
Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 332

Validation of static properties in unified modeling

language models for cyber physical systems*

Gabriela MAGUREANU†, Madalin GAVRILESCU, Dan PESCARU

(Department of Computers, Automation and Computers Faculty, “Politehnica” University of Timisoara,

Timisoara 300223, Romania)
†E-mail: gabriela_magureanu@yahoo.com

Received Sept. 15, 2012; Revision accepted Jan. 11, 2013; Crosschecked Mar. 6, 2013

Abstract: Cyber physical systems (CPSs) can be found nowadays in various fields of activity. The increased interest for these
systems as evidenced by the large number of applications led to complex research regarding the most suitable methods for design
and development. A promising solution for specification, visualization, and documentation of CPSs uses the Object Management
Group (OMG) unified modeling language (UML). UML models allow an intuitive approach for embedded systems design,
helping end-users to specify the requirements. However, the UML models are represented in an informal language. Therefore, it is
difficult to verify the correctness and completeness of a system design. The object constraint language (OCL) was defined to add
constraints to UML, but it is deficient in strict notations of mathematics and logic that permits rigorous analysis and reasoning
about the specifications. In this paper, we investigated how CPS applications modeled using UML deployment diagrams could be
formally expressed and verified. We used Z language constructs and prototype verification system (PVS) as formal verification
tools. Considering some relevant case studies presented in the literature, we investigated the opportunity of using this approach for
validation of static properties in CPS UML models.

Key words: Cyber physical system (CPS), Unified modeling language (UML) design, Formal verification, Prototype verification

system (PVS), Z language
doi:10.1631/jzus.C1200263 Document code: A CLC number: TP311.5

1 Introduction

Cyber physical systems (CPSs) are massively
distributed heterogeneous embedded systems linked
through wired and/or wireless connections (Derler et
al., 2011). They integrate computational and physical
processes, sensors, actuators, and decision modules,
and thus have great economic and social potential.

Each subsystem aims to fulfill a specific task or
objective. One of the main issues in developing CPS
applications resides in the asynchronous intercom-

munication between the subsystems and the influence
of the exchanged information over the controlled
devices. The variety and large number of existing
CPS applications suggest an increased interest in
developing efficient design methods of such systems.
Therefore, a well-founded formal specification deal-
ing with both static and dynamic application aspects
is required. This paper deals with static aspects to
formally specify both the hardware and the network
infrastructure required for the CPS applications.

The unified modeling language (UML) consists
of a set of general purpose modeling elements (Object
Management Group (OMG), 2010). UML is widely
used for specification, visualization, and documenta-
tion in various engineering fields. UML allows an
intuitive graphical approach for embedded systems
design.

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

* Project partially supported by the Strategic Grants POSDRU/88/1.5/
S/50783 Project (No. 50783, 2009), POSDRU/107/1.5/S/77265
Project (No. 77265, 2010), Romania, and the European Social Fund
for Investing in People, within the Sectoral Operational Programme
Human Resources Development 2007–2013
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2013

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 333

UML models can be customized by defining and
using stereotypes grouped in UML profiles (OMG,
2010). Stereotypes contain tagged values and con-
straints, which add specific attributes and behavior to
the customized UML elements. Kuzniarz et al. (2004)
demonstrated the expressiveness of UML profiles in
defining UML models. UML profiles usage can sig-
nificantly improve the overall understanding of the
application models in a specific field. In this work, we
investigate the opportunity of using UML for CPS
design and formal validation, as an intuitive and ef-
ficient approach.

In case of CPS modeling, UML profiles can be
divided into profiles for hardware and software spe-
cifications. The stereotypes for hardware specifica-
tion help in customizing the network topology. They
are used for defining the types of nodes of which the
network and their internal hardware components are
composed. The stereotypes for software specification
are used for customizing the system behavior. Several
UML profiles were proposed to model various as-
pects of real-time and embedded systems (Nguyen et
al., 2004; Andre et al., 2005; Andersson and Host,
2008; Riccobene et al., 2009). They can also be suc-
cessfully used for CPS design.

Since the UML does not provide a formal syntax,
the semantics of UML models cannot be formally
defined and validated. The object constraint language
(OCL) is a declarative language that aims to bridge
the gap between the ambiguity of a natural language
in which UML models are expressed and the diffi-
culty of mathematical constructs. Invariants are used
to express a range of restrictions over the UML model
features. System behavior is then clarified through
pre- and post-condition, describing the applicability
and impact of particular operations, respectively
(OMG, 2010). Various OCL checker tools like the
UML-based specification environment (USE) tool
(Gogolla et al., 2007) or ITP/OCL tool (Clavel and
Egea, 2006) can then be used for system validation.

However, the semantics of OCL are not ma-
thematically defined; therefore, OCL is considered as
being a semi-formal language. Using OCL for ex-
pressing rules and constraints applied to UML models
is still insufficient for formal reasoning (France et al.,
1998). Previous research has identified weaknesses in
the semi-formal approach. It has been observed that
some UML modeling constructs lack precise seman-

tics, sometimes leading to differences in interpreta-
tion, and therefore inconsistencies between design
and implementation.

For example, Gogolla and Richters (1998) iden-
tified OCLAny construct as being one of the issues.
As OCLAny is considered as the super type of all
other OCL defined types, any equality check between
two elements of the OCLAny type is considered to be
valid. However, when replacing the equality with
elements of specific but different types, the evaluation
still returns true. Another issue is related to the three
types of polymorphism supported by the OCL speci-
fication. It is not clear how exactly these concepts are
applied by the OCL checker tools. Therefore, it is left
to them to implement these concepts. Additionally,
the flattening process is not precisely described. Re-
garding the OCL undefined value term, the general
rule states that the expressions containing such terms
are also considered as undefined. This can lead to an
incomplete evaluation of the model.

Baar (2005) noticed that the OCL non-
deterministic constructs are poorly understood;
therefore, they tend to be ignored and unimplemented
by most of the OCL tools. One of the reasons is that
such constructs allow different interpretations of the
same OCL semantic, which may lead to different
model implementations.

Formal specification languages are intended to
provide precise and complete models of the proposed
software systems. Formal specification for UML
models can be achieved using formal constructs.
Various tools can use this rigorous specification for
verifying the UML models. The purpose of using
formal specification and validation constructs is to
provide unambiguous descriptions of system struc-
ture and functionality and to prove before deployment
that the system will function according to the ex-
pected requirements (Bondavalli et al., 1999).

