
Fan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):816-827 816

A GPU-based multi-resolution algorithm for

simulation of seed dispersal*

Jing FAN†, Hai-feng JI, Xin-xin GUAN, Ying TANG†‡
(School of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China)

†E-mail: fanjing@zjut.edu.cn; tangying@gmail.com

Received May 23, 2012; Revision accepted Aug. 9, 2012; Crosschecked Oct. 12, 2012

Abstract: In forest dynamics models, the intensive computation and load involved in the simulation of seed dispersal can be-
come unbearably huge for large-scale forest analysis. To solve this problem, we propose a multi-resolution algorithm to compute
seed dispersal on GPU. By exploiting the computation parallelism of seed dispersal, the computation of the whole forest plot is
divided into multiple small plot cells, which are computed independently by parallel threads on GPU. To further improve the
calculation efficiency with limited threads scale for GPU computation, we propose a hierarchical method to cluster the plot cells
into a multi-resolution form according to the biological curves of tree seed dispersal. Experimental results show that our algorithm
not only greatly reduces computational time but also obtains comparably correct results as compared to the naive GPU algorithm,
which makes it especially suitable for large-scale forest modeling.

Key words: GPU, Seed dispersal, Large-scale, Multi-resolution, Data clustering
doi:10.1631/jzus.C1200147 Document code: A CLC number: TP391.9

1 Introduction

Forest dynamics models are powerful tools for
effectively simulating forest evolution processes on
the computer without the need to perform real-world
experiments. In forest dynamics models tree devel-
opment undergoes several stages from seed to death,
which are seed, seedling, youth, and adult (Pacala et
al., 1993; Govindarajan et al., 2004; Kunstler, 2011).
During all these stages, the initial establishment step,
i.e., seed dispersal, determines population spread and
local abundance across landscape and is very impor-
tant for the accuracy of the following developmental
stages. In spatially explicit forest dynamics models
(Bugmann, 2001; Govindarajan et al., 2004), adult

trees produce seeds and distribute them across the
uniformly divided forest plot of explicit coordinates
during the seed dispersal stage. The plot cell is re-
garded as an independent calculation target and used
to index the tree positions (Clark et al., 2001; Go-
vindarajan et al., 2007). The computation of dispersed
seeds at a specific location is closely related to the
sizes of the adult trees which produce seeds and the
distances between those adult trees and the target
location. As the vital spatio-temporal component of
forest simulation, the calculation of seed dispersal is
very time-consuming since to calculate the quantity
of seeds distributed across the forest we have to
traverse all adult trees for each target location. The
time complexity is proportional to the product of the
plot size and the number of adult trees. When the
number of trees increases or the size of the forest
becomes larger, the amount of data and computation
involved in seed dispersal becomes enormous and
unacceptable; e.g., it requires 5 h to simulate the
100 m×100 m forest plot with 2500 trees with pure
CPU implementation and without acceleration.

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Natural Science Foundation of
China (Nos. 61173097 and 61003265), the Natural Science Founda-
tion of Zhejiang Province, China (No. Z1090459), the Science and
Technology Planning Project of Zhejiang Province, China (No.
2010C33046), and Tsinghua–Tencent Joint Laboratory for Internet
Innovation Technology

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

Fan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):816-827 817

To efficiently compute the seed dispersal of adult
trees, we design a novel GPU (graphics processing
unit) algorithm which uses the spatial coherence of
adult trees and target plot cells to achieve higher
computational efficiency and consume fewer re-
sources. We organize the data including trees and plot
cells into multi-resolution form by adopting the hier-
archical data clustering method. The hierarchical data
and computation are properly mapped to the CUDA
(NVIDIA Corporation, 2007) parallel computing
structure, and the reasonable threads scheduling is
proposed to optimize the running process of seed
dispersal on CUDA. Compared with our previous
work of GPU implementation without data clustering
(Tang et al., 2011), the method in this paper effec-
tively increases the simulation efficiency at the same
scale of thread and forest, which makes our algorithm
scalable for the computation of large-scale forest. The
experiments performed for forest plots of various
scales show that our method not only achieves a
higher speed-up ratio than the previous GPU method,
but also obtains results with comparable accuracy and
less resource waste.

2 Related work

Since the calculation of seed dispersal is a time
consuming process, Govindarajan et al. (2007) or-
ganized the plot and trees as quad trees to reduce the
amount of data required for acceleration. They im-
plemented the quad-tree data structure to approxi-
mately calculate the seed dispersal on CPU and
achieved a speed-up ratio of 1–20 compared with the
direct CPU algorithm for different plot scales. Al-
though the result of acceleration is quite good, there is
still much room to improve the speed-up ratio by
taking advantage of parallelism in seed distribution
computation. With the rapid development of GPU and
the high-performance parallel computing architecture
CUDA, the parallel computing strategy has been used
in more and more general purpose applications to
improve their computing speed (Stone et al., 2007;
Nickolls et al., 2008; Du et al., 2010; Mielikainen et
al., 2011; Xia et al., 2011). In the calculation of seed
dispersal, each plot cell is not influenced by the sur-
rounding plot cells. Besides, for a certain target plot
cell each adult tree independently contributes their

seeds without inter-influence. By exploiting the above
computation independence of each plot cell and of
each adult tree, the parallel seed dispersal algorithm is
implemented on a GPU and the computation speed is
greatly improved compared with previous CPU im-
plementation (Tang et al., 2011). With a forest plot of
250 m×400 m, it is able to complete the process of
seed dispersal calculation about 1000 times faster
than the CPU calculation. The above GPU imple-
mentation shoots threads for each adult tree and plot
cell to make the computation parallel. However, when
the plot becomes larger and the number of trees in-
creases greatly, the number of threads exceeds the
limited capacity of the GPU’s resource and reduces
simulation efficiency.

