines the resolution of the plot grid 
and affects the computing precision of forest dy-
namics. A grid with higher resolution leads to higher 
precision but longer computation time and more 
computation resource.  

In our forest dynamics models, the dispersal of 
seeds initiates the formation of tree individuals, and 
the seeds are produced by the adult trees. For com-

puting simplicity and without loss of generality, a tree 
individual is represented as two cylinders (the trunk 
and the crown) and has an explicit location P (Fig. 2). 
We refer to the diameter at the breast height of an 
adult tree as DBH, which is the most commonly 
measured tree growth parameter. The crown radius, 
crown depth, or tree height can be calculated as a 
function of DBH.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
To compute the seed dispersal of the whole plot, 

we calculate the seed dispersal of each plot cell. Fig. 3 
describes the calculation of seed dispersal.  
 

 
 

 
 
 
 
 
 
 

 
As Fig. 3 shows, the seed number produced by 

the kth reproductive adult tree is P(k). If we want to 
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Fig. 1  Forest plot grid 

Fig. 2  Geometric model of a tree individual (DBH:
diameter at the breast height of an adult tree) 

DBH

P

Fig. 3  The seed dispersal model

M(i, j): Ri

P(k)
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calculate the seed density of all plot cells, we need 2D 
loops as follows: 

1. For Ri of unit plot cell M(i, j), iterate over all 
the adult trees of the scene that are located in different 
distances to the target plot cell M(i, j).  

2. Repeat step 1 and loop over all cells of the 
landscape.  

Adult trees that produce and disperse seeds to a 
plot cell are independent of each other. Seeds dis-
persed in different plot cells are also computed sepa-
rately. The computation of the seed dispersal of one 
adult tree to a given plot cell can be viewed as a 
fine-grained sub-task, with simple logic. The com-
putation time is closely related to the plot size and tree 
population. It takes a long time to calculate the seed 
dispersal because of a large amount of sub-tasks. We 
therefore adopt the GPU-based parallel algorithm by 
partitioning the double loops into sub-tasks and 
mapping these sub-tasks into threads to reduce com-
puting time, which is introduced in Section 6 in detail. 

To calculate the number of seeds dispersed per 
plot cell, we apply the model of the Weibull function 
(Lepage et al., 2000):  

 

1

( ),
N

i
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R P k


                           (1) 

 
where Ri denotes the total seed number of the plot cell 
i, N is the number of adult trees in the forest, referring 
to those adult trees whose DBH values are larger than 
the minimum reproductive DBH of a certain species, 
and P(k) is the seed number produced by the kth adult 
tree, which is measured by the change in its DBH and 
the distance to the ith plot grid cell. P(k) is calculated 
as follows: 
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where STR, η, θ, β, and U are all constant parameters 
related with specific tree species. The value of d(k) 
denotes the distance between the kth adult tree and the 
ith plot grid cell. Eq. (2) shows that the quantity of 
seeds produced by one adult tree is proportional to the 
tree’s DBH and in inverse ratio to the exponent of 
distance d. 

4  Multi-resolution data clustering strategy 
for seed dispersal 

4.1  Analysis of the dispersal model 

From the seed dispersal model introduced in 
Section 3, we know that the time complexity of 
computing the forest plot’s seed dispersal is O(N×G), 
where N is the plot size and G is the number of adult 
trees. When N and G increase largely, the calculation 
load becomes excessively heavy. So, simplifying the 
amount of data by clustering data into different 
resolutions is an important optimization strategy 
(Gelbard et al., 2007). To prove the feasibility of 
clustering data we first analyze curves of the Weibull 
function for two different trees. In Fig. 4, the vertical 
axis is the survived seed number per square meter of a 
certain grid cell ζ produced by one tree. The hori-
zontal axis is the distance between the adult trees and 
the grid cell ζ. The dashed curve is the seed density 
per plot cell of species Trembling aspen and the solid 
curve is the seed density of species Subalpine fir. The 
detailed parameters (Astrup et al., 2007) of the 
Weibull function for these two species are shown in 
Fig. 4. 
 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
Fig. 4 shows that the larger the distance between 