2 Cyber physical system modeling and
verification

Modeling is a key aspect of a good design for
both embedded and distributed systems. As CPSs can
be seen as embedded distributed systems, various
modeling techniques were proposed. In this work, we
concentrate on structural models of CPS applications,
which represent the static information in a system

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 334

design.
Object-oriented modeling is widely spread in

software design and it could be successfully adapted
to CPS structural design. The main issue in this case
resides in the informal nature of most object-oriented
models. A solution to this problem was presented by
France et al. (1998) and Aredo et al. (1999). They
proposed three approaches to formalize object-
oriented modeling notations: supplemental approach,
object-oriented extended formal notations, and me-
thods integration.

In the supplemental approach, formal constructs
replace parts of the model expressed in informal
object-oriented notations. In the object-oriented ex-
tended formal notation, existing formal notations are
extended by object-oriented mechanisms, therefore
becoming more compatible with object-oriented no-
tations. The advantage of using such an approach is
given by the fact that rigorous formal systems are
obtained.

The methods integration approach is a more
suitable solution that makes informal object-oriented
modeling concepts more precise by integrating them
with proper formal specification techniques. This
approach is the most commonly used in the formali-
zation of object-oriented modeling notations. There-
fore, it is appropriate for analysis tools development,
since the first two concepts force the user to be in
contact with a great amount of complex mathematical
artifacts. In this case, the designers can directly ma-
nipulate graphical artifacts in the object-oriented
models and they are not required of strong formal
backgrounds. The two formal specification languages
adopted in this paper are part of this third category.

Bhutto and Hussain (2011) presented a complex
view on the most used formal verification tools, such
as OCL, prototype verification system (PVS), Z lan-
guage, process or protocol meta language (PRO-
MELA), and UPPAAL model checker. The authors
compared the presented tools and presented advan-
tages for using each modeling tool at different levels
of development processes. The OCL is found to be
suitable as an established language for the specifica-
tion of the static properties of objects and object
structures in UML models. However, OCL is not
suitable for specification and verification of the dy-
namical aspects requested by this application type.
The Z language proves to be a suitable solution for the

model specification based on the standard mathemat-
ical notation and the first-order predicate logic (Spivey,
1992).

In OCL, the expressions can be undefined. The
available OMG documentation does not specify how
the OCL checker tools should deal with the undefined
queries from the expressions (Hamie et al., 1999). In
most of the cases, the OCL tools denote nothing in the
model verification process. The Z language maintains
a clear distinction between logical operators and ex-
pressions. The logical expressions are not treated as
expressions within the language; therefore their truth
values are unknown if they involve undefined
expressions.

Shroff and France (1997) proposed a formaliza-
tion based on the Z language of the primary UML
constructs used to build class artifacts. In this paper,
we exemplify how the UML deployment diagrams
can be formally represented similar to class diagrams.
A Z state schema formalizes the static aspect of a
class. The attributes and object identifiers of class
instances are represented by state variables. Class
invariants are specified in the predicate part of a Z
schema. In an operation schema, the input and output
variables represent the before and after states, re-
spectively. The relationships between these states are
represented in the predicate part. We propose rules for
specifying the constructs of deployment diagrams,
using state and operation schemas.

A hybrid solution by merging both advantages of
OCL and Z languages was described by Roe et al.
(2002). It provides a mapping from an integrated
model of UML model and OCL specifications into a
Z formal specification. We use this mapping to
translate the OCL constraints of the used stereotypes
from our UML designed models.

Dupuy et al. (2000) proposed a complex ap-
proach of using the Z language and introduced a tool
called RoZ. This tool allows the generation of speci-
fications for elementary operations on classes and the
generation of proof obligations to validate operation
guards. It allows automatic generation of Z schemas
for the UML class, object, and deployment diagrams
along with the elementary operations. We use the
RoZ tool as support for developing specifications for
CPS applications. To validate Z theorems, several
tools were proposed in the literature, and we use the
Z/EVES theorem prover (Saaltink, 1997) in our work.

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 335

As an alternative to Z language, many research-
ers have used PVS to formally define and analyze
UML models. PVS consists of a specification lan-
guage, a type checker, a model checker, and a theo-
rem prover (Crow et al., 1995). In this paper, we
investigate the opportunity of using PVS and the Z
language for specifying deployment diagrams.

Aredo et al. (1999) defined general formaliza-
tion approaches for UML interfaces, classes, associ-
ations, generalizations, and aggregations using PVS.
They defined a generic parameterized theory that
becomes an efficient solution to formally represent
diagram elements. However, this approach requires a
rigorous definition for a single theory for all elements.

Aredo (2003) explored the advantages of using
PVS formalism for checking the correctness and
completeness of UML models. They proposed the
formal semantic definition for UML statecharts using
the PVS specification language. They developed a
general framework for translating UML statecharts
diagrams into PVS specifications. The benefit of
using such translation resides in the capability to
produce precise and analyzable specifications and to
use the rigorous reasoning provided by the PVS tools.
The behavioral aspects for every node of the CPS
application can be modeled using the statecharts dia-
grams. Therefore, this research represents a suitable
solution for translating the dynamic aspects into the
PVS specification language.

Aredo (2002) presented the formal semantics of
UML sequence diagrams using the PVS language as
the underlying semantic foundation. The basic con-
cepts of sequence diagrams must first be formally
specified, and then the semantics are translated into
PVS theories. We use the steps described by Aredo
(2002) to formally specify the models of case studies
into the PVS language.

For representing OCL constraints in PVS, we
consider the method presented in Kyas et al. (2005).
This method makes a clear separation between shal-
low and deep embeddings. In the case of deep em-
bedding, the abstract syntax is represented as a data
type in the logic of the PVS theorem prover. A se-
mantic function that interprets all possible terms for
the language is defined. In the case of shallow em-
bedding, the language is represented directly in the
logic of the PVS theorem prover. This is possible by
using translation of the language in a verification

condition, which encodes the semantic for the given
model. The prototype tool defines formal semantics
for UML and OCL, and enables the formal verifica-
tion of models. It also solves the translation of three-
valued logic from OCL into two-valued logic in PVS.
Kyas et al. (2005)’s research is useful for our case as
we use OCL constrains for modeling the behavior and
restrictions of CPSs.