To further improve the GPU algorithm of dis-
persal and more effectively use the limited threads
resource, the arrangement of threads in the GPU
should be optimized. Considering the seed number
produced by adult trees based on the biological curve
of the seed dispersal model, there are some calcula-
tions on GPU which can be simplified by exploiting
the spatial coherence of adult trees and the target plot
cells. To reduce the computational load of the GPU,
we can cluster the adult trees which are far from the
target cell as a node to make an approximate calcula-
tion. This method is very similar to the Barn-Hut
approximate algorithm (Barnes and Hut, 1986) which
is applied in the astronomical N-body simulation. The
simulation of N-body is a system of bodies (particles)
in which each body interacts with every other body
continuously. If there are N bodies, it needs to iterate
over other N−1 bodies to complete the one target
body’s force calculation, like the situation of our
simulation of seed dispersal. In the implementation of
simulation of N-body on GPU, there are several kinds
of optimization algorithms derived from the Barn-Hut
algorithm. The first algorithm was proposed by
Nyland et al. (2007), called the i-parallel method.
Also, there are other improved algorithms proposed
based on this method, such as j-parallel (Hamada et
al., 2007), w-parallel (Hamada et al., 2009), and
jw-parallel (Wang et al., 2011). All the GPU methods
mentioned above have better performance than the
direct GPU algorithm for N-body simulation.

However, all of these algorithms reduce the
thread number by increasing the number of time steps
(loops) for unit thread, which increases the total time

Fan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):816-827 818

for simulation when the number of bodies is large. For
simulation of N-body this may be acceptable, since
the execution time does not increase sharply and can
be tolerated. But the time required increases dra-
matically when this method is applied in the simula-
tion of seed dispersal because of the poor capability of
dealing with branches on GPU. There is no condi-
tional branch for the calculation of the N-body com-
putational kernel. However, the simulation of seed
dispersal has many branching operations. So, our
method does not increase the number of time steps to
reduce the thread number like N-body.

Furthermore, for N-body simulation all the
bodies are equal in computational position and the
information of the body stored can be reused in the
implementation. In our seed dispersal simulation, the
plot cells and adult trees play different roles in cal-
culation. Plot cells are divided into different resolu-
tions for indexing and recording the density of the
seed, while adult trees play the role of devoting seeds
to the forest in all directions. We need only to store
results and the plot cell index. So, the strategies of
defining the thread block and grid size on a GPU in
our simulation are different from those in N-body
calculation. However, the shared memory allocation
methods for source bodies calculated in the threads of
these algorithms can be applied for the allocation of
locations of trees or clustered nodes and these
allocation methods are used in the multi-resolution
algorithm.

3 Seed dispersal model

In forest simulation, the plot is modeled as a
fixed rectangle and divided into uniform grid cells
(Fig. 1). We use X-Y coordinates to represent the plot
rectangle M. Positive X coordinate increases to the
east, while positive Y coordinate increases to the north.
Each plot cell is defined as M(i, j). The side length of
the grid cell determines the resolution of the plot grid
and affects the computing precision of forest dy-
namics. A grid with higher resolution leads to higher
precision but longer computation time and more
computation resource.

In our forest dynamics models, the dispersal of
seeds initiates the formation of tree individuals, and
the seeds are produced by the adult trees. For com-

puting simplicity and without loss of generality, a tree
individual is represented as two cylinders (the trunk
and the crown) and has an explicit location P (Fig. 2).
We refer to the diameter at the breast height of an
adult tree as DBH, which is the most commonly
measured tree growth parameter. The crown radius,
crown depth, or tree height can be calculated as a
function of DBH.

To compute the seed dispersal of the whole plot,

we calculate the seed dispersal of each plot cell. Fig. 3
describes the calculation of seed dispersal.

As Fig. 3 shows, the seed number produced by

the kth reproductive adult tree is P(k). If we want to

(0,0) East, X
N

or
th

,
Y

M(i, j)

M

Fig. 1 Forest plot grid

Fig. 2 Geometric model of a tree individual (DBH:
diameter at the breast height of an adult tree)

DBH

P

Fig. 3 The seed dispersal model

M(i, j): Ri

P(k)

Fan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):816-827 819

calculate the seed density of all plot cells, we need 2D
loops as follows:

1. For Ri of unit plot cell M(i, j), iterate over all
the adult trees of the scene that are located in different
distances to the target plot cell M(i, j).

2. Repeat step 1 and loop over all cells of the
landscape.

Adult trees that produce and disperse seeds to a
plot cell are independent of each other. Seeds dis-
persed in different plot cells are also computed sepa-
rately. The computation of the seed dispersal of one
adult tree to a given plot cell can be viewed as a
fine-grained sub-task, with simple logic. The com-
putation time is closely related to the plot size and tree
population. It takes a long time to calculate the seed
dispersal because of a large amount of sub-tasks. We
therefore adopt the GPU-based parallel algorithm by
partitioning the double loops into sub-tasks and
mapping these sub-tasks into threads to reduce com-
puting time, which is introduced in Section 6 in detail.