the tree and the grid cell, the fewer seeds the tree 
contributes. In Trembling aspen the seed density ap-
proaches 0 when the distance reaches about 60 m. The 
same occurs for Subalpine fir when the distance is 
nearly 40 m. According to the characteristic of the 
curves, we find that the seeds produced by trees 
would become negligible when they are located far 
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away from the plot cell. For the adult trees whose 
distances to the plot cells are large enough and thus 
their produced seeds are negligible, they can be 
clustered to one node to save computation time. The 
computation of this clustered node can be used to 
replace the respective calculations of the adult trees it 
contains. In the next subsection we will introduce the 
method of clustering in detail. 

4.2  Multi-resolution data clustering for seed dis-
persal 

In the forest dynamics model, we divide the plot 
into uniform cells until the unit plot cell contains at 
most one tree. Thus, the plot is transformed to a 
high-resolution grid, of which the size of the unit cell 
is usually 1 m×1 m and each adult tree can be ex-
plicitly indexed by the cell. So, in the implementation, 
the cells are clustered according to their distances to 
the target tree. As the plot can be evenly divided into 
2k×2k plot cells easily, 2×2 cells are clustered to form 
the parent node. The center of the node is defined as 
the center of the adult trees it contains. We call the 
cells leaf nodes and the clustered node the super node. 
These nodes are hierarchically clustered to build the 
multi-resolution data structure for seed dispersal. The 
clustering strategy is shown in Fig. 5, where M(i, j) 
denotes the target plot cell which collects seeds from 
all adults in the forest. In the left figure, the dots de-
note trees of different locations. Regions r1 and r2 
represent the different regions which are located at 
different distances to the target plot cell M(i, j). Re-
gion r2 is farther than region r1, and thus more unit 
plot cells are clustered in r2 than in r1. As the figure 
shows, the four sub-regions in r2 (which are all of the 
same size as r1) are merged. In the right half of the 
figure, the dots represent the nodes after clustering 
whose size is proportional to the number of child cells 
clustered. n1 and n2 represent different resolution 
cluster nodes. n1 consists of four leaf nodes (plot cells) 
 

 
 
 
 
 
 
 
 

and we define its multi-resolution level as layer 1. We 
define n2 as the cluster node of layer 2 and node n2 
consists of the four sub-nodes of layer 1. We can 
expect that the farther the distance, the larger the 
cluster node.  

In the following we describe how to calculate 
seed dispersal from super nodes to target plot cells. In 
a node, the distance from each tree to the target cell is 
approximately equal and is defined as the distance d 
from the super node to the target plot cell. So, for the 
trees of one node, d(k) in Eq. (2) can be expressed as d. 
As U and θ are constant in Eq. (2), the value of 
exp(−Udθ) is equivalent for each tree in the same node. 
The parameters STR, η, θ are all species-specific 
constants, so for a node that contains m adult trees, the 
seed density of the ith target plot cell can be expressed 
as 
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Here the value of L has the following form: 
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All of the factors in Eq. (4) are determined for 

the trees of each species in a certain node. Thereby, L 
is constant for a certain clustered node and can be 
pre-computed.  

To clearly and easily represent the value of a 
clustered node, we define variable NODE(p, q) as 
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where the value of NODE(p, q) will be used as the 
DBH of the clustered node p, which contains the m 
adult trees and belongs to layer q, and q is related with 
the value of d in L. 

The number of adult trees m in a clustered node 
is also dependent on d. The larger the d, the more 
adult trees the node contains. 

The calculation of seed density for a clustered 
node to a certain plot cell takes Eq. (3) only when the 
distance from the node to the target plot cell is larger 
than the threshold of clustering, which is based on  
the analysis in Section 4.1. For each species, the 
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Fig. 5  The multi-resolution clustering strategy of seed 
dispersal 
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threshold for clustering is different. For example, 40 
m is set as the threshold to cluster for Subalpine fir, 
and 60 m is set as the threshold for Trembling aspen. 
 