3 Formal specifications of cyber physical
system (CPS) deployment models

The references presented use formalization for
UML class, statechart, sequence, and state machine
diagrams. As deployment diagrams are a key feature
in the design of distributed systems, we extend the
formalization approach to the CPS models designed
using these diagrams.

First, we define the stereotypes and their cor-
responding OCL constraints, along with the main
constructs, as UML nodes and components. Next, the
relations such as associations, aggregations, and links
are translated into the formal language. Finally, the
entire application is defined as the union of specifi-
cations for all diagram elements and the relationships
between them.

3.1 Z specification of CPS deployment models

We present the theoretical approach towards the
formalization of UML deployment diagrams using
the Z language. The constituents of deployment dia-
grams are represented as Z schemas, similar to the
representation of UML class diagrams in Dupuy et al.
(2000).

Each node or component can be translated into a
pair of Z schemas. The first Z schema describes the
types for all contained elements such as attributes,
ports, and operations. The second Z schema describes
the set of existing instances for the node or
component.

Fig. 1 presents an example of Z schema corres-
ponding to a ‘NODE_A’ type. The set of existing
instances is ‘NodeA_Ext’, while each node instance is
of the type ‘NodeA’.

In UML deployment diagrams, the association
construct is defined by two roles. However, in case of
unidirectional constructs, only one role is required. In

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 336

Z language, a function specifies each role. The func-
tion defines the relationship by mapping
instances based on the multiplicity. Therefore, it is
necessary to provide the corresponding schemas of
nodes and components. These schemas have to be
included as variables, along with the Z domain and Z
range for each role.

To define the multiplicity, the theory should in-

clude an axiom regarding the number of instances of
one class that can be associated to a corresponding
node instance. We define the Z schema for
representing a UML link differently from the one
representing an association. Indeed, in the case of
links, each function associates instances in a one-to-
one relationship.

Fig. 2 presents an example of the Z schema for a
bidirectional link between NodeA and NodeB in-
stances. The Z schemas corresponding to NodeB
deployment node type are considered similar to those
already presented in Fig. 1.

The aggregation, generalization, dependency,
and usage constructs are represented in UML as par-
ticular cases of unidirectional links. Therefore, to
specify them, we state that the Z schema must contain
only one Z function, which defines the relationship
between the client and the supplier (NodeA_With_

NodeBFct and NodeB_With_NodeAFct in Fig. 2,
respectively). However, when specifying an aggre-
gation construct, the multiplicity must also be consi-
dered, as already described above.

We define the Z schema for a stereotype by de-
scribing the types for all tagged values and OCL
constraints corresponding to the stereotype. The
customization of a node using a stereotype is formally
represented by inserting the Z schema for the stereo-
type as a variable in the Z schema for that node. For
stereotypes inheritance, the stereotypes that are spe-
cializations of other stereotypes must include the Z
schema of the latter stereotypes in the variable part, as
schema invocation.

A schema containing instances of both base and
derived stereotypes states that all already created
instances of the derived stereotypes are also instances
of the base stereotypes. The Z schema must contain a
predicate for expressing the uniqueness for object
identifiers.

3.2 PVS specification of CPS deployment models

As Z language is considered to be more suitable
for examples of reduced complexity, we use PVS in
more complex reasoning. The UML constituents of
deployment diagrams can be represented in PVS
using theories and axioms, which is similar to Aredo
et al. (1999). The PVS theories contain declarations
of record types. A record type specifies the signatures
for the operations, along with the declarations of the
attributes and ports of a UML node or component.

If a node is a specialization of another node and
it implements one or more interfaces, the defined
record type must include the attributes, ports, and
operations fields of all base nodes and all imple-
mented interfaces. The resulting record type of PVS
theory represents a union between the included record
types in this case. These rules are also applied to
components in deployment diagrams.

Here, we consider a generic parameterized
theory that can be applied as a template to specify
associations, links, dependency, usage, aggregations,
and generalizations constructs of a deployment dia-
gram. The list of generic parameters contains the
UML elements whose instantiations are involved in
the relationship. It also contains the corresponding
roles of the objects and the multiplicities as a subset
of the natural numbers.

Fig. 1 An example of Z schemas corresponding to the
‘Node_A’ deployment node

NODE_A
nodeB: NODE_B
...

NodeA_Ext
NodeA: if NODE_A

...

Fig. 2 An example of Z schema for a bidirectional link
between ‘NodeA’ and ‘NodeB’ instances

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 337

To define the multiplicity in the case of associa-
tion and aggregation constructs, the theory includes
an axiom regarding the number of instances of one
UML element that can be mapped to corresponding
element instances. Links are represented by instan-
tiations of defined generic associations. The applied
rule states that links are one-to-one associations be-
tween UML elements, with the multiplicity equal to 1.

In the case of stereotyped constructs, the record
type defined includes fields for the tagged values and
the OCL constraints of the corresponding stereotype.
The OCL constraints can be easily represented and
verified in PVS tools. The OCL formulas are trans-
lated directly into the PVS specification language.

4 UML hardware profile for cyber physical
system (CPS) applications

A UML approach allows high level-modeling of

CPS applications. It allows static and behavioral de-
scriptions of this kind of distributed application. The
resulted UML models allow the user to define several
hardware and software parts for the applications. As a
result, each defined hardware component is assigned
a specific behavior based on the application
specifications.

Kuzniarz et al. (2004) showed that using prede-
fined stereotypes in UML models helps improve the
overall understanding of the UML models in question.
This represents a desired goal, as it helps in a better
definition and understanding of the internal configu-
ration of each node which is part of the network and
the network as a whole.

In CPS UML modeling, the user starts the design
of the application by defining the static network in-
frastructure. The network model is specified within a
deployment diagram containing a set of hardware
devices connected or linked through each other. The

next step represents the design for each type of node
involved in the network model. Each node model is
defined in its own deployment diagram consisting of
the internal hardware components. For customizing
the network infrastructure along with its types of
nodes and their internal components, we defined a
deployment diagram related UML hardware profile in
Magureanu et al. (2011; 2012).

The behaviors of components designed at dif-
ferent levels of abstractions make up the UML soft-
ware profile. Specific sets of software description
related stereotypes are mapped to those designated for
allowing the hardware description. The UML soft-
ware profile has been introduced in Gavrilescu et al.
(2012).

Next, we focus on presenting the main constructs
from the hardware profile, as this paper deals with the
formal specification and validation of the static as-
pects for designing CPS applications.

