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Abstract:    Cyber physical systems (CPSs) can be found nowadays in various fields of activity. The increased interest for these 
systems as evidenced by the large number of applications led to complex research regarding the most suitable methods for design 
and development. A promising solution for specification, visualization, and documentation of CPSs uses the Object Management 
Group (OMG) unified modeling language (UML). UML models allow an intuitive approach for embedded systems design, 
helping end-users to specify the requirements. However, the UML models are represented in an informal language. Therefore, it is 
difficult to verify the correctness and completeness of a system design. The object constraint language (OCL) was defined to add 
constraints to UML, but it is deficient in strict notations of mathematics and logic that permits rigorous analysis and reasoning 
about the specifications. In this paper, we investigated how CPS applications modeled using UML deployment diagrams could be 
formally expressed and verified. We used Z language constructs and prototype verification system (PVS) as formal verification 
tools. Considering some relevant case studies presented in the literature, we investigated the opportunity of using this approach for 
validation of static properties in CPS UML models.  
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1  Introduction 
 

Cyber physical systems (CPSs) are massively 
distributed heterogeneous embedded systems linked 
through wired and/or wireless connections (Derler et 
al., 2011). They integrate computational and physical 
processes, sensors, actuators, and decision modules, 
and thus have great economic and social potential.  

Each subsystem aims to fulfill a specific task or 
objective. One of the main issues in developing CPS 
applications resides in the asynchronous intercom-

munication between the subsystems and the influence 
of the exchanged information over the controlled 
devices. The variety and large number of existing 
CPS applications suggest an increased interest in 
developing efficient design methods of such systems. 
Therefore, a well-founded formal specification deal-
ing with both static and dynamic application aspects 
is required. This paper deals with static aspects to 
formally specify both the hardware and the network 
infrastructure required for the CPS applications.  

The unified modeling language (UML) consists 
of a set of general purpose modeling elements (Object 
Management Group (OMG), 2010). UML is widely 
used for specification, visualization, and documenta-
tion in various engineering fields. UML allows an 
intuitive graphical approach for embedded systems 
design.  
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UML models can be customized by defining and 
using stereotypes grouped in UML profiles (OMG, 
2010). Stereotypes contain tagged values and con-
straints, which add specific attributes and behavior to 
the customized UML elements. Kuzniarz et al. (2004) 
demonstrated the expressiveness of UML profiles in 
defining UML models. UML profiles usage can sig-
nificantly improve the overall understanding of the 
application models in a specific field. In this work, we 
investigate the opportunity of using UML for CPS 
design and formal validation, as an intuitive and ef-
ficient approach.  

In case of CPS modeling, UML profiles can be 
divided into profiles for hardware and software spe-
cifications. The stereotypes for hardware specifica-
tion help in customizing the network topology. They 
are used for defining the types of nodes of which the 
network and their internal hardware components are 
composed. The stereotypes for software specification 
are used for customizing the system behavior. Several 
UML profiles were proposed to model various as-
pects of real-time and embedded systems (Nguyen et 
al., 2004; Andre et al., 2005; Andersson and Host, 
2008; Riccobene et al., 2009). They can also be suc-
cessfully used for CPS design.  

Since the UML does not provide a formal syntax, 
the semantics of UML models cannot be formally 
defined and validated. The object constraint language 
(OCL) is a declarative language that aims to bridge 
the gap between the ambiguity of a natural language 
in which UML models are expressed and the diffi-
culty of mathematical constructs. Invariants are used 
to express a range of restrictions over the UML model 
features. System behavior is then clarified through 
pre- and post-condition, describing the applicability 
and impact of particular operations, respectively 
(OMG, 2010). Various OCL checker tools like the 
UML-based specification environment (USE) tool 
(Gogolla et al., 2007) or ITP/OCL tool (Clavel and 
Egea, 2006) can then be used for system validation.   

However, the semantics of OCL are not ma-
thematically defined; therefore, OCL is considered as 
being a semi-formal language. Using OCL for ex-
pressing rules and constraints applied to UML models 
is still insufficient for formal reasoning (France et al., 
1998). Previous research has identified weaknesses in 
the semi-formal approach. It has been observed that 
some UML modeling constructs lack precise seman-

tics, sometimes leading to differences in interpreta-
tion, and therefore inconsistencies between design 
and implementation.   

For example, Gogolla and Richters (1998) iden-
tified OCLAny construct as being one of the issues. 
As OCLAny is considered as the super type of all 
other OCL defined types, any equality check between 
two elements of the OCLAny type is considered to be 
valid. However, when replacing the equality with 
elements of specific but different types, the evaluation 
still returns true. Another issue is related to the three 
types of polymorphism supported by the OCL speci-
fication. It is not clear how exactly these concepts are 
applied by the OCL checker tools. Therefore, it is left 
to them to implement these concepts. Additionally, 
the flattening process is not precisely described. Re-
garding the OCL undefined value term, the general 
rule states that the expressions containing such terms 
are also considered as undefined. This can lead to an 
incomplete evaluation of the model.  