 
5  Data storage 

5.1  Storage of tree individuals data 

An object-oriented programming framework 
requires programmers define the class data structure 
which contains all related tree attributes to represent 
the tree entity. However, for the computation of seed 
dispersal, not all the attributes included in the class 
are involved. For example, the canopy radius of a 
certain target tree is not involved in dispersal com-
putation. During the computation of seed dispersal, 
unused tree data wastes the very limited device 
memory. Besides, the tree data can be organized as a 
list (see the top half of Fig. 6) or multi-branch trees 
(i.e., quad-tree) by pointers in the main memory for 
CPU implementation. But the namespaces of the 
memory address for host (CPU) and device (GPU) are 
different and we should pre-process the data on a host, 
so it is not appropriate to use pointers. Because that 
array has high efficiency for access and transfer, we  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

therefore isolate the attributes into different arrays 
(see the bottom half of Fig. 6). The values with the 
same index in an array compose a tree individual. 
Additionally, trees in different growth stages are 
stored separately (see the right part of Fig. 6). During 
the computation of seed dispersal, we just need to 
transfer the related attribute arrays, such as DBHs, 
ages, and locations of adults, to the global memory of 
GPU. 

5.2  Storage of multi-resolution data 

Arrays of different sizes are used to represent 
different levels of tree clustered nodes for storage of 
multi-resolution data based on the data structure for 
individual trees introduced above. The array’s sub-
scripts are used to index data. Fig. 7 shows how we 
organize the array structure and describe the rela-
tionship of two layers (K and K+1). Each element of 
the array stores the NODE (defined in Section 4) of 
one clustered node of a certain species. While there 
are n nodes in layer K+1, there are 4n+3 nodes in 
layer K. The value of each parent node is the sum of 
the values of four sub-nodes for a certain species. For 
example, NODE(0, k+1) is the sum of NODE(0, k), 
NODE(1, k), NODE(2, k), and NODE(3, k). The 
above array structure is based on a single species. In 
actual scene applications, the arrays can be propor-
tionally expanded for multi-species by explicitly 
adding the clustered nodes as NODE at the end of the 
array at each level for new tree species. 
 
 
 
 
 
 

 
 
 
 

 
 

6  Implementation of direct calculation for the 
GPU kernel 

 
To calculate the seed density for the target plot 

cell, each tree in the forest is iterated according to the 
Weibull function. For GPU implementation the loop 
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iteration is replaced by CUDA threads. We have 
launched a 2D grid of blocks on a naive GPU to split 
the double loop of computation in previous work 
(Tang et al., 2011), where each block is a 1D array of 
threads. For clear explanation, we apply our algo-
rithm to a single species and map one tree to one 
thread to calculate the seed dispersal. The imple-
mentation of multiple species is on the same principle 
and easy to extend. Fig. 8 shows the design of the seed 
dispersal kernel of the naive GPU algorithm without a 
clustered node. On the left side is the plot grid where 
dots denote the trees. On the right is the correspond-
ing thread grid, where the X dimension indicates the 
trees and the Y dimension indicates the plot cells. The 
S-shaped curves in the thread grid are the unit threads 
which compute one tree in Fig. 8. The seed density of 
plot (i, j) is computed by the row of threads whose 
Y-coordinate is i+j×PW (PW denotes the width of the 
plot grid), and the seed dispersal of plot (i, j) is the 
sum of these threads’ computation results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The naive GPU algorithm computes each tree’s 

contribution to the target cell in parallel and achieves 
a high speed-up ratio compared with sequential loop 
implementation on a CPU. When the number of trees 
increases greatly, however, the threads in the X di-
mension become so numerous that they exceed the 
limit of the GPU computing resources.  