To calculate the number of seeds dispersed per
plot cell, we apply the model of the Weibull function
(Lepage et al., 2000):

1

(),
N

i
k

R P k


 (1)

where Ri denotes the total seed number of the plot cell
i, N is the number of adult trees in the forest, referring
to those adult trees whose DBH values are larger than
the minimum reproductive DBH of a certain species,
and P(k) is the seed number produced by the kth adult
tree, which is measured by the change in its DBH and
the distance to the ith plot grid cell. P(k) is calculated
as follows:

1 DBH()
() STR exp(()),

30

β
θk

P k Ud k
η

     
 

 (2)

where STR, η, θ, β, and U are all constant parameters
related with specific tree species. The value of d(k)
denotes the distance between the kth adult tree and the
ith plot grid cell. Eq. (2) shows that the quantity of
seeds produced by one adult tree is proportional to the
tree’s DBH and in inverse ratio to the exponent of
distance d.

4 Multi-resolution data clustering strategy
for seed dispersal

4.1 Analysis of the dispersal model

From the seed dispersal model introduced in
Section 3, we know that the time complexity of
computing the forest plot’s seed dispersal is O(N×G),
where N is the plot size and G is the number of adult
trees. When N and G increase largely, the calculation
load becomes excessively heavy. So, simplifying the
amount of data by clustering data into different
resolutions is an important optimization strategy
(Gelbard et al., 2007). To prove the feasibility of
clustering data we first analyze curves of the Weibull
function for two different trees. In Fig. 4, the vertical
axis is the survived seed number per square meter of a
certain grid cell ζ produced by one tree. The hori-
zontal axis is the distance between the adult trees and
the grid cell ζ. The dashed curve is the seed density
per plot cell of species Trembling aspen and the solid
curve is the seed density of species Subalpine fir. The
detailed parameters (Astrup et al., 2007) of the
Weibull function for these two species are shown in
Fig. 4.

Fig. 4 shows that the larger the distance between

the tree and the grid cell, the fewer seeds the tree
contributes. In Trembling aspen the seed density ap-
proaches 0 when the distance reaches about 60 m. The
same occurs for Subalpine fir when the distance is
nearly 40 m. According to the characteristic of the
curves, we find that the seeds produced by trees
would become negligible when they are located far

0

0.05

0.10

0.15

0.20

0.25

0.30

10 20 30 40 50 60 70

Subalpine fir

Trembling aspen

 Species

Trembling aspen

Subalpine fir

DBH (cm)

30

30

STR

0.2

0.09768

2

2

3

3

D

0.000038

0.000132

1

1

S
e

e
d

 d
e

n
si

ty

Distance (m)

ηβ θ

Fig. 4 Seed density (survived seed number per square
meter) curves for two tree species Trembling aspen and
Subalpine fir

Fan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):816-827 820

away from the plot cell. For the adult trees whose
distances to the plot cells are large enough and thus
their produced seeds are negligible, they can be
clustered to one node to save computation time. The
computation of this clustered node can be used to
replace the respective calculations of the adult trees it
contains. In the next subsection we will introduce the
method of clustering in detail.

4.2 Multi-resolution data clustering for seed dis-
persal

In the forest dynamics model, we divide the plot
into uniform cells until the unit plot cell contains at
most one tree. Thus, the plot is transformed to a
high-resolution grid, of which the size of the unit cell
is usually 1 m×1 m and each adult tree can be ex-
plicitly indexed by the cell. So, in the implementation,
the cells are clustered according to their distances to
the target tree. As the plot can be evenly divided into
2k×2k plot cells easily, 2×2 cells are clustered to form
the parent node. The center of the node is defined as
the center of the adult trees it contains. We call the
cells leaf nodes and the clustered node the super node.
These nodes are hierarchically clustered to build the
multi-resolution data structure for seed dispersal. The
clustering strategy is shown in Fig. 5, where M(i, j)
denotes the target plot cell which collects seeds from
all adults in the forest. In the left figure, the dots de-
note trees of different locations. Regions r1 and r2
represent the different regions which are located at
different distances to the target plot cell M(i, j). Re-
gion r2 is farther than region r1, and thus more unit
plot cells are clustered in r2 than in r1. As the figure
shows, the four sub-regions in r2 (which are all of the
same size as r1) are merged. In the right half of the
figure, the dots represent the nodes after clustering
whose size is proportional to the number of child cells
clustered. n1 and n2 represent different resolution
cluster nodes. n1 consists of four leaf nodes (plot cells)

and we define its multi-resolution level as layer 1. We
define n2 as the cluster node of layer 2 and node n2
consists of the four sub-nodes of layer 1. We can
expect that the farther the distance, the larger the
cluster node.

In the following we describe how to calculate
seed dispersal from super nodes to target plot cells. In
a node, the distance from each tree to the target cell is
approximately equal and is defined as the distance d
from the super node to the target plot cell. So, for the
trees of one node, d(k) in Eq. (2) can be expressed as d.
As U and θ are constant in Eq. (2), the value of
exp(−Udθ) is equivalent for each tree in the same node.
The parameters STR, η, θ are all species-specific
constants, so for a node that contains m adult trees, the
seed density of the ith target plot cell can be expressed
as

1

DBH()
.

30

βm

i
k

k
R L



    
 



(3)

Here the value of L has the following form:

1
STR exp().θL Ud

η
    (4)

All of the factors in Eq. (4) are determined for

the trees of each species in a certain node. Thereby, L
is constant for a certain clustered node and can be
pre-computed.

To clearly and easily represent the value of a
clustered node, we define variable NODE(p, q) as

1

DBH()
NODE(,) ,

30

m

k

k
p q





   
 



(5)

where the value of NODE(p, q) will be used as the
DBH of the clustered node p, which contains the m
adult trees and belongs to layer q, and q is related with
the value of d in L.