The stereotypes defined in this UML hardware
profile, along with the tagged values and the OCL
constraints, are used in defining the hardware com-
ponents, whose instances are actually used in mod-
eling the application. Well defined stereotypes for
specifying hardware components help achieve a clear
separation and grouping between families of devices.
Next, we present some stereotypes which are used
within the case studies presented in Section 5.

The ‘CompoundNode_PIM’ stereotype along
with its inheritances is used for defining and custo-
mizing a particular type of node. The OCL constraints
restrict the user in adding particular node type related
hardware internal components for the corresponding
deployment diagram for that node.

The ‘Can_HWST’ stereotype defines a hardware
‘CAN’ unit and its communication ports. Fig. 3
presents the tagged values and OCL constraints of the
‘Can_HWST’ stereotype used as an internal hardware
component. The OCL constraints presented in Fig. 3

Fig. 3 Object constraint language (OCL) constraints for the Can_HWST stereotype

Can_HWST
bool_define_tx_enPort: BOOLEAN
self.base_Node.ownedPort -> exists(a | a.name='rx' and a.ocllsTypeOf(InputGate_HWST))
self.base_Node.ownedPort -> exists(a | a.name='tx' and a.ocllsTypeOf(OutputGate_HWST))
if self.bool_define_tx_enPort = 'true' then
 self.base_Node.ownedPort -> exists(a | a.name='tx_en' and a.ocllsTypeOf(OutputGate_HWST))
 else true
endif

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 338

specify that the models stereotype with ‘CAN_
HWST’ must declare two different types communi-
cation ports, named ‘rx’ and ‘tx’, respectively. Op-
tionally, the designer can design its module as having
a third port used for enabling/disabling the transmit
port, by setting the tagged value named ‘tx_enPort’
on true, a case in which the third output port named
‘tx_en’ is required in the model.

The ‘PSOCUnit_HWST’ stereotype represents a
particular hardware unit named programmable
system-on-chip (PSoC) and developed by Cypress
Semiconductor Co. (USA). The physical hardware
device integrates configurable analog and digital
peripheral functions, memory, and an internal mi-
crocontroller on a single chip. Its reconfiguration
capabilities allow the designer to bind internal re-
sources on the fly, and thus to use a small number of
components for each specific task (Magureanu et al.,
2011). The stereotype presented allows customizing
such a device and defining application specific
hardware ports.

5 Z formal specification and validation of
static aspects for a sensing node model

In Section 5.1, we illustrate Z specification at the
node level, in a particular CPS application, using the
specifications proposed for the deployment diagram
artifacts. As a case study, we consider the system
presented in Magureanu et al. (2011), which de-
scribes a CPS for the traffic management in an urban
intersection. Section 5.2 considers the validation part
for the case study already specified. Our aim is to
illustrate how an operation represented by a Z schema
can be formally verified and improved.

5.1 Z formal specification of a sensing node model

The traffic management application contains
several types of nodes. A decision manager (DM)
node computes optimal green color duration for each
traffic light node. The calculations are based on the
information provided by the sensor nodes. The sensor
nodes from the presented CPS gather information
about the number of cars waiting at the red color of
the semaphores.

Each node specification is composed of hard-
ware and software models. The hardware model is
customized using stereotypes and OCL constraints of
the UML profile presented in Magureanu et al. (2011).
The communication between the hardware units of a
node is realized here using wired connections. Fig. 4
presents the UML model for the hardware configura-
tion of the sensing node used in this CPS application.

The sensing node internal architecture is ex-
pressed using deployment diagram artifacts. The
blocks are instances of UML deployment nodes.
These components are customized with stereotypes,
which hold constraints of different hardware unit type
definitions. The internal connections of the sensing
node and the external connection with its corres-
ponding traffic light node are also shown in Fig. 4.

A set of Z schemas is defined for each deploy-
ment node stereotype. Each schema is named ac-
cording to the stereotype name. The variable part of
the schema contains all tagged values defined by the
stereotype. The predicate part contains the OCL
statements expressed in Z language.

The Z schema of the sensing node’s CAN unit
contains the Can_HWST schema as a variable. This
variable indicates the formal definition of the cor-
responding stereotype. The Z specification prover

<<CompoundNode_PIM>>
SensingNode_Wired

<<PSoCUnit_HWST>>
psocUnit_OMNet: PSoCUnit_SensingNode

inOutWithCommunicationUnit = canUnit_OMNeT.rx
inOutWithSensingUnit = sensingUnit_OMNeT.inOutWithPSoCUnit

<<InOutGate_HWST>>
inOutWithTrafficLightNode

<<Can_HWST>>
canUnit_OMNeT: CANUnit_SensingNode

external_rx_tx = inOutWithTrafficLightNode
tx = psocUnit_OMNeT.inOutWithCommunicationUnit

<<SensingUnit_HWST>>
sensingUnit_OMNeT: SensingUnit_SensingNode

inOutWithPSoCUnit = psocUnit_OMNeT.inOutWithSensingUnit

Fig. 4 Unified modeling language (UML) model for the hardware configuration of a sensing node

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 339

tool will later determine whether the stereotyped
component is correctly customized with the corres-
ponding stereotype, in terms of variables and con-
straints.

In Fig. 5a, the variable part of the SENSING-
NODE_WIRED schema defines the hardware units of
a sensing node model. For each of these components,
a Z schema is provided. Fig. 5b describes the set of
existing sensing nodes in the network, as instances for
the node presented in Fig. 4.

As presented in Fig. 5c, SensingNode_Wired is
an instance of the SensingNode set and expresses a
node used in the CPS. It contains the actual internal
instantiations for the hardware unit components.

Connections between units are described using Z
functions for link specifications. The links between

nodes in the deployment diagram or between compo-
nents of a node are represented using functions defined
for both roles of the association. The constraints are
meant to define the domain and range of these func-
tions. The constraints also define the fact that both
functions are linked and the functions refer to the same
exchanged information. In Fig. 6, we present the Z
specification for the bidirectional link between a
sensing node and its corresponding traffic light node.

Actual values for the domain and range of these
functions are set in the network specification. The
network representation at the physical level contains
the schemas of node intensions and node extensions
for all nodes in the traffic network, along with the
links between nodes. These schemas are also
represented as functions.