To reduce the thread scale of the X dimension, 
we schedule one thread to treat t adult trees as an adult 
set; for example, we can group a row of trees or a 
column of trees as one thread. Since there are some 
conditional branches for the calculation of dispersal 
(such as the branches based on the condition whether 
one adult tree’s DBH is larger than the minimum 
reproductive DBH of a certain species), the value of t 

should not be too large in order to ensure that each 
thread would not cost excessive time in the execution. 
Otherwise, the time of the entire simulation would 
increase sharply due to the limited and weaker logic 
processing capability of GPU compared with CPU. In 
the implementation, the experimental results show 
that setting the initial value of t to 10 is an appropriate 
choice considering the balance between the thread 
scale and the efficiency. When the value of t is dou-
bled, the total execution time grows to 3.3 times the 
original cost of the initial t=10 at the scale of 105 
trees.   
 
 
7  Implementation of multi-resolution calcu-
lation for the GPU kernel 

7.1  Design of multi-resolution calculation on GPU 

To better solve the problem of the excessive 
amount of threads in the X dimension for large-scale 
forests, the trees can be clustered according to the 
strategy introduced in Section 4 to reduce the trees 
involved in the computation of seed dispersal. To 
compute the seed dispersal for clustered data on GPU, 
we need to design a new CUDA-based kernel to im-
plement the multi-resolution seed dispersal calcula-
tion. Fig. 9 shows the design of the seed dispersal 
kernel of the multi-resolution approximation algo-
rithm. The left figure is the plot grid and the right 
figure is the corresponding thread grid. The S-shaped 
curves represent the unit threads and dots denote the 
clustered nodes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
We use different clustered data nodes to replace 

those adult trees located at a far distance from the 
target cell. For example, in Fig. 9, the region with 
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small-sized sub-divided cells includes the trees near-
est to the target cell plot (i, j). In this region, unit 
thread computes seed contribution of one tree for the 
target plot to keep computation accuracy, corre-
sponding to the computation of the highest resolution. 
The region with middle-sized sub-divided cells is 
farther than the region with small-sized cells, and the 
corresponding unit threads compute the clustered 
node including several trees. For the farthest region 
with large-sized sub-divided cells in Fig. 9, unit 
thread computes a larger clustered node including 
more trees, corresponding to lower resolution com-
putation. In our implementation, multiple nodes can 
be scheduled per thread. However, the number of 
nodes per thread is limited as we have explained in 
the implementation of the naive GPU algorithm. The 
final seed density of plot (i, j) is the accumulation of 
results of those unit threads.  

7.2  Implementation of multi-resolution calcula-
tion on CUDA 

In this subsection we compare the scale and 
computational complexity of the threads in our algo-
rithm with those in the naive GPU algorithm. In the 
naive GPU algorithm, assume the number of plot cells 
is n and there are k adult trees in the forest. In our 
implementation the size of the Y dimension is n. 
When t adults are computed for unit thread, the size of 
X dimension is k/t. Thus, the total amount of threads 
for the calculation of seed dispersal is nk/t. For multi- 
resolution clustering, the adult trees which are com-
puted by the thread of X dimension are replaced by the 
clustered nodes. For the dispersal calculation of a 
certain plot cell, the total number of clustered nodes 
computed in the X dimension is about the log value of 
the original number of plot cells since the original plot 
cells are organized into a quad tree (Section 4.2). We 
define the number of nodes of the quad tree as m. 
When t clustered nodes are computed for unit thread, 
which is the same as in the naive GPU algorithm, the 
total amount of threads for the calculation of seed 
dispersal is nm/t. The amount of reduced threads 
compared with naive GPU implementation is 
n(k−m)/t, where k is linearly related to n and m is 
log-related to n. The computational complexity of the 
naive GPU algorithm is O(n2), while the computa-
tional complexity of threads to compute one plot 
cell’s seed density is O(log n). Therefore, the whole 

computational complexity of computing all plot cells 
is O(nlog n) for a multi-resolution algorithm.  