The number of adult trees m in a clustered node
is also dependent on d. The larger the d, the more
adult trees the node contains.

The calculation of seed density for a clustered
node to a certain plot cell takes Eq. (3) only when the
distance from the node to the target plot cell is larger
than the threshold of clustering, which is based on
the analysis in Section 4.1. For each species, the

M(i, j)M(i, j)

M

d

M

d

n2n1r1 r2

Fig. 5 The multi-resolution clustering strategy of seed
dispersal

Fan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):816-827 821

threshold for clustering is different. For example, 40
m is set as the threshold to cluster for Subalpine fir,
and 60 m is set as the threshold for Trembling aspen.

5 Data storage

5.1 Storage of tree individuals data

An object-oriented programming framework
requires programmers define the class data structure
which contains all related tree attributes to represent
the tree entity. However, for the computation of seed
dispersal, not all the attributes included in the class
are involved. For example, the canopy radius of a
certain target tree is not involved in dispersal com-
putation. During the computation of seed dispersal,
unused tree data wastes the very limited device
memory. Besides, the tree data can be organized as a
list (see the top half of Fig. 6) or multi-branch trees
(i.e., quad-tree) by pointers in the main memory for
CPU implementation. But the namespaces of the
memory address for host (CPU) and device (GPU) are
different and we should pre-process the data on a host,
so it is not appropriate to use pointers. Because that
array has high efficiency for access and transfer, we

therefore isolate the attributes into different arrays
(see the bottom half of Fig. 6). The values with the
same index in an array compose a tree individual.
Additionally, trees in different growth stages are
stored separately (see the right part of Fig. 6). During
the computation of seed dispersal, we just need to
transfer the related attribute arrays, such as DBHs,
ages, and locations of adults, to the global memory of
GPU.

5.2 Storage of multi-resolution data

Arrays of different sizes are used to represent
different levels of tree clustered nodes for storage of
multi-resolution data based on the data structure for
individual trees introduced above. The array’s sub-
scripts are used to index data. Fig. 7 shows how we
organize the array structure and describe the rela-
tionship of two layers (K and K+1). Each element of
the array stores the NODE (defined in Section 4) of
one clustered node of a certain species. While there
are n nodes in layer K+1, there are 4n+3 nodes in
layer K. The value of each parent node is the sum of
the values of four sub-nodes for a certain species. For
example, NODE(0, k+1) is the sum of NODE(0, k),
NODE(1, k), NODE(2, k), and NODE(3, k). The
above array structure is based on a single species. In
actual scene applications, the arrays can be propor-
tionally expanded for multi-species by explicitly
adding the clustered nodes as NODE at the end of the
array at each level for new tree species.

6 Implementation of direct calculation for the
GPU kernel

To calculate the seed density for the target plot

cell, each tree in the forest is iterated according to the
Weibull function. For GPU implementation the loop

DBH

Locations

…Age A1 A2 An

…D1 D2 Dn

…H1 H2 Hn

Tree_1 Tree_2 Tree_n

Tree_1

Age

DBH

Height

Next

Tree_2 Tree_n

Age
DBH

Height

Age

DBH

Height

Next Next

Age

DBH

Height

Next

Object-oriented data structure

Array structure for GPU

…

… … … …

…

Fig. 6 Data storage applied in GPU

n

4n 4n+1 4n+2 4n+3

1 n-1

…

…

NODE(0, k+1)

Layer
K+1

Layer K

NODE(0,k) NODE(1,k)

NODE(n, k+1)

NODE(4n+3, k)

…

…

0

10 2 3

Fig. 7 Structure of multi-resolution array in GPU

Fan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):816-827 822

iteration is replaced by CUDA threads. We have
launched a 2D grid of blocks on a naive GPU to split
the double loop of computation in previous work
(Tang et al., 2011), where each block is a 1D array of
threads. For clear explanation, we apply our algo-
rithm to a single species and map one tree to one
thread to calculate the seed dispersal. The imple-
mentation of multiple species is on the same principle
and easy to extend. Fig. 8 shows the design of the seed
dispersal kernel of the naive GPU algorithm without a
clustered node. On the left side is the plot grid where
dots denote the trees. On the right is the correspond-
ing thread grid, where the X dimension indicates the
trees and the Y dimension indicates the plot cells. The
S-shaped curves in the thread grid are the unit threads
which compute one tree in Fig. 8. The seed density of
plot (i, j) is computed by the row of threads whose
Y-coordinate is i+j×PW (PW denotes the width of the
plot grid), and the seed dispersal of plot (i, j) is the
sum of these threads’ computation results.

The naive GPU algorithm computes each tree’s

contribution to the target cell in parallel and achieves
a high speed-up ratio compared with sequential loop
implementation on a CPU. When the number of trees
increases greatly, however, the threads in the X di-
mension become so numerous that they exceed the
limit of the GPU computing resources.

To reduce the thread scale of the X dimension,
we schedule one thread to treat t adult trees as an adult
set; for example, we can group a row of trees or a
column of trees as one thread. Since there are some
conditional branches for the calculation of dispersal
(such as the branches based on the condition whether
one adult tree’s DBH is larger than the minimum
reproductive DBH of a certain species), the value of t

should not be too large in order to ensure that each
thread would not cost excessive time in the execution.
Otherwise, the time of the entire simulation would
increase sharply due to the limited and weaker logic
processing capability of GPU compared with CPU. In
the implementation, the experimental results show
that setting the initial value of t to 10 is an appropriate
choice considering the balance between the thread
scale and the efficiency. When the value of t is dou-
bled, the total execution time grows to 3.3 times the
original cost of the initial t=10 at the scale of 105
trees.