Fig. 5 Z specification of the SENSINGNODE_WIRED node (a), the set of instances (b), and a particular sensing
node type (c)

(a)
SENSINGNODE_WIRED

CANUnit_SensingNode: CANUNIT_SENSINGNODE_WIRED
SensingUnit_SensingNode: if SENSINGUNIT_SENSINGNODE_WIRED

 PSoCUnit_SensingNode: PSOCUNIT_SENSINGNODE_WIRED
InOutWithTrafficLightNode: INOUTGATE

(b)
SensingNode_Wired_Ext

SensingNode: if SENSINGNODE_WIRED

...

(c)
SensingNode_Wired

CANUnit_SensingNode=canUnit_OMNeT
SensingUnit_SensingNode=sensingUnit_OMNeT
PSoCUnit_SensingNode=psocUnit_OMNeT
InOutWithTrafficLightNode=inOutWithTrafficLightNode
OutputToInOutGateFct(canUnit_OMNeT.tx) = psocUnit_OMNeT.inOutWithCommunicationUnit
InOutToInOutGateFct(canUnit_OMNeT.external_rx_tx) = inOutWithTrafficLightNode
InOutToInputGateFct(psocUnit_OMNeT.inOutWithCommunicationUnit) = canUnit_OMNeT.rx
InOutToInOutGateFct(psocUnit_OMNeT.inOutWithSensingUnit) = sensingUnit_OMNeT.inOutWithPSoCUnit
InOutToInOutGateFct(sensingUnit_OMNeT.inOutWithPSoCUnit) = psocUnit_OMNeT.inOutWithSensingUnit

Fig. 6 Z specification for relationship between sensing nodes and traffic light nodes

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 340

In this case study, we focus on the specification
and validation of the application at the node level;
therefore, the network schema is not presented in
detail. However, based on presented specification
steps for a CPS node, the specification of the network
schema becomes intuitive.

Section 2 covers the validation process of the
elementary operations generated using the RoZ tool
(Dupuy et al., 2000). The generated elementary op-
erations along with the evaluation are discussed in
more detail.

5.2 Validation of Z static specifications for a
sensing node model

Each type of the UML diagram construct can be
manually transformed into formal specifications us-
ing the set of rules described in Section 3. This
process can be optimized using dedicated tools, such
as the RoZ tool (Dupuy et al., 2000), for generating
complete Z specifications from annotated UML
deployment diagrams. The RoZ tool is able to gener-
ate specifications of elementary operations over the
UML elements and proof obligations. A common
example of such elementary operations deals with
modification of deployment node attributes. This is
significantly helpful in validation of the UML model
constraints.

When considering validation for the traffic
management case study already specified, one of the
application requirements states that the models must
ensure the possibility of using other defined sensing
units. As a method for determining the impact of
defined operations over the UML model constraints,
we use the computation of corresponding operations
preconditions. This implies determining the condi-
tions that must be satisfied before the operations take
place. The aim is to preserve the constraints at the end
of the operations (Ledru, 1998).

We discuss the ModifySensingUnit operation
described by the Z operation schema (Fig. 7a). The
first line specifies that the domain of the effect for this
operation is restricted to objects of the type
SENSINGNODE_WIRED.

The predicates state that all attributes keep their
initial values except for the one representing the
sensing unit. This attribute receives the value of the
newSensingUnit_SensingNode input parameter. The
precondition for this operation verifies the existence
of values for the new types of sensing units.

Fig. 7b presents this precondition represented as
Z specification. Furthermore, the information can be
used to describe a theorem to validate the precondi-
tion. This theorem generated in RoZ is depicted in

(a)
SENSINGNODE_WIREDModifySensingUnit

∆ SENSINGNODE_WIRED
newSensingUnit_SensingNode?: SENSINGUNIT_SENSINGNODE_WIRED

CANUnit_SensingNode′ = CANUnit_SensingNode
SensingUnit_SensingNode′ = newSensingUnit_SensingNode?
PSoCUnit_SensingNode′ = PSoCUnit_SensingNode
InOutWithTrafficLightNode′ = InOutWithTrafficLightNode

(b)

newSensingUnit_SensingNode? ≠
newSensingUnit_SensingNode? \neq \empty

(c)

\begin{theorem}{SENSINGNODE_WIREDModifySensingUnit_Pre}
\forallSENSINGNODE_WIRED;
newSensingUnit_SensingNode?:\finset SENSINGUNIT_SENSINGNODE_WIRED |
newSensingUnit_SensingNode?\neq \empty @
\pre SENSINGNODE_WIREDModifySensingUnit
\end{theorem}

(d)

try lemma SENSINGNODE_WIREDModifySensingUnit_Pre;
prove by reduce;

Fig. 7 Z specification of the
ModifySensingUnit opera-
tion (a), Z language state-
ments for the sensing node
model (b), Z language theo-
rem for the sensing node
model (c), and Z language
evaluation of the sensing
node theorem (d)

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 341

Fig. 7c. As mentioned before, to validate Z theorems,
we use the Z/EVES theorem prover (Ledru, 1998).
The commands required for proving the theorem
demonstrate the validity of the defined precondition
(Fig. 7d). Therefore, the initial constraints are pre-
served at the end of operations. This verification of
the initial constraints ensures that all units from the
sensing family are replaceable, as long as they satisfy
the family specifications.

6 Prototype verification system formal
specification and validation of static aspects
for a wireless sensor network monitoring
application

In this section, we consider an application for a

gas-distribution monitoring system (Magureanu et al.,
2010) as a case study. The aim is to reveal possible
design problems in specification of the wireless
communication in a CPS application at the network
level.

6.1 PVS formal specification of a WSN monitor-
ing application

In this section, we indicated how PVS language
can be used to specify the stereotypes required for
modeling a gas management system.

When deploying such nodes, it is necessary to
specify the position (x, y, z), transmission, and recep-
tion parameters for the node. The application goal is
to control the gas flooding in case of pipe leaks.

For an efficient monitoring, the network was
logically tailored into perimeters, zones, and areas.
The communication between the logically grouped
layers is ensured using the beacon approach (Buratti
et al., 2009). The beacons are represented in this case
study by decision manager (DM) nodes.

For expressing this tailoring during the design
process, stereotypes definitions for each modeling
level are required. The OCL constraints for these
stereotypes express the meanings of definitions. Next,
we present these OCL constraints in a natural
language.

A logical grouping stereotyped with Perimeter
expresses a set of nodes containing a single instance
of a node customized with DM_PerimeterCompound
Node_HWST stereotype, which manages and moni-

tors all the nodes logically grouped in a perimeter. All
the other nodes are instances of nodes customized
with CompoundNode_PIM stereotype, which
represent sensors or actuator valves.