Baar (2005) noticed that the OCL non- 
deterministic constructs are poorly understood; 
therefore, they tend to be ignored and unimplemented 
by most of the OCL tools. One of the reasons is that 
such constructs allow different interpretations of the 
same OCL semantic, which may lead to different 
model implementations. 

Formal specification languages are intended to 
provide precise and complete models of the proposed 
software systems. Formal specification for UML 
models can be achieved using formal constructs. 
Various tools can use this rigorous specification for 
verifying the UML models. The purpose of using 
formal specification and validation constructs is to 
provide unambiguous descriptions of system struc-
ture and functionality and to prove before deployment 
that the system will function according to the ex-
pected requirements (Bondavalli et al., 1999). 

 
 

2  Cyber physical system modeling and  
verification 
 

Modeling is a key aspect of a good design for 
both embedded and distributed systems. As CPSs can 
be seen as embedded distributed systems, various 
modeling techniques were proposed. In this work, we 
concentrate on structural models of CPS applications, 
which represent the static information in a system 
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design. 
Object-oriented modeling is widely spread in 

software design and it could be successfully adapted 
to CPS structural design. The main issue in this case 
resides in the informal nature of most object-oriented 
models. A solution to this problem was presented by 
France et al. (1998) and Aredo et al. (1999). They 
proposed three approaches to formalize object- 
oriented modeling notations: supplemental approach, 
object-oriented extended formal notations, and me-
thods integration. 

In the supplemental approach, formal constructs 
replace parts of the model expressed in informal  
object-oriented notations. In the object-oriented ex-
tended formal notation, existing formal notations are 
extended by object-oriented mechanisms, therefore 
becoming more compatible with object-oriented no-
tations. The advantage of using such an approach is 
given by the fact that rigorous formal systems are 
obtained.  

The methods integration approach is a more 
suitable solution that makes informal object-oriented 
modeling concepts more precise by integrating them 
with proper formal specification techniques. This 
approach is the most commonly used in the formali-
zation of object-oriented modeling notations. There-
fore, it is appropriate for analysis tools development, 
since the first two concepts force the user to be in 
contact with a great amount of complex mathematical 
artifacts. In this case, the designers can directly ma-
nipulate graphical artifacts in the object-oriented 
models and they are not required of strong formal 
backgrounds. The two formal specification languages 
adopted in this paper are part of this third category.  

Bhutto and Hussain (2011) presented a complex 
view on the most used formal verification tools, such 
as OCL, prototype verification system (PVS), Z lan-
guage, process or protocol meta language (PRO-
MELA), and UPPAAL model checker. The authors 
compared the presented tools and presented advan-
tages for using each modeling tool at different levels 
of development processes. The OCL is found to be 
suitable as an established language for the specifica-
tion of the static properties of objects and object 
structures in UML models. However, OCL is not 
suitable for specification and verification of the dy-
namical aspects requested by this application type. 
The Z language proves to be a suitable solution for the 

model specification based on the standard mathemat-
ical notation and the first-order predicate logic (Spivey, 
1992).  

In OCL, the expressions can be undefined. The 
available OMG documentation does not specify how 
the OCL checker tools should deal with the undefined 
queries from the expressions (Hamie et al., 1999). In 
most of the cases, the OCL tools denote nothing in the 
model verification process. The Z language maintains 
a clear distinction between logical operators and ex-
pressions. The logical expressions are not treated as 
expressions within the language; therefore their truth 
values are unknown if they involve undefined  
expressions.  

Shroff and France (1997) proposed a formaliza-
tion based on the Z language of the primary UML 
constructs used to build class artifacts. In this paper, 
we exemplify how the UML deployment diagrams 
can be formally represented similar to class diagrams. 
A Z state schema formalizes the static aspect of a 
class. The attributes and object identifiers of class 
instances are represented by state variables. Class 
invariants are specified in the predicate part of a Z 
schema. In an operation schema, the input and output 
variables represent the before and after states, re-
spectively. The relationships between these states are 
represented in the predicate part. We propose rules for 
specifying the constructs of deployment diagrams, 
using state and operation schemas. 

A hybrid solution by merging both advantages of 
OCL and Z languages was described by Roe et al. 
(2002). It provides a mapping from an integrated 
model of UML model and OCL specifications into a 
Z formal specification. We use this mapping to 
translate the OCL constraints of the used stereotypes 
from our UML designed models. 

Dupuy et al. (2000) proposed a complex ap-
proach of using the Z language and introduced a tool 
called RoZ. This tool allows the generation of speci-
fications for elementary operations on classes and the 
generation of proof obligations to validate operation 
guards. It allows automatic generation of Z schemas 
for the UML class, object, and deployment diagrams 
along with the elementary operations. We use the 
RoZ tool as support for developing specifications for 
CPS applications. To validate Z theorems, several 
tools were proposed in the literature, and we use the 
Z/EVES theorem prover (Saaltink, 1997) in our work. 
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As an alternative to Z language, many research-
ers have used PVS to formally define and analyze 
UML models. PVS consists of a specification lan-
guage, a type checker, a model checker, and a theo-
rem prover (Crow et al., 1995). In this paper, we 
investigate the opportunity of using PVS and the Z 
language for specifying deployment diagrams. 