7 Implementation of multi-resolution calcu-
lation for the GPU kernel

7.1 Design of multi-resolution calculation on GPU

To better solve the problem of the excessive
amount of threads in the X dimension for large-scale
forests, the trees can be clustered according to the
strategy introduced in Section 4 to reduce the trees
involved in the computation of seed dispersal. To
compute the seed dispersal for clustered data on GPU,
we need to design a new CUDA-based kernel to im-
plement the multi-resolution seed dispersal calcula-
tion. Fig. 9 shows the design of the seed dispersal
kernel of the multi-resolution approximation algo-
rithm. The left figure is the plot grid and the right
figure is the corresponding thread grid. The S-shaped
curves represent the unit threads and dots denote the
clustered nodes.

We use different clustered data nodes to replace

those adult trees located at a far distance from the
target cell. For example, in Fig. 9, the region with

BX_0 BX_1…
BY_0

BY_1

…

BY_(i+j*PW) …

Plot (i, j)

Thread grid

X

Y

Plot (0,0)

Plot grid

Fig. 8 The naive GPU algorithm kernel for seed dispersal

BX_0 BX_1…
BY_0

BY_1

…

BY_(i+j*PW) …

Plot (i, j)

Thread gridPlot grid

X

Y

0 1

Plot (0, 0)

Fig. 9 The multi-resolution GPU algorithm kernel for
seed dispersal

Fan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):816-827 823

small-sized sub-divided cells includes the trees near-
est to the target cell plot (i, j). In this region, unit
thread computes seed contribution of one tree for the
target plot to keep computation accuracy, corre-
sponding to the computation of the highest resolution.
The region with middle-sized sub-divided cells is
farther than the region with small-sized cells, and the
corresponding unit threads compute the clustered
node including several trees. For the farthest region
with large-sized sub-divided cells in Fig. 9, unit
thread computes a larger clustered node including
more trees, corresponding to lower resolution com-
putation. In our implementation, multiple nodes can
be scheduled per thread. However, the number of
nodes per thread is limited as we have explained in
the implementation of the naive GPU algorithm. The
final seed density of plot (i, j) is the accumulation of
results of those unit threads.

7.2 Implementation of multi-resolution calcula-
tion on CUDA

In this subsection we compare the scale and
computational complexity of the threads in our algo-
rithm with those in the naive GPU algorithm. In the
naive GPU algorithm, assume the number of plot cells
is n and there are k adult trees in the forest. In our
implementation the size of the Y dimension is n.
When t adults are computed for unit thread, the size of
X dimension is k/t. Thus, the total amount of threads
for the calculation of seed dispersal is nk/t. For multi-
resolution clustering, the adult trees which are com-
puted by the thread of X dimension are replaced by the
clustered nodes. For the dispersal calculation of a
certain plot cell, the total number of clustered nodes
computed in the X dimension is about the log value of
the original number of plot cells since the original plot
cells are organized into a quad tree (Section 4.2). We
define the number of nodes of the quad tree as m.
When t clustered nodes are computed for unit thread,
which is the same as in the naive GPU algorithm, the
total amount of threads for the calculation of seed
dispersal is nm/t. The amount of reduced threads
compared with naive GPU implementation is
n(k−m)/t, where k is linearly related to n and m is
log-related to n. The computational complexity of the
naive GPU algorithm is O(n2), while the computa-
tional complexity of threads to compute one plot
cell’s seed density is O(log n). Therefore, the whole

computational complexity of computing all plot cells
is O(nlog n) for a multi-resolution algorithm.

Kernel steps:
1. Get the block index k of the Y dimension

which indicates the kth plot (denoted by BY_k). Get
the thread’s index of the X dimension which indicates
the index of a cluster node.

2. According to the block index k of the Y di-
mension, get the location of plot k and calculate the
distance d between the node and the target plot. Ac-
cording to the different criteria of distance (Section 4),
determine whether to use the higher multi-resolution
clustered node. For example, if the criterion of layer 2
is ρ2 and d is greater than it, then the clustered node is
not divided; otherwise, it is divided.

3. If the node is a leaf node or need not be di-
vided in step 2, get the data (i.e., the value of NODE)
of the node through the X dimension index. After-
wards, compute the seed density of the target plot
depending on the distance d and the model function.

4. If in step 2 the node is divided, the thread gets
the data of the node’s children and repeats step 2.

Since the clustering has the feature of spatial
locality, it is highly possible that the neighbor clus-
tered nodes are in the same layer as the target cell.
Thus, it greatly reduces the frequency of threads
switching among different levels in one warp (In the
architecture of Tesla on GPU, one warp contains 32
threads) (Ryoo et al., 2008), which can increase the
thread executing efficiency.

7.3 Device memory access and allocation

The GPU performance is dependent on not only
parallel computation of tremendous threads but also
high memory bandwidth. Optimal organization of
memory access has great impact on performance. We
should take advantage of each type of memory to
maximize the throughput of memory access. In this
subsection, we introduce the access and allocation of
three kinds of GPU memory (constant, global, and
shared) in our implementation.

Constant memory resides in device memory
(GPU memory). It is cached to increase the through-
put of device memory and used to store constant pa-
rameters which are frequently required during calcu-
lation. Arrays for the species-specific parameters STR,
U, η, θ, β (Fig. 10) are built and the size of each con-
stant parameter array is the same as the number of the

Fan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):816-827 824

species of tree. In Fig. 10, Tk means the kth thread in
the block.