The Zone stereotype expresses a set of nodes
containing a single instance of a stereotype named
DM_ZoneCompoundNode_HWST, whereas all other
nodes are stereotyped with Perimeter or are instances
of CompoundNode_PIM stereotype. The node cus-
tomized with DM_ZoneCompoundNode_HWST
manages and monitors all the sensors, actuator valves,
and its internal perimeters, logically grouped in a
zone. It also handles the information received from
the perimeter manager nodes.

The Area stereotype expresses a set of nodes
containing a single instance of a node customized
with DM_AreaCompoundNode_HWST stereotype.
All other contained nodes are stereotyped with Zone
or Perimeter or are instances of nodes customized
with the CompoundNode_PIM stereotype. Following
the same reasoning, a node stereotyped with
DM_AreaCompoundNode_HWST manages a set of
nodes logically grouped in an area.

To focus on relevant aspects in our discussion,
we consider the simplified example of unidirectional
communication, from the layer manager to the logi-
cally grouped set of nodes and from the current layer
to the lower layer manager. Fig. 8 shows the UML
model of this CPS. Similar to the approach presented
in Aredo et al. (1999), we formally represent the
stereotypes in the PVS specification language.

Fig. 9 depicts, as PVS theories, the stereotypes
used for defining the physical nodes. For each of these
stereotypes, we define a record type, in which the
fields are declarations of tagged values. As we con-
sider a specific scenario for evaluating the definitions
at the area level, Fig. 9 presents only the relevant
tagged values for each used stereotype.

The X, Y, and Z types are subsets of integer
values expressing the bounding box of the network’s
topology. The PVS importing mechanism allows the
already defined types to be referred to by a theory that
requires them. The tagged values and operations are
inherited and used along with local ones.

In case of specifying a stereotyped node, we
propose the same import and inheritance mechanism
for the attributes and operations defined by the ste-
reotype. Therefore, the theory describing the

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 342

stereotype is imported in the theory describing the
node itself. This ensures the availability of the ste-
reotype record type in the node theory.

Fig. 10 presents, as PVS theories, the stereotypes
used for describing the logical tailoring of the net-
work topology. The specifications derived from the
associated OCL constraints are used to formally ex-
press the PVS theories.

A gas distribution system requires a large num-
ber of interconnected pipes. Therefore, to manage
such a complex network, a large number of sensors
are required along with local management nodes and
valve actuators. However, in this case study, we try to
illustrate the network as simple as possible, for a
better understanding of how it is topologically struc-
tured. This allows us to reveal the benefits of using

PVS tools for evaluating such massively distributed
systems. We have chosen PVS tools because it is
easier to specify and verify complex networks using
PVS specification constructs along with the type
checker and theorem prover.

The gas pipes network presented by Magureanu et
al. (2010) is modeled using UML deployment dia-
grams. One particularity of this case study is the usage
of wireless communication between nodes. Wireless
communication operating frequency is considered
placed within the industrial, scientific, and medical
(ISM) radio band. As an example, we present the UML
model for a sensing node. The tagged values shown in
Fig. 11 are inserted by the CompoundNode_ PIM ste-
reotype. Basically, a stereotype inserts its tagged val-
ues as mandatory attributes for the customized node.

v13:
ValveNode v23:

ValveNode v33:
ValveNode

s13:
SensingNode s23:

SensingNode s33:
SensingNode

dmz3:
ZoneDMNode

dma:
AreaDMNode

DMZ3

DMA
DMZ1

DMZ2

v12:
ValveNode v32:

ValveNode v2:
ValveNode v3:

ValveNode

v1:
ValveNode

v22:
ValveNode

v53:
ValveNode

v43:
ValveNode

s12:
SensingNode s32:

SensingNode s1:
SensingNode s22:

SensingNode

dmz2:
ZoneDMNode

dmz1:
ZoneDMNode

P11

Fig. 8 Unified modeling language (UML) model for distributed gas monitoring topology

Fig. 9 Prototype verification system (PVS) theories for compound node, perimeter decision manager (DM),
zone DM, and area DM stereotypes

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 343

6.2 Validation of PVS static specification for the
wireless network area model

In this section, we discuss how formal verifica-
tion can help detect lacks in the initial specification.
This task is accomplished with the help of the PVS
type checker and the theorem prover. The aim is to
adjust UML models before starting the development
process.

Here, we discuss the conditions for the nodes to
be in the communication range of each other and to
establish a valid route. In Fig. 9, a possible situation is
when a DM node of an area (dma) is able to commu-
nicate to the DM of a zone (dmz3), the transmission is
unable to reach a far located zone (dmz2).

For a wireless communication evaluation, we

need to consider a proper radio model in PVS. The
signal transmission in wireless networks is influenced
mainly by the signal frequency, path loss, receiver
sensitivity, and noise. Path loss, known as attenuation,
is influenced by deployment configuration, distance
between the transmitter and the receiver, height, and
location of the antennas, obstacles, and weather con-
ditions (Stoyanova et al., 2009). The evaluated power
of the received signal is gained by multiplying the
power of the transmitted signal with every attenuation
mapping.

Several propagation models are proposed to es-
timate the radio signal propagation distance. These
models rely on information specific to a considered
scenario. The appropriate radio model is chosen based
on the application’s specific operating environment,
the existing obstacles, and the technology used to
implement wireless communication (Stoyanova et al.,
2009).

We start our investigation with a simplified radio
model as shown in Fig. 12a (Rousselot and Decotig-
nie, 2009). The radio model does not take into con-
sideration of obstacles or other environment limita-
tions. The PVS theory for a DM node of the area level
is formally specified in Fig. 12b. It makes use of the
radio model theory and inherits from the PVS theory
DM_AreaCompoundNode_ HWST.

Hence, subsystem parts of CPS applications
based on the used stereotypes and their associated
OCL constraints can be specified. Following the same
reasoning, the entire system can be specified.