Aredo et al. (1999) defined general formaliza-
tion approaches for UML interfaces, classes, associ-
ations, generalizations, and aggregations using PVS. 
They defined a generic parameterized theory that 
becomes an efficient solution to formally represent 
diagram elements. However, this approach requires a 
rigorous definition for a single theory for all elements.  

Aredo (2003) explored the advantages of using 
PVS formalism for checking the correctness and 
completeness of UML models. They proposed the 
formal semantic definition for UML statecharts using 
the PVS specification language. They developed a 
general framework for translating UML statecharts 
diagrams into PVS specifications. The benefit of 
using such translation resides in the capability to 
produce precise and analyzable specifications and to 
use the rigorous reasoning provided by the PVS tools. 
The behavioral aspects for every node of the CPS 
application can be modeled using the statecharts dia-
grams. Therefore, this research represents a suitable 
solution for translating the dynamic aspects into the 
PVS specification language.  

Aredo (2002) presented the formal semantics of 
UML sequence diagrams using the PVS language as 
the underlying semantic foundation. The basic con-
cepts of sequence diagrams must first be formally 
specified, and then the semantics are translated into 
PVS theories. We use the steps described by Aredo 
(2002) to formally specify the models of case studies 
into the PVS language.   

For representing OCL constraints in PVS, we 
consider the method presented in Kyas et al. (2005). 
This method makes a clear separation between shal-
low and deep embeddings. In the case of deep em-
bedding, the abstract syntax is represented as a data 
type in the logic of the PVS theorem prover. A se-
mantic function that interprets all possible terms for 
the language is defined. In the case of shallow em-
bedding, the language is represented directly in the 
logic of the PVS theorem prover. This is possible by 
using translation of the language in a verification 

condition, which encodes the semantic for the given 
model. The prototype tool defines formal semantics 
for UML and OCL, and enables the formal verifica-
tion of models. It also solves the translation of three- 
valued logic from OCL into two-valued logic in PVS. 
Kyas et al. (2005)’s research is useful for our case as 
we use OCL constrains for modeling the behavior and 
restrictions of CPSs. 
 
 
3  Formal specifications of cyber physical 
system (CPS) deployment models 

 

The references presented use formalization for 
UML class, statechart, sequence, and state machine 
diagrams. As deployment diagrams are a key feature 
in the design of distributed systems, we extend the 
formalization approach to the CPS models designed 
using these diagrams.  

First, we define the stereotypes and their cor-
responding OCL constraints, along with the main 
constructs, as UML nodes and components. Next, the 
relations such as associations, aggregations, and links 
are translated into the formal language. Finally, the 
entire application is defined as the union of specifi-
cations for all diagram elements and the relationships 
between them. 

3.1  Z specification of CPS deployment models 

We present the theoretical approach towards the 
formalization of UML deployment diagrams using 
the Z language. The constituents of deployment dia-
grams are represented as Z schemas, similar to the 
representation of UML class diagrams in Dupuy et al. 
(2000). 

Each node or component can be translated into a 
pair of Z schemas. The first Z schema describes the 
types for all contained elements such as attributes, 
ports, and operations. The second Z schema describes 
the set of existing instances for the node or  
component.  

Fig. 1 presents an example of Z schema corres-
ponding to a ‘NODE_A’ type. The set of existing 
instances is ‘NodeA_Ext’, while each node instance is 
of the type ‘NodeA’.   

In UML deployment diagrams, the association 
construct is defined by two roles. However, in case of 
unidirectional constructs, only one role is required. In 
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Z language, a function specifies each role. The func-
tion defines the relationship by mapping  
instances based on the multiplicity. Therefore, it is 
necessary to provide the corresponding schemas of 
nodes and components. These schemas have to be 
included as variables, along with the Z domain and Z 
range for each role.   

 
 
 
 
 
 
 
 

 
To define the multiplicity, the theory should in-

clude an axiom regarding the number of instances of 
one class that can be associated to a corresponding 
node instance. We define the Z schema for 
representing a UML link differently from the one 
representing an association. Indeed, in the case of 
links, each function associates instances in a one-to- 
one relationship. 

Fig. 2 presents an example of the Z schema for a 
bidirectional link between NodeA and NodeB in-
stances. The Z schemas corresponding to NodeB 
deployment node type are considered similar to those 
already presented in Fig. 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 

The aggregation, generalization, dependency, 
and usage constructs are represented in UML as par-
ticular cases of unidirectional links. Therefore, to 
specify them, we state that the Z schema must contain 
only one Z function, which defines the relationship 
between the client and the supplier (NodeA_With_ 

NodeBFct and NodeB_With_NodeAFct in Fig. 2, 
respectively). However, when specifying an aggre-
gation construct, the multiplicity must also be consi-
dered, as already described above. 

We define the Z schema for a stereotype by de-
scribing the types for all tagged values and OCL 
constraints corresponding to the stereotype. The 
customization of a node using a stereotype is formally 
represented by inserting the Z schema for the stereo-
type as a variable in the Z schema for that node. For 
stereotypes inheritance, the stereotypes that are spe-
cializations of other stereotypes must include the Z 
schema of the latter stereotypes in the variable part, as 
schema invocation. 