Global memory is the main memory of GPU

which occupies a large space of linear memory. The
value and location of clustered nodes and result arrays
are stored in global memory. The size of the memory
allocated to the clustered node is the total size of
arrays of all layers. The structure of multi-resolution
arrays is introduced in Section 5.2. In our system, the
percentage of data residing in global memory reaches
about 19% when the scale is 5×104 and 51% when the
scale is 5×105. Considering the large amount of data,
it is a time consuming procedure to transfer data be-
tween device (GPU) and host (CPU) memory. For a
more efficient data transfer, we use the 2D array copy
function to transfer data and define row length in the
clustered node array as the pitch parameter of the
function.

Besides, some other measures are taken to op-
timize global memory access. For fast access to the
global memory, the first thread of each block in the X
dimension is scheduled to calculate the element of the
array (such as the clustered node array) whose index
is an integral multiple of the block size, which causes
merging access. Under merging access it costs only
one transfer clock cycle for half-warp (In the archi-
tecture of Tesla on GPU, half-warp contains 16
threads); otherwise, it would cost 16 transfer clock
cycles (Zhang et al., 2009).

Shared memory is visible to all threads within
the block and with the same lifetime as the block. It

has limited memory space but much faster access than
the global memory. Since each block corresponds to
the computation of one target plot cell and a certain
number of clustered nodes, we use shared memory to
load the information of target clustered nodes from
global memory to improve memory access efficiency,
which is similar to the method proposed by Hamada
and Titala (2007) and Hamada et al. (2009) for
N-body simulation. In Fig. 10 the size of shared
memory is defined as C×blocksize, where C is the
length of a clustered node which contains location
coordinates, value of node DBH, and species. After
loading operation, the CUDA synchronization func-
tion is called on to make sure that each thread can read
the node information safely.

In addition, we allocate another array in shared
memory, called seeds_thread, to keep record of seed
density accumulated by t clustered nodes in each
thread (Fig. 10). To minimize the bank-conflict, the
array length is set to L, which is the same as the
number of threads per block, i.e., 128. During the
iterative computation of t clustered nodes, each thread
accumulates the seed density into a register and writes
it to the shared memory according to the index of
thread within a block. The CUDA synchronization
function is also called on to make sure that the array
of seeds_thread is completely filled. After that we
sum the element values of the seeds_thread array
through the parallel reduction algorithm (Lin et al.,
2010) to obtain the final seed density contributed by
the block, and write it to the array of seeds_block in
the global memory. The parallel reduction algorithm
builds a tree structure over the partial sum array
(Fig. 11). As the figure shows, the accumulate

 Block

TT-1
…

Species-specific parameters and other constant parameters:
STR, U, …

 Constant memory

 seeds_thread array (length: L)
Shared memory

 Clustered node value, Result(Seeds_block), Clustered node location, …
 Global memory

Information of clustered
nodes (length: C×blocksize)
 Shared memory

Sum: parallel
reduction
algorithm

T1T0

 Block

TT-1
…

 seeds_thread array (length: L)
Shared memory

Information of clustered
nodes (length: C×blocksize)
 Shared memory

T1T0t
clustered

nodes

…



η θ β, , ,

t
clustered

nodes

t
clustered

nodes

t
clustered

nodes

t
clustered

nodes

t
clustered

nodes

Fig. 10 Device memory access design

Fig. 11 Parallel reduction algorithm

1 2 … L/2 … L

1

…

L/2

Step 1 L/2+1

…2

1 L/2

Step 2

Step 3

1 L/2…2

1 L/2…2

Step log2L-1

Step log2L

…

Fan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):816-827 825

operation is divided into log2 L steps, where L denotes
the length of seeds_thread. In each step, pairs of the
array’s elements are summed to obtain the new
half-sized array which is to be processed in the next
step. For example, in step k, elements of the
seeds_thread in each block whose subscripts are
smaller than L/2k−1 do summing operations and L/2k
threads are needed to complete the seed number ac-
cumulation. At the end of the loop, thread 0 holds the
final result, and the seed density of each block is
stored in seeds_thread[0].

8 Experimental results

We tested our algorithm on realistic forest data to

simulate the seed dispersal of four tree species. All of
our experiments were performed on a PC with the
following configurations: 2.13 GHz Intel® Xeon®
CPU E5506, 4 GB memory, NVIDIA Quadro 600
graphic card with 2 GB memory, and Win7 32-bit OS.

8.1 Execution time

In the kernel, the different block sizes (thread
number per block) cause different numbers of resident
blocks to be loaded in one stream multiprocessor,
which affects the computational time of seed dispersal.
First we compared the execution time of the different
block sizes of our algorithm. Table 1 shows the
comparison of execution time of different numbers of
threads per block under different scales of plot cells
and adult trees.

Table 1 shows that when the block size is 256,
the performance of the computation of seed dispersal
on GPU is maximized. So, under this block size, we
compared our algorithm to the CPU and naive GPU.
Table 2 shows the execution time and speed-up ratios
of different algorithms for the simulation of seed
dispersal.

As shown in Table 2, the speed-up ratio of our
algorithm to CPU improves dramatically when the
scale of plot and the number of adults increase. The
transfer time between the host memory and device
memory is negligible compared to the intensive
computation time when the scale of plot and the
number of adult trees are large. The table also shows
that the speed-up ratio of our multi-resolution GPU
can reach about 15 times that of the naive GPU algo-
rithm when the number of plot cells is over 5×105.
This is because when the scale of the forest increases
sharply, the increasing amount of data has been sim-
plified more evidently.