SensingNode

-x: log
-y: log
-z: log
-pMax @unit(mW): double
-sat @unit(dBm): double
-alpha: double
-carrier Frequency @unit(Hz): double
-usePropagationDelay: boolean
-sensitivity @unit(dBm): double
-maxTXPower @unit(mW): double
-timeRXToTX: double
-timeRXToSleep: double
-timeTXToRX: double
-timeTXToSleep: double
-timeSleepToRX: double
-timeSleepToTX: double
-radioMinAtt: double
-radioMaxAtt: double

Fig. 11 UML deployment for the sensing node

PERIMETER: THEORY
BEGIN
IMPORTING CompoundNode_PIM, DM_PerimeterCompoundNode_HWST

PERIMETER: TYPE=[# dm: DM_PerimeterCompoundNode_HWST,
nodes: setof[CompoundNode_PIM] #]

END PERIMETER
ZONE: THEORY
 BEGIN

IMPORTING PERIMETER, DM_ZoneCompoundNode_HWST
ZONE: TYPE=[# dm : DM_ZoneCompoundNode_HWST, perimeters : setof[PERIMETER],

nodes: setof[CompoundNode_PIM] #]
END ZONE

AREA: THEORY
 BEGIN
 IMPORTING ZONE, DM_AreaCompoundNode_HWST

AREA: TYPE=[# dm: DM_AreaCompoundNode_HWST, zones : setof[ZONE],
perimeters: setof[PERIMETER], nodes: setof[CompoundNode_PIM] #]

END AREA

Fig. 10 Prototype verification system (PVS) theories for perimeter, zone, and area stereotypes

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 344

The validation part aims to evaluate the capabi-
lity of the already specified DM node of the area to
communicate with the zones included in its bounda-
ries. Conditions for calculating the communication
capacity are expressed in the form of PVS theorems.
These become objectives to be verified using the PVS
theorem prover. Type checking is a precondition for
the evaluation of the theorems. It represents an in-
termediary step between a completely specified
theory and theorem proving. The PVS type checker
searches for semantic errors, like ambiguous types or
undeclared variables in the theory.

In dma theory, the receive function determines
whether an external node is in the receiving range of
the considered node. The decision is based on the
transmission power of the sender.

In this work, the verification determines whether
the node with which the dma wants to communicate is
in its range. In this case, the evaluation of the
checkCommunicationWithAllNodes theorem fails.

A valid model is presented in Fig. 13. It also in-
cludes the sensitivity of the receiver in the theorem
condition.

We conclude that performing formal validation
of all theorems defined for the CPS model ensures a
proper validation of the assumptions made in design.

7 Conclusions

CPS applications are presented nowadays in
various fields of activity. Many researchers are

Fig. 12 Prototype verification system (PVS) theory for a tiny radio model (a) and a DM node of an area
(dma) model (b)

Fig. 13 Corrected prototype verification system (PVS) method for validating the DM node of an area (dma)
model

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 345

seeking solutions to cover the challenges of designing
and implementing such applications.

High-level UML modeling is accepted as a
suitable solution for the design of distributed em-
bedded applications. However, the informal language
used to express UML models constitutes a disadvan-
tage in ensuring the correctness and completeness of
the design. Although OCL offers support for UML
design, it is not enough for a proper validation as it
lacks the strict notations of mathematics and logic that
permits rigorous analysis and reasoning about the
specifications. We conclude that the CPS UML de-
sign can benefit from using OCL constraints to im-
prove model expressiveness, but the correctness and
completeness of models require formal specification,
especially on the dynamic part. We argue that all the
static aspects presented in this paper in particular, and
in CPS design in general, can be validated using OCL
constraints exclusively. However, it is deficient in
providing precise and unambiguous models of pro-
posed software systems. Formal specification and
verification of UML models for CPS applications is
therefore required.

In this paper, we present how deployment arti-
facts can be formally expressed and verified. Addi-
tionally, this paper presents a research on using Z and
PVS to specify and verify static aspects like the net-
work infrastructure and the internal hardware used in
CPS applications modeled using UML deployment
diagrams.

Z provides a rigorous mathematical specification.
However, Z is limited in handling dynamic aspects
for the systems and it has no generally accepted veri-
fication tools. Therefore, we use Z to formally specify
the static part of examples presenting reduced busi-
ness logic complexity.

We consider PVS to overcome the deficiency in
proper verification tools for Z. PVS demonstrate its
advantages in case of more complex reasoning, in-
volving specifications for large-scale CPS models
based on wireless communication. From this pers-
pective, Z involves a strong mathematical back-
ground, while PVS is closer to programming lan-
guages and object-oriented design.

As our future work will be focused on specifying
and also validating the dynamic aspects of the CPS
application design, we chose PVS formal specifica-
tion and validation as a homogenous solution, appli-
cable on both static and dynamic design characteristics.

References
Andersson, P., Host, M., 2008. UML and SystemC—a com-

parison and mapping rules for automatic code generation.
LNEE, 10:199-209. [doi:10.1007/978-1-4020-8297-9_14]

Andre, C., Cuccuru, S., Dekeyser, J.L., de Simone, R., Du-
moulin, C., Forget, J., Gautier, T., Gérard, S., Mallet, F.,
Radermacher, A., et al., 2005. MARTE: a New OMG
Profile RFP for the Modeling and Analysis of Real-time
Embedded Systems. DAC Workshop UML for SoC De-
sign, p.16-21.

Aredo, D.B., 2002. A framework for semantics of UML se-
quence diagrams in PVS. J. Univers. Comput. Sci., 8(7):
674-698. [doi:10.3217/jucs-008-07]

Aredo, D.B., 2003. Formal Semantics of UML Statecharts in
PVS. Proc. 7th World Multiconf. on Systemics, Cyber-
netics, and Informatics, Orlando, Florida, USA.

Aredo, D.B., Traore, I., Stolen, K., 1999. Towards Formaliza-
tion of UML Class Structure in PVS. Research Report No.
272, Department of Informatics, University of Oslo,
Norway.

Baar, T., 2005. Non-deterministic constructs in OCL—what
does any() mean. LNCS, 3530:32-46. [doi:10.1007/
11506843_3]

Bhutto, A., Hussain, D.M.A., 2011. Formal verification of
UML profile. Aust. J. Basic Appl. Sci., 5(6):1594-1598.