A schema containing instances of both base and 
derived stereotypes states that all already created 
instances of the derived stereotypes are also instances 
of the base stereotypes. The Z schema must contain a 
predicate for expressing the uniqueness for object 
identifiers. 

3.2  PVS specification of CPS deployment models 

As Z language is considered to be more suitable 
for examples of reduced complexity, we use PVS in 
more complex reasoning. The UML constituents of 
deployment diagrams can be represented in PVS 
using theories and axioms, which is similar to Aredo 
et al. (1999). The PVS theories contain declarations 
of record types. A record type specifies the signatures 
for the operations, along with the declarations of the 
attributes and ports of a UML node or component. 

If a node is a specialization of another node and 
it implements one or more interfaces, the defined 
record type must include the attributes, ports, and 
operations fields of all base nodes and all imple-
mented interfaces. The resulting record type of PVS 
theory represents a union between the included record 
types in this case. These rules are also applied to 
components in deployment diagrams.   

Here, we consider a generic parameterized 
theory that can be applied as a template to specify 
associations, links, dependency, usage, aggregations, 
and generalizations constructs of a deployment dia-
gram. The list of generic parameters contains the 
UML elements whose instantiations are involved in 
the relationship. It also contains the corresponding 
roles of the objects and the multiplicities as a subset 
of the natural numbers. 

Fig. 1  An example of Z schemas corresponding to the 
‘Node_A’ deployment node 

NODE_A 
nodeB: NODE_B 
... 

NodeA_Ext 
NodeA: if NODE_A

... 

Fig. 2  An example of Z schema for a bidirectional link 
between ‘NodeA’ and ‘NodeB’ instances 
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To define the multiplicity in the case of associa-
tion and aggregation constructs, the theory includes 
an axiom regarding the number of instances of one 
UML element that can be mapped to corresponding 
element instances. Links are represented by instan-
tiations of defined generic associations. The applied 
rule states that links are one-to-one associations be-
tween UML elements, with the multiplicity equal to 1. 

In the case of stereotyped constructs, the record 
type defined includes fields for the tagged values and 
the OCL constraints of the corresponding stereotype. 
The OCL constraints can be easily represented and 
verified in PVS tools. The OCL formulas are trans-
lated directly into the PVS specification language. 
 
 
4  UML hardware profile for cyber physical 
system (CPS) applications 

 
A UML approach allows high level-modeling of 

CPS applications. It allows static and behavioral de-
scriptions of this kind of distributed application. The 
resulted UML models allow the user to define several 
hardware and software parts for the applications. As a 
result, each defined hardware component is assigned 
a specific behavior based on the application  
specifications.  

Kuzniarz et al. (2004) showed that using prede-
fined stereotypes in UML models helps improve the 
overall understanding of the UML models in question. 
This represents a desired goal, as it helps in a better 
definition and understanding of the internal configu-
ration of each node which is part of the network and 
the network as a whole. 

In CPS UML modeling, the user starts the design 
of the application by defining the static network in-
frastructure. The network model is specified within a 
deployment diagram containing a set of hardware 
devices connected or linked through each other. The  
 

 
 
 
 
 
 
 
 

next step represents the design for each type of node 
involved in the network model. Each node model is 
defined in its own deployment diagram consisting of 
the internal hardware components. For customizing 
the network infrastructure along with its types of 
nodes and their internal components, we defined a 
deployment diagram related UML hardware profile in 
Magureanu et al. (2011; 2012). 

The behaviors of components designed at dif-
ferent levels of abstractions make up the UML soft-
ware profile. Specific sets of software description 
related stereotypes are mapped to those designated for 
allowing the hardware description. The UML soft-
ware profile has been introduced in Gavrilescu et al. 
(2012).   

Next, we focus on presenting the main constructs 
from the hardware profile, as this paper deals with the 
formal specification and validation of the static as-
pects for designing CPS applications.   

The stereotypes defined in this UML hardware 
profile, along with the tagged values and the OCL 
constraints, are used in defining the hardware com-
ponents, whose instances are actually used in mod-
eling the application. Well defined stereotypes for 
specifying hardware components help achieve a clear 
separation and grouping between families of devices. 
Next, we present some stereotypes which are used 
within the case studies presented in Section 5.   

The ‘CompoundNode_PIM’ stereotype along 
with its inheritances is used for defining and custo-
mizing a particular type of node. The OCL constraints 
restrict the user in adding particular node type related 
hardware internal components for the corresponding 
deployment diagram for that node.   