 

Kernel steps: 
1. Get the block index k of the Y dimension 

which indicates the kth plot (denoted by BY_k). Get 
the thread’s index of the X dimension which indicates 
the index of a cluster node. 

2. According to the block index k of the Y di-
mension, get the location of plot k and calculate the 
distance d between the node and the target plot. Ac-
cording to the different criteria of distance (Section 4), 
determine whether to use the higher multi-resolution 
clustered node. For example, if the criterion of layer 2 
is ρ2 and d is greater than it, then the clustered node is 
not divided; otherwise, it is divided. 

3. If the node is a leaf node or need not be di-
vided in step 2, get the data (i.e., the value of NODE) 
of the node through the X dimension index. After-
wards, compute the seed density of the target plot 
depending on the distance d and the model function.  

4. If in step 2 the node is divided, the thread gets 
the data of the node’s children and repeats step 2. 

Since the clustering has the feature of spatial 
locality, it is highly possible that the neighbor clus-
tered nodes are in the same layer as the target cell. 
Thus, it greatly reduces the frequency of threads 
switching among different levels in one warp (In the 
architecture of Tesla on GPU, one warp contains 32 
threads) (Ryoo et al., 2008), which can increase the 
thread executing efficiency. 

7.3  Device memory access and allocation 

The GPU performance is dependent on not only 
parallel computation of tremendous threads but also 
high memory bandwidth. Optimal organization of 
memory access has great impact on performance. We 
should take advantage of each type of memory to 
maximize the throughput of memory access. In this 
subsection, we introduce the access and allocation of 
three kinds of GPU memory (constant, global, and 
shared) in our implementation. 

Constant memory resides in device memory 
(GPU memory). It is cached to increase the through- 
put of device memory and used to store constant pa-
rameters which are frequently required during calcu-
lation. Arrays for the species-specific parameters STR, 
U, η, θ, β (Fig. 10) are built and the size of each con-
stant parameter array is the same as the number of the 
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species of tree. In Fig. 10, Tk means the kth thread in 
the block. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Global memory is the main memory of GPU 

which occupies a large space of linear memory. The 
value and location of clustered nodes and result arrays 
are stored in global memory. The size of the memory 
allocated to the clustered node is the total size of 
arrays of all layers. The structure of multi-resolution 
arrays is introduced in Section 5.2. In our system, the 
percentage of data residing in global memory reaches 
about 19% when the scale is 5×104 and 51% when the 
scale is 5×105. Considering the large amount of data, 
it is a time consuming procedure to transfer data be-
tween device (GPU) and host (CPU) memory. For a 
more efficient data transfer, we use the 2D array copy 
function to transfer data and define row length in the 
clustered node array as the pitch parameter of the 
function. 

Besides, some other measures are taken to op-
timize global memory access. For fast access to the 
global memory, the first thread of each block in the X 
dimension is scheduled to calculate the element of the 
array (such as the clustered node array) whose index 
is an integral multiple of the block size, which causes 
merging access. Under merging access it costs only 
one transfer clock cycle for half-warp (In the archi-
tecture of Tesla on GPU, half-warp contains 16 
threads); otherwise, it would cost 16 transfer clock 
cycles (Zhang et al., 2009). 

Shared memory is visible to all threads within 
the block and with the same lifetime as the block. It 

has limited memory space but much faster access than 
the global memory. Since each block corresponds to 
the computation of one target plot cell and a certain 
number of clustered nodes, we use shared memory to 
load the information of target clustered nodes from 
global memory to improve memory access efficiency, 
which is similar to the method proposed by Hamada 
and Titala (2007) and Hamada et al. (2009) for 
N-body simulation. In Fig. 10 the size of shared 
memory is defined as C×blocksize, where C is the 
length of a clustered node which contains location 
coordinates, value of node DBH, and species. After 
loading operation, the CUDA synchronization func-
tion is called on to make sure that each thread can read 
the node information safely.  