Bondavalli, A., Majzik, I., Mura, I., 1999. Automated De-
pendability Analysis of UML Designs. Proc. 2nd IEEE
Int. Symp. on Object-Oriented Real-Time Distributed
Computing, p.139-144. [doi:10.1109/ISORC.1999.776
367]

Buratti, C., Conti, A., Dardari, D., Verdone, R., 2009. An
overview on wireless sensor networks technology and
evolution. Sensors, 9(9):6869-6896. [doi:10.3390/s90906
869]

Clavel, M., Egea, M., 2006. ITP/OCL: a rewriting-based va-
lidation tool for UML+OCL static class diagrams. LNCS,
4019:368-373. [doi:10.1007/11784180_28]

Crow, J., Owre, S., Rushby, J., Shankar, N., Srivas, M., 1995.
A Tutorial Introduction to PVS. Workshop on Industrial
Strength Formal Specification Techniques.

Derler, P., Lee, E.A., Vincentelli, A.S., 2011. Addressing
Modeling Challenges in Cyber-Physical Systems. Tech-
nical Report No. UCB/EECS-2011-17, Electrical Engi-
neering and Computer Science Department, University of
California, Berkeley, USA.

Dupuy, S., Ledru, Y., Chabre-Peccoud, M., 2000. An Over-
view of RoZ: a Tool for Integrating UML and Z Speci-
fications. Proc. 12th Conf. on Advanced Information
System Engineering, p.417-430. [doi:10.1007/3-540-
45140-4_28]

France, R., Evans, A., Lano, K., Rumpe, B., 1998. The UML
as a formal modeling notation. Comput. Stand. Interf.,
19(7):325-334. [doi:10.1016/S0920-5489(98)00020-8]

Gavrilescu, M., Magureanu, G., Pescaru, D., Jian, I., 2012.
Towards UML Software Models for Cyber Physical
System Applications. Proc. 20th Telecommunications

Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2013 14(5):332-346 346

Forum, p.1701-1704. [doi:10.1109/TELFOR.2012.64195
54]

Gogolla, M., Richters, M., 1998. On Constraints and Queries
in UML. In: Schader, M., Korthaus, A. (Eds.), The Uni-
fied Modeling Language. Physica-Verlag, Heidelberg,
Germany, p.109-121. [doi:10.1007/978-3-642-48673-9_8]

Gogolla, M., Buttner, F., Richters, M., 2007. USE: a UML-
based specification environment for validating UML and
OCL. Sci. Comput. Program., 69(1-3):27-34. [doi:10.
1016/j.scico.2007.01.013]

Hamie, A., Civello, F., Howse, J., Kent, S., Mitchell, R., 1999.
Reflections on the object constraints language. LNCS,
1618:137-145. [doi:10.1007/978-3-540-48480-6_13]

Kuzniarz, L., Staron, M., Wohlin, C., 2004. An Empirical
Study on Using Stereotypes to Improve Understanding of
UML Models. Proc. 12th IEEE Int. Workshop on Pro-
gram Comprehension, p.14-23. [doi:10.1109/WPC.2004.
1311043]

Kyas, M., Fecher, H., de Boer, F.S., Jacob, J., Hooman, J., van
der Zwaag, M., Arons, T., Kugler, H., 2005. Formalizing
UML models and OCL sonstraints in PVS. Electron.
Notes Theor. Comput. Sci., 115:39-47. [doi:10.1016/j.
entcs.2004.09.027]

Ledru, Y., 1998. Identifying Pre-conditions with the Z/EVES
Theorem Prover. Proc. 13th IEEE Int. Conf. on Auto-
mated Software Engineering, p.32-41. [doi:10.1109/ASE.
1998.732566]

Magureanu, G., Gavrilescu, M., Pescaru, D., Doboli, A., 2010.
Towards UML Modeling of Cyber-Physical Systems: a
Case Study for Gas Distribution. Proc. 8th IEEE Int.
Symp. on Intelligent Systems and Informatics, p.471-476.
[doi:10.1109/SISY.2010.5647314]

Magureanu, G., Gavrilescu, M., Tal, I., Toma, A., Pescaru, D.,
Jian, I., 2011. Generating OMNeT++ Specifications from
UML Models for PSoC Distributed Applications. Proc.
6th IEEE Int. Symp. on Applied Computational Intelli-
gence and Informatics, p.85-90. [doi:10.1109/SACI.2011.
5872977]

Magureanu, G., Gavrilescu, M., Pescaru, D., 2012. UML
Profile for Cyber-Physical System Wireless Communi-
cation Specification. Proc. 7th Int. Symp. on Applied
Computational Intelligence and Informatics, p.383-388.
[doi:10.1109/SACI.2012.6250034]

Nguyen, K.D., Sun, Z., Thiagarajan, P.S., Wong, W.F., 2004.
Model-Driven SoC Design via Executable UML to Sys-
temC. Proc. 25th IEEE Int. Real-Time Systems Symp.,
p.459-468. [doi:10.1109/REAL.2004.32]

Object Management Group (OMG), 2010. Documents Asso-
ciated with UML Version 2.3 Specifications. Available
from http://www.omg.org/spec/UML/2.3/ [Accessed on
Dec. 26, 2012].

Riccobene, E., Scandurra, P., Bocchio, S., Rosti, A., Lavazza,
L., Mantellini, L., 2009. SystemC/C-based model-driven
design for embedded systems. ACM Trans. Embed.
Comput. Syst., 8(4):1-37. [doi:10.1145/1550987.1550993]

Roe, D., Broda, K., Russo, A., 2002. Mapping UML Models
Incorporating OCL Constraints into Object-Z. Technical
Report No. 9/2003, Imperial College, London, UK.

Rousselot, J., Decotignie, J.D., 2009. A High-Precision Ultra
Wideband Impulse Radio Physical Layer Model for
Network Simulation. Proc. 2nd Int. Conf. on Simulation
Tools and Techniques, Article No. 79. [doi:10.4108/
ICST.SIMUTOOLS2009.5628]

Saaltink, M., 1997. The Z/EVES system. LNCS, 1212:72-85.
[doi:10.1007/BFb0027284]

Shroff, M., France, R.B., 1997. Towards a Formalization of
UML Class Structures in Z. Proc. 21st Int. Computer
Software and Applications Conf., p.646-651. [doi:10.
1109/CMPSAC.1997.625087]

Spivey, J.M., 1992. The Z Notation: a Reference Manual (2nd
Ed.). Prentice Hall International Ltd., Hertfordshire, UK.

Stoyanova, T., Kerasiotis, F., Prayati, A., Papadopoulos, G.,
2009. A Practical RF Propagation Model for Wireless
Network Sensors. Proc. 3rd Int. Conf. on Sensor Tech-
nologies and Applications, p.194-199. [doi:10.1109/
SENSORCOMM.2009.39]