The ‘Can_HWST’ stereotype defines a hardware 
‘CAN’ unit and its communication ports. Fig. 3 
presents the tagged values and OCL constraints of the 
‘Can_HWST’ stereotype used as an internal hardware 
component. The OCL constraints presented in Fig. 3  
 

 
 
 
 
 
 
 
 

Fig. 3  Object constraint language (OCL) constraints for the Can_HWST stereotype 

Can_HWST
bool_define_tx_enPort: BOOLEAN
self.base_Node.ownedPort -> exists(a | a.name='rx' and a.ocllsTypeOf(InputGate_HWST))
self.base_Node.ownedPort -> exists(a | a.name='tx' and a.ocllsTypeOf(OutputGate_HWST)) 
if self.bool_define_tx_enPort = 'true'  then 
   self.base_Node.ownedPort -> exists(a | a.name='tx_en' and a.ocllsTypeOf(OutputGate_HWST)) 
   else true
endif
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specify that the models stereotype with ‘CAN_ 
HWST’ must declare two different types communi-
cation ports, named ‘rx’ and ‘tx’, respectively. Op-
tionally, the designer can design its module as having 
a third port used for enabling/disabling the transmit 
port, by setting the tagged value named ‘tx_enPort’ 
on true, a case in which the third output port named 
‘tx_en’ is required in the model. 

The ‘PSOCUnit_HWST’ stereotype represents a 
particular hardware unit named programmable  
system-on-chip (PSoC) and developed by Cypress 
Semiconductor Co. (USA). The physical hardware 
device integrates configurable analog and digital 
peripheral functions, memory, and an internal mi-
crocontroller on a single chip. Its reconfiguration 
capabilities allow the designer to bind internal re-
sources on the fly, and thus to use a small number of 
components for each specific task (Magureanu et al., 
2011). The stereotype presented allows customizing 
such a device and defining application specific 
hardware ports. 
 
 

5  Z formal specification and validation of 
static aspects for a sensing node model 
 

In Section 5.1, we illustrate Z specification at the 
node level, in a particular CPS application, using the 
specifications proposed for the deployment diagram 
artifacts. As a case study, we consider the system 
presented in Magureanu et al. (2011), which de-
scribes a CPS for the traffic management in an urban 
intersection. Section 5.2 considers the validation part 
for the case study already specified. Our aim is to 
illustrate how an operation represented by a Z schema 
can be formally verified and improved. 

 
 
 
 
 
 
 
 
 
 
 
 

5.1  Z formal specification of a sensing node model 

The traffic management application contains 
several types of nodes. A decision manager (DM) 
node computes optimal green color duration for each 
traffic light node. The calculations are based on the 
information provided by the sensor nodes. The sensor 
nodes from the presented CPS gather information 
about the number of cars waiting at the red color of 
the semaphores. 

Each node specification is composed of hard-
ware and software models. The hardware model is 
customized using stereotypes and OCL constraints of 
the UML profile presented in Magureanu et al. (2011). 
The communication between the hardware units of a 
node is realized here using wired connections. Fig. 4 
presents the UML model for the hardware configura-
tion of the sensing node used in this CPS application. 

The sensing node internal architecture is ex-
pressed using deployment diagram artifacts. The 
blocks are instances of UML deployment nodes. 
These components are customized with stereotypes, 
which hold constraints of different hardware unit type 
definitions. The internal connections of the sensing 
node and the external connection with its corres-
ponding traffic light node are also shown in Fig. 4. 

A set of Z schemas is defined for each deploy-
ment node stereotype. Each schema is named ac-
cording to the stereotype name. The variable part of 
the schema contains all tagged values defined by the 
stereotype. The predicate part contains the OCL 
statements expressed in Z language.  

The Z schema of the sensing node’s CAN unit 
contains the Can_HWST schema as a variable. This 
variable indicates the formal definition of the cor-
responding stereotype. The Z specification prover  
 

 
 
 
 
 
 
 
 
 
 
 
 

<<CompoundNode_PIM>>
SensingNode_Wired

<<PSoCUnit_HWST>>
psocUnit_OMNet: PSoCUnit_SensingNode

inOutWithCommunicationUnit = canUnit_OMNeT.rx
inOutWithSensingUnit = sensingUnit_OMNeT.inOutWithPSoCUnit

<<InOutGate_HWST>>
inOutWithTrafficLightNode

<<Can_HWST>>
canUnit_OMNeT: CANUnit_SensingNode

external_rx_tx = inOutWithTrafficLightNode
tx = psocUnit_OMNeT.inOutWithCommunicationUnit

<<SensingUnit_HWST>>
sensingUnit_OMNeT: SensingUnit_SensingNode

inOutWithPSoCUnit = psocUnit_OMNeT.inOutWithSensingUnit

Fig. 4  Unified modeling language (UML) model for the hardware configuration of a sensing node 
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tool will later determine whether the stereotyped 
component is correctly customized with the corres-
ponding stereotype, in terms of variables and con-
straints. 

In Fig. 5a, the variable part of the SENSING-
NODE_WIRED schema defines the hardware units of 
a sensing node model. For each of these components, 
a Z schema is provided. Fig. 5b describes the set of 
existing sensing nodes in the network, as instances for 
the node presented in Fig. 4. 

As presented in Fig. 5c, SensingNode_Wired is 
an instance of the SensingNode set and expresses a 
node used in the CPS. It contains the actual internal 
instantiations for the hardware unit components. 

Connections between units are described using Z 
functions for link specifications. The links between  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

nodes in the deployment diagram or between compo-
nents of a node are represented using functions defined 
for both roles of the association. The constraints are 
meant to define the domain and range of these func-
tions. The constraints also define the fact that both 
functions are linked and the functions refer to the same 
exchanged information. In Fig. 6, we present the Z 
specification for the bidirectional link between a 
sensing node and its corresponding traffic light node. 