In addition, we allocate another array in shared 
memory, called seeds_thread, to keep record of seed 
density accumulated by t clustered nodes in each 
thread (Fig. 10). To minimize the bank-conflict, the 
array length is set to L, which is the same as the 
number of threads per block, i.e., 128. During the 
iterative computation of t clustered nodes, each thread 
accumulates the seed density into a register and writes 
it to the shared memory according to the index of 
thread within a block. The CUDA synchronization 
function is also called on to make sure that the array 
of seeds_thread is completely filled. After that we 
sum the element values of the seeds_thread array 
through the parallel reduction algorithm (Lin et al., 
2010) to obtain the final seed density contributed by 
the block, and write it to the array of seeds_block in 
the global memory. The parallel reduction algorithm 
builds a tree structure over the partial sum array  
(Fig. 11). As the figure shows, the accumulate  
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operation is divided into log2 L steps, where L denotes 
the length of seeds_thread. In each step, pairs of the 
array’s elements are summed to obtain the new 
half-sized array which is to be processed in the next 
step. For example, in step k, elements of the 
seeds_thread in each block whose subscripts are 
smaller than L/2k−1 do summing operations and L/2k 
threads are needed to complete the seed number ac-
cumulation. At the end of the loop, thread 0 holds the 
final result, and the seed density of each block is 
stored in seeds_thread[0]. 
 
 
8  Experimental results 

 
We tested our algorithm on realistic forest data to 

simulate the seed dispersal of four tree species. All of 
our experiments were performed on a PC with the 
following configurations: 2.13 GHz Intel® Xeon® 
CPU E5506, 4 GB memory, NVIDIA Quadro 600 
graphic card with 2 GB memory, and Win7 32-bit OS. 

8.1  Execution time 

In the kernel, the different block sizes (thread 
number per block) cause different numbers of resident 
blocks to be loaded in one stream multiprocessor, 
which affects the computational time of seed dispersal. 
First we compared the execution time of the different 
block sizes of our algorithm. Table 1 shows the 
comparison of execution time of different numbers of 
threads per block under different scales of plot cells 
and adult trees.  

Table 1 shows that when the block size is 256, 
the performance of the computation of seed dispersal 
on GPU is maximized. So, under this block size, we 
compared our algorithm to the CPU and naive GPU. 
Table 2 shows the execution time and speed-up ratios 
of different algorithms for the simulation of seed 
dispersal.  

 
 
 
 
 
 
 
 
 

As shown in Table 2, the speed-up ratio of our 
algorithm to CPU improves dramatically when the 
scale of plot and the number of adults increase. The 
transfer time between the host memory and device 
memory is negligible compared to the intensive 
computation time when the scale of plot and the 
number of adult trees are large. The table also shows 
that the speed-up ratio of our multi-resolution GPU 
can reach about 15 times that of the naive GPU algo-
rithm when the number of plot cells is over 5×105. 
This is because when the scale of the forest increases 
sharply, the increasing amount of data has been sim-
plified more evidently. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

However, in Table 2 the initial scale of threads in 
the naive GPU algorithm is larger than that in our 
multi-resolution algorithm under the condition that 
both of them deal with 10 trees or clustered nodes per 
thread. For further comparison of these two GPU 
algorithms, under the same thread scale of 106 threads 
we tested the execution time of different GPU algo-
rithms for the scene of 5×105

 trees and 105 plot cells. 
In the naive GPU algorithm it cost about 320 s while 
the multi-resolution algorithm required only about 19 s. 
The speed-up ratio increased obviously and was up to 
16 times. In this situation, under the same constant 
thread scale of 106, the number of trees treated per 
thread in the naive GPU algorithm was increased to 
more than the initial value in Table 2, i.e., 10 trees per 
thread. As discussed in Section 6, the more the clus-
tered nodes or trees calculated by per thread, the 

Table 1  Comparison of runtime in different block sizes 
(128, 256, and 512 threads per block) 