However, in Table 2 the initial scale of threads in
the naive GPU algorithm is larger than that in our
multi-resolution algorithm under the condition that
both of them deal with 10 trees or clustered nodes per
thread. For further comparison of these two GPU
algorithms, under the same thread scale of 106 threads
we tested the execution time of different GPU algo-
rithms for the scene of 5×105

 trees and 105 plot cells.
In the naive GPU algorithm it cost about 320 s while
the multi-resolution algorithm required only about 19 s.
The speed-up ratio increased obviously and was up to
16 times. In this situation, under the same constant
thread scale of 106, the number of trees treated per
thread in the naive GPU algorithm was increased to
more than the initial value in Table 2, i.e., 10 trees per
thread. As discussed in Section 6, the more the clus-
tered nodes or trees calculated by per thread, the

Table 1 Comparison of runtime in different block sizes
(128, 256, and 512 threads per block)

Time (ms) Number of
plot cells

Number of
adult trees 128 256 512

5×102 102 105 102 107

5×103 103 187 177 198

5×104 104 771 735 796

5×105 105 20 439 19 367 21 542

Table 2 Comparison of execution time and speed-up
ratio of different algorithms when the block size is 256

Time (ms) Number
of plot
cells

Number
of adult

trees
CPU

algorithm
Multi-resolution
GPU algorithm

Speed-up
ratio 1

5×102 102 620 102 6.07

5×103 103 52 250 177 295.20

5×104 104 5 257 500 735 7153.06

5×105 105 526 500 000 19 367 27 185.42

Time (ms) Number
of plot
cells

Number
of adult

trees
Naive GPU
algorithm

Multi-resolution
GPU algorithm

Speed-up
ratio 2

5×102 102 157 102 1.54

5×103 103 294 177 1.66

5×104 104 2953 735 4.02

5×105 105 290 125 19 367 14.98

Both naive GPU and multi-resolution GPU algorithms deal with 10
trees or clustered nodes per thread

Fan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):816-827 826

lower the simulation efficiency.
Therefore, our multi-resolution GPU algorithm

is more effective in computing seed dispersal and
useful for forests with larger scales.

8.2 Correctness of simulation for seed dispersal

To verify the results of the simulation for seed
dispersal we visualized the density of the seeds by
colored density maps. All the initial data of trees was
collected from the 52 m×89 m forest which is located
at a moist cold subzone near the town of Smithers in
central British Columbia. The original forest data was
provided by Dave Coates, a leading researcher of
British Columbia Forest Service. In the pictures, dif-
ferent species are represented by different colors, and
the deeper the color, the greater the seed density.
Fig. 12 shows the density maps of seeds produced by
the adults for two different algorithms after a growth
cycle for hybrid species, including Subalpine fir,
Lodgepole pine, Tnterior spruce, and Trembling as-
pen. From these visualized results in Fig. 12, we ob-
serve that the color distribution is nearly the same,
which means that the results of seed densities com-
puted by the two methods are very close.

In addition to perceptual similarity, we calculated
the relative error between the accurate result of naive
GPU and our approximation result. For each plot cell
of the landscape, the scope of the relative errors
ranged from 0 to 4.1%. The average error of all plot
cells was 1.72%. Compared with the naive result, our
multi-resolution algorithm had a slight loss in
accuracy which is acceptable for fast simulation. To
further confirm the correctness of our algorithm, we
computed the number of young trees growing from
seeds each year. Since the surviving seeds grow di-
rectly into youths, the number of young trees in-
creasing each year is a credible indicator of the

number of seeds. Fig. 13 shows the curves depicting
how the number of young trees increases over 30
years. The horizontal axis is the time step in year. The
vertical axis is the number of young trees that grow
from new-born seeds. The range of errors was from 0
to 3.1%. The average relative error of youth number
was 1.9%. The errors are acceptable and reasonable
considering that our algorithm obtains a speed-up
ratio of up to 16 compared with the naive GPU
algorithm.

9 Conclusions

In this paper we propose a GPU-based multi-

resolution algorithm to compute seed dispersal in
forest dynamics models. We cluster the forest data
into different layers according to biology models and
design the GPU algorithm to calculate the dispersal.
Experimental results show that the algorithm has a
good performance compared to naive GPU parallel
computation. Our algorithm not only optimizes the
utilization of limited thread computing resource, but
also greatly improves the speed of calculation with a
reasonable error. In the future, we will extend the
multi-resolution GPU algorithm to the computation of
other growth stages of forest dynamics models that
meet the criterion of parallel acceleration.

References
Astrup, R., Coates, D.K., Hall, E., Trowbridge, A., 2007.

Documentation for the SOTIE-ND SBS Research Para-
meter File Version 1.0. Natural Resources Research and
Management Report, Bulkley Valley Centre. Available
from http://www.bvcentre.ca/files/SORTIE-ND_SBS_

(a) (b)

Fig. 12 The seed dispersal results obtained by the naive
GPU algorithm (a) and the multi-resolution GPU algo-
rithm (b)

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Naive GPU algorithm

Multi-resolution GPU algorithm

N
u

m
be

r
o

f y
ou

ng
 t

re
e

s

Time (year)

Fig. 13 The number of young trees growing from seeds
over 30 years

Fan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2012 13(11):816-827 827

Research_Parameter_File_Version_1.0.pdf [Accessed on
May 5, 2012].

Barnes, J., Hut, P., 1986. A hierarchical O(nlogn) force calcu-
lation algorithm. Nature, 324(6096):446-449. [doi:10.
1038/324446a0]

Bugmann, H., 2001. A review of forest gap models. Climate
Change, 51(3/4):259-305. [doi:10.1023/A:1012525626
267]

Clark, J.S., Lewis, M., Horvath, L., 2001. Invasion by ex-
tremes: population spread with variation in dispersal and
reproduction. Am. Nat., 157(5):537-554. [doi:10.1086/
319934]

Du, Z.H., Yin, Z.M., Bader, D.A., 2010. A Tile-Based Parallel
Viterbi Algorithm for Biological Sequence Alignment on
GPU with CUDA. IEEE Int. Symp. on Parallel & Dis-
tributed Processing Workshops and PhD Forum, p.1-8.
[doi:10.1109/IPDPSW.2010.5470903]

Gelbard, R., Goldman, O., Spiegler, I., 2007. Investigating
diversity of clustering methods: an empirical comparison.
Data. Knowl. Eng., 63(1):155-166. [doi:10.1016/j.datak.
2007.01.002]

Govindarajan, S., Dietze, M., Agarwal, P.K., Clark, J., 2004. A
Scalable Simulator for Forest Dynamics. Proc. 20th An-
nual Symp. on Computational Geometry, p.106-115.
[doi:10.1145/997817.997836]

Govindarajan, S., Dietze, M.C., Agarwal, P.K., Clark, J.S.,
2007. A scalable algorithm for dispersing population. J.
Intell. Inf. Syst., 29(1):39-61. [doi:10.1007/s10844-006-
0030-z]

Hamada, T., Titala, I., 2007. The Chamomile Schema: an
Optimized Algorithm for N-Body Simulations on Pro-
grammable Graphics Processing Units. Available from
http://arxiv.org/abs/astro-ph/0703100 [Accessed on June
25, 2012].

Hamada, T., Narumi, T., Yokota, R., Yasuola, K., Nitadori, K.,
Taiji, M., 2009. 42 TFlops Hierarchical N-Body Simula-
tions on GPUs with Applications in Both Astrophysics
and Turbulence. Proc. Conf. on High Performance
Computing Networking, Storage and Analysis, p.14-20.
[doi:10.1145/1654059.1654123]

Kunstler, G., Allen, R.B., Coomes, D.A., Canham, C.D.,
Wright, E.F., 2011. SORTIE/NZ Model Development.
Landcare Research New Zealand Ltd. Available from
http://www.Landcareresearch.co.nz/publications/resear-c
hpubs/sortie_nz_model_dev.pdf [Accessed on May 5,
2012].

Lepage, P.T., Canham, C.D., Coates, K.D., Bartemucci, P.,
2000. Seed abundance versus substrate limitation of

seedling recruitment in northern temperate forests of
British Columbia. Can. J. Forest Res., 30(3):415-427.
[doi:10.1139/x99-223]

Lin, J., Tang, M., Tong, R.F., 2010. GPU accelerated biological
sequence alignment. J. Comput.-Aided Des. Comput.
Graph., 22(3):420-427 (in Chinese).

Mielikainen, J., Huang, B., Huang, H.L.A., 2011. GPU-
accelerated multi-profile radiative transfer model for the
infrared atmospheric sounding Interferometer. IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., 4(3):691-
700. [doi:10.1109/JSTARS.2011.2159195]

Nickolls, J., Buck, I., Garland, M., Skadron, K., 2008. Scalable
parallel programming with CUDA. Queue, 6(2):40-53.
[doi:10.1145/1365490.1365500]

NVIDIA Corporation, 2007. CUDA Programming Guide,
Version 3.0. NVIDIA Corporation. Available from http://
developer.nvidia.com/nvidia-gpu-programming-guide
[Accessed on May 5, 2012].

Nyland, L., Harris, M., Prins, J., 2007. Fast N-Body Simulation
with CUDA. In: Nguyen, H. (Ed.), GPU Gems 3. Addi-
son-Wesley, London, p.677-795.

Pacala, S.W., Canham, C.D., Silander, J.A.Jr., 1993. Forest
models defined by field measurements: I. The design of a
northeastern forest simulator. Can. J. Forest Res., 23(10):
1980-1988. [doi:10.1139/x93-249]

Ryoo, S., Rodrigues, C.I., Banghsorkhi, S.S., Stone, S.S., Kirk,
D.B., Hwu, W.W., 2008. Optimization Principles and
Application Performance Evaluation of a Multithreaded
GPU Using CUDA. Proc. 13th ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming,
p.73-82. [doi:10.1145/1345206.1345220]

Stone, J.E., Phillips, J.C., Freddolino, P.L., Hardy, D.J., Tra-
buco, L.G., Schulten, K., 2007. Accelerating molecular
modeling applications with graphics processors. J.
Comput. Chem., 28(16):2618-2640. [doi:10.1002/jcc.208
29]

Tang, Y., Guan, X.X., Fan, J., 2011. Design and Implementa-
tion of Seeds Dispersion on Graphic Processor Unit. Proc.
10th Int. Conf. on Virtual Reality Continuum and Its Ap-
plications in Industry, p.403-406. [doi:10.1145/2087756.
2087828]

Xia, Y.J., Kuang, L., Li, X.M., 2011. Accelerating geospatial
analysis on GPUs using CUDA. J. Zhejiang Univ.-Sci. C
(Comput. & Electron.), 12(12):990-999. [doi:10.1631/jzus.
C1100051]

Zhang, S., Chu, Y.L., Zhao, K.Y., Zhang, Y.B., 2009. High
Performance GPU Computing of CUDA. China Water
Publishing House, Beijing, China, p.155-157 (in Chinese).