Actual values for the domain and range of these 
functions are set in the network specification. The 
network representation at the physical level contains 
the schemas of node intensions and node extensions 
for all nodes in the traffic network, along with the 
links between nodes. These schemas are also 
represented as functions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5  Z specification of the SENSINGNODE_WIRED node (a), the set of instances (b), and a particular sensing 
node type (c) 

(a)
SENSINGNODE_WIRED

CANUnit_SensingNode: CANUNIT_SENSINGNODE_WIRED
SensingUnit_SensingNode: if SENSINGUNIT_SENSINGNODE_WIRED

  PSoCUnit_SensingNode: PSOCUNIT_SENSINGNODE_WIRED
InOutWithTrafficLightNode: INOUTGATE

(b)
SensingNode_Wired_Ext

SensingNode: if SENSINGNODE_WIRED
  

...

(c)
SensingNode_Wired

CANUnit_SensingNode=canUnit_OMNeT
SensingUnit_SensingNode=sensingUnit_OMNeT
PSoCUnit_SensingNode=psocUnit_OMNeT
InOutWithTrafficLightNode=inOutWithTrafficLightNode
OutputToInOutGateFct(canUnit_OMNeT.tx) = psocUnit_OMNeT.inOutWithCommunicationUnit
InOutToInOutGateFct(canUnit_OMNeT.external_rx_tx) = inOutWithTrafficLightNode
InOutToInputGateFct(psocUnit_OMNeT.inOutWithCommunicationUnit) = canUnit_OMNeT.rx
InOutToInOutGateFct(psocUnit_OMNeT.inOutWithSensingUnit) = sensingUnit_OMNeT.inOutWithPSoCUnit
InOutToInOutGateFct(sensingUnit_OMNeT.inOutWithPSoCUnit) = psocUnit_OMNeT.inOutWithSensingUnit

Fig. 6  Z specification for relationship between sensing nodes and traffic light nodes 
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In this case study, we focus on the specification 
and validation of the application at the node level; 
therefore, the network schema is not presented in 
detail. However, based on presented specification 
steps for a CPS node, the specification of the network 
schema becomes intuitive.  

Section 2 covers the validation process of the 
elementary operations generated using the RoZ tool 
(Dupuy et al., 2000). The generated elementary op-
erations along with the evaluation are discussed in 
more detail. 

5.2  Validation of Z static specifications for a 
sensing node model 

Each type of the UML diagram construct can be 
manually transformed into formal specifications us-
ing the set of rules described in Section 3. This 
process can be optimized using dedicated tools, such 
as the RoZ tool (Dupuy et al., 2000), for generating 
complete Z specifications from annotated UML 
deployment diagrams. The RoZ tool is able to gener-
ate specifications of elementary operations over the 
UML elements and proof obligations. A common 
example of such elementary operations deals with 
modification of deployment node attributes. This is 
significantly helpful in validation of the UML model 
constraints. 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

When considering validation for the traffic 
management case study already specified, one of the 
application requirements states that the models must 
ensure the possibility of using other defined sensing 
units. As a method for determining the impact of 
defined operations over the UML model constraints, 
we use the computation of corresponding operations 
preconditions. This implies determining the condi-
tions that must be satisfied before the operations take 
place. The aim is to preserve the constraints at the end 
of the operations (Ledru, 1998).  

We discuss the ModifySensingUnit operation 
described by the Z operation schema (Fig. 7a). The 
first line specifies that the domain of the effect for this 
operation is restricted to objects of the type  
SENSINGNODE_WIRED. 

The predicates state that all attributes keep their 
initial values except for the one representing the 
sensing unit. This attribute receives the value of the 
newSensingUnit_SensingNode input parameter. The 
precondition for this operation verifies the existence 
of values for the new types of sensing units. 

Fig. 7b presents this precondition represented as 
Z specification. Furthermore, the information can be 
used to describe a theorem to validate the precondi-
tion. This theorem generated in RoZ is depicted in  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)
SENSINGNODE_WIREDModifySensingUnit

∆ SENSINGNODE_WIRED
newSensingUnit_SensingNode?: SENSINGUNIT_SENSINGNODE_WIRED 

CANUnit_SensingNode′ = CANUnit_SensingNode
SensingUnit_SensingNode′ = newSensingUnit_SensingNode?
PSoCUnit_SensingNode′ = PSoCUnit_SensingNode
InOutWithTrafficLightNode′ = InOutWithTrafficLightNode

(b)

newSensingUnit_SensingNode? ≠ 
newSensingUnit_SensingNode? \neq \empty 

(c)

\begin{theorem}{SENSINGNODE_WIREDModifySensingUnit\_Pre}
\forallSENSINGNODE_WIRED;
newSensingUnit_SensingNode?:\finset SENSINGUNIT_SENSINGNODE_WIRED |
newSensingUnit_SensingNode?\neq \empty @ 
\pre SENSINGNODE_WIREDModifySensingUnit
\end{theorem}

(d)

try lemma SENSINGNODE_WIREDModifySensingUnit\_Pre;
prove by reduce;

Fig. 7  Z specification of the 
ModifySensingUnit opera-
tion (a), Z language state-
ments for the sensing node 
model (b), Z language theo-
rem for the sensing node 
model (c), and Z language 
evaluation of the sensing 
node theorem (d) 
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Fig. 7c. As mentioned before, to validate Z theorems, 
we use the Z/EVES theorem prover (Ledru, 1998). 
The commands required for proving the theorem 
demonstrate the validity of the defined precondition 
(Fig. 7d). Therefore, the initial constraints are pre-
served at the end of operations. This verification of 
the initial constraints ensures that all units from the 
sensing family are replaceable, as long as they satisfy 
the family specifications.   
 
 

6  Prototype verification system formal  
specification and validation of static aspects 
for a wireless sensor network monitoring 
application  

 
In this section, we consider an application for a 

gas-distribution monitoring system (Magureanu et al., 
2010) as a case study. The aim is to reveal possible 
design problems in specification of the wireless 
communication in a CPS application at the network 
level.  

6.1  PVS formal specification of a WSN monitor-
ing application 

In this section, we indicated how PVS language 
can be used to specify the stereotypes required for 
modeling a gas management system. 

When deploying such nodes, it is necessary to 
specify the position (x, y, z), transmission, and recep-
tion parameters for the node. The application goal is 
to control the gas flooding in case of pipe leaks. 

For an efficient monitoring, the network was 
logically tailored into perimeters, zones, and areas. 
The communication between the logically grouped 
layers is ensured using the beacon approach (Buratti 
et al., 2009). The beacons are represented in this case 
study by decision manager (DM) nodes. 

For expressing this tailoring during the design 
process, stereotypes definitions for each modeling 
level are required. The OCL constraints for these 
stereotypes express the meanings of definitions. Next, 
we present these OCL constraints in a natural  
language. 

A logical grouping stereotyped with Perimeter 
expresses a set of nodes containing a single instance 
of a node customized with DM_PerimeterCompound 
Node_HWST stereotype, which manages and moni-

tors all the nodes logically grouped in a perimeter. All 
the other nodes are instances of nodes customized 
with CompoundNode_PIM stereotype, which 
represent sensors or actuator valves. 

The Zone stereotype expresses a set of nodes 
containing a single instance of a stereotype named 
DM_ZoneCompoundNode_HWST, whereas all other 
nodes are stereotyped with Perimeter or are instances 
of CompoundNode_PIM stereotype. The node cus-
tomized with DM_ZoneCompoundNode_HWST 
manages and monitors all the sensors, actuator valves, 
and its internal perimeters, logically grouped in a 
zone. It also handles the information received from 
the perimeter manager nodes. 

The Area stereotype expresses a set of nodes 
containing a single instance of a node customized 
with DM_AreaCompoundNode_HWST stereotype. 
All other contained nodes are stereotyped with Zone 
or Perimeter or are instances of nodes customized 
with the CompoundNode_PIM stereotype. Following 
the same reasoning, a node stereotyped with 
DM_AreaCompoundNode_HWST manages a set of 
nodes logically grouped in an area. 

To focus on relevant aspects in our discussion, 
we consider the simplified example of unidirectional 
communication, from the layer manager to the logi-
cally grouped set of nodes and from the current layer 
to the lower layer manager. Fig. 8 shows the UML 
model of this CPS. Similar to the approach presented 
in Aredo et al. (1999), we formally represent the 
stereotypes in the PVS specification language. 

Fig. 9 depicts, as PVS theories, the stereotypes 
used for defining the physical nodes. For each of these 
stereotypes, we define a record type, in which the 
fields are declarations of tagged values. As we con-
sider a specific scenario for evaluating the definitions 
at the area level, Fig. 9 presents only the relevant 
tagged values for each used stereotype.  

The X, Y, and Z types are subsets of integer 
values expressing the bounding box of the network’s 
topology. The PVS importing mechanism allows the 
already defined types to be referred to by a theory that 
requires them. The tagged values and operations are 
inherited and used along with local ones. 

In case of specifying a stereotyped node, we 
propose the same import and inheritance mechanism 
for the attributes and operations defined by the ste-
reotype. Therefore, the theory describing the  
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stereotype is imported in the theory describing the 
node itself. This ensures the availability of the ste-
reotype record type in the node theory. 

Fig. 10 presents, as PVS theories, the stereotypes 
used for describing the logical tailoring of the net-
work topology. The specifications derived from the 
associated OCL constraints are used to formally ex-
press the PVS theories. 

A gas distribution system requires a large num-
ber of interconnected pipes. Therefore, to manage 
such a complex network, a large number of sensors 
are required along with local management nodes and 
valve actuators. However, in this case study, we try to 
illustrate the network as simple as possible, for a 
better understanding of how it is topologically struc-
tured. This allows us to reveal the benefits of using  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
PVS tools for evaluating such massively distributed 
systems. We have chosen PVS tools because it is 
easier to specify and verify complex networks using 
PVS specification constructs along with the type 
checker and theorem prover. 

The gas pipes network presented by Magureanu et 
al. (2010) is modeled using UML deployment dia-
grams. One particularity of this case study is the usage 
of wireless communication between nodes. Wireless 
communication operating frequency is considered 
placed within the industrial, scientific, and medical 
(ISM) radio band. As an example, we present the UML 
model for a sensing node. The tagged values shown in 
Fig. 11 are inserted by the CompoundNode_ PIM ste-
reotype. Basically, a stereotype inserts its tagged val-
ues as mandatory attributes for the customized node.  

v13:
ValveNode v23:

ValveNode v33:
ValveNode

s13:
SensingNode s23:

SensingNode s33:
SensingNode

dmz3:
ZoneDMNode

dma:
AreaDMNode

DMZ3

DMA
DMZ1

DMZ2

v12:
ValveNode v32:

ValveNode v2:
ValveNode v3:

ValveNode

v1:
ValveNode

v22:
ValveNode

v53:
ValveNode

v43:
ValveNode

s12:
SensingNode s32:

SensingNode s1:
SensingNode s22:

SensingNode

dmz2:
ZoneDMNode

dmz1:
ZoneDMNode

P11

Fig. 8  Unified modeling language (UML) model for distributed gas monitoring topology 

Fig. 9  Prototype verification system (PVS) theories for compound node, perimeter decision manager (DM), 
zone DM, and area DM stereotypes 
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6.2  Validation of PVS static specification for the 
wireless network area model 

In this section, we discuss how formal verifica-
tion can help detect lacks in the initial specification. 
This task is accomplished with the help of the PVS 
type checker and the theorem prover. The aim is to 
adjust UML models before starting the development 
process. 

Here, we discuss the conditions for the nodes to 
be in the communication range of each other and to 
establish a valid route. In Fig. 9, a possible situation is 
when a DM node of an area (dma) is able to commu-
nicate to the DM of a zone (dmz3), the transmission is 
unable to reach a far located zone (dmz2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For a wireless communication evaluation, we 

need to consider a proper radio model in PVS. The 
signal transmission in wireless networks is influenced 
mainly by the signal frequency, path loss, receiver 
sensitivity, and noise. Path loss, known as attenuation, 
is influenced by deployment configuration, distance 
between the transmitter and the receiver, height, and 
location of the antennas, obstacles, and weather con-
ditions (Stoyanova et al., 2009). The evaluated power 
of the received signal is gained by multiplying the 
power of the transmitted signal with every attenuation 
mapping. 

Several propagation models are proposed to es-
timate the radio signal propagation distance. These 
models rely on information specific to a considered 
scenario. The appropriate radio model is chosen based 
on the application’s specific operating environment, 
the existing obstacles, and the technology used to 
implement wireless communication (Stoyanova et al., 
2009).  

We start our investigation with a simplified radio 
model as shown in Fig. 12a (Rousselot and Decotig-
nie, 2009). The radio model does not take into con-
sideration of obstacles or other environment limita-
tions. The PVS theory for a DM node of the area level 
is formally specified in Fig. 12b. It makes use of the 
radio model theory and inherits from the PVS theory 
DM_AreaCompoundNode_ HWST.   

Hence, subsystem parts of CPS applications 
based on the used stereotypes and their associated 
OCL constraints can be specified. Following the same 
reasoning, the entire system can be specified.   

SensingNode

-x: log
-y: log
-z: log
-pMax @unit(mW): double
-sat @unit(dBm): double
-alpha: double
-carrier Frequency @unit(Hz): double
-usePropagationDelay: boolean
-sensitivity @unit(dBm): double
-maxTXPower @unit(mW): double
-timeRXToTX: double
-timeRXToSleep: double
-timeTXToRX: double
-timeTXToSleep: double
-timeSleepToRX: double
-timeSleepToTX: double
-radioMinAtt: double
-radioMaxAtt: double

Fig. 11  UML deployment for the sensing node

PERIMETER: THEORY 
BEGIN
IMPORTING CompoundNode_PIM, DM_PerimeterCompoundNode_HWST

PERIMETER: TYPE=[# dm: DM_PerimeterCompoundNode_HWST, 
nodes: setof[CompoundNode_PIM]  #]

END PERIMETER
ZONE: THEORY 
   BEGIN

IMPORTING PERIMETER, DM_ZoneCompoundNode_HWST
ZONE: TYPE=[# dm : DM_ZoneCompoundNode_HWST, perimeters : setof[PERIMETER], 

nodes: setof[CompoundNode_PIM]  #]
END ZONE 

AREA: THEORY 
   BEGIN
   IMPORTING ZONE, DM_AreaCompoundNode_HWST

AREA: TYPE=[# dm: DM_AreaCompoundNode_HWST, zones : setof[ZONE], 
perimeters: setof[PERIMETER], nodes: setof[CompoundNode_PIM]  #]

END AREA

Fig. 10  Prototype verification system (PVS) theories for perimeter, zone, and area stereotypes 
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The validation part aims to evaluate the capabi- 
lity of the already specified DM node of the area to 
communicate with the zones included in its bounda-
ries. Conditions for calculating the communication 
capacity are expressed in the form of PVS theorems. 
These become objectives