Time (ms) Number of 
plot cells 

Number of 
adult trees 128 256 512  

5×102 102 105 102 107 

5×103 103 187 177 198 

5×104 104 771 735 796 

5×105 105 20 439 19 367 21 542 

Table 2  Comparison of execution time and speed-up 
ratio of different algorithms when the block size is 256 

Time (ms) Number 
of plot 
cells 

Number 
of adult 

trees 
CPU 

algorithm
Multi-resolution 
GPU algorithm 

Speed-up 
ratio 1

5×102 102 620 102 6.07 

5×103 103 52 250 177 295.20

5×104 104 5 257 500 735 7153.06

5×105 105 526 500 000 19 367 27 185.42

Time (ms) Number 
of plot 
cells 

Number 
of adult 

trees 
Naive GPU 
algorithm

Multi-resolution 
GPU algorithm 

Speed-up 
ratio 2

5×102 102 157 102 1.54 

5×103 103 294 177 1.66 

5×104 104 2953 735 4.02 

5×105 105 290 125 19 367 14.98 

Both naive GPU and multi-resolution GPU algorithms deal with 10 
trees or clustered nodes per thread 
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lower the simulation efficiency.  
Therefore, our multi-resolution GPU algorithm 

is more effective in computing seed dispersal and 
useful for forests with larger scales.  

8.2  Correctness of simulation for seed dispersal 

To verify the results of the simulation for seed 
dispersal we visualized the density of the seeds by 
colored density maps. All the initial data of trees was 
collected from the 52 m×89 m forest which is located 
at a moist cold subzone near the town of Smithers in 
central British Columbia. The original forest data was 
provided by Dave Coates, a leading researcher of 
British Columbia Forest Service. In the pictures, dif-
ferent species are represented by different colors, and 
the deeper the color, the greater the seed density.  
Fig. 12 shows the density maps of seeds produced by 
the adults for two different algorithms after a growth 
cycle for hybrid species, including Subalpine fir, 
Lodgepole pine, Tnterior spruce, and Trembling as-
pen. From these visualized results in Fig. 12, we ob-
serve that the color distribution is nearly the same, 
which means that the results of seed densities com-
puted by the two methods are very close. 
 
 
 
 
 
 
 
 
 
 
 

 
 

In addition to perceptual similarity, we calculated 
the relative error between the accurate result of naive 
GPU and our approximation result. For each plot cell 
of the landscape, the scope of the relative errors 
ranged from 0 to 4.1%. The average error of all plot 
cells was 1.72%. Compared with the naive result, our 
multi-resolution algorithm had a slight loss in 
accuracy which is acceptable for fast simulation. To 
further confirm the correctness of our algorithm, we 
computed the number of young trees growing from 
seeds each year. Since the surviving seeds grow di-
rectly into youths, the number of young trees in-
creasing each year is a credible indicator of the 

number of seeds. Fig. 13 shows the curves depicting 
how the number of young trees increases over 30 
years. The horizontal axis is the time step in year. The 
vertical axis is the number of young trees that grow 
from new-born seeds. The range of errors was from 0 
to 3.1%. The average relative error of youth number 
was 1.9%. The errors are acceptable and reasonable 
considering that our algorithm obtains a speed-up 
ratio of up to 16 compared with the naive GPU  
algorithm. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
9  Conclusions 

 
In this paper we propose a GPU-based multi- 

resolution algorithm to compute seed dispersal in 
forest dynamics models. We cluster the forest data 
into different layers according to biology models and 
design the GPU algorithm to calculate the dispersal. 
Experimental results show that the algorithm has a 
good performance compared to naive GPU parallel 
computation. Our algorithm not only optimizes the 
utilization of limited thread computing resource, but 
also greatly improves the speed of calculation with a 
reasonable error. In the future, we will extend the 
multi-resolution GPU algorithm to the computation of 
other growth stages of forest dynamics models that 
meet the criterion of parallel acceleration. 
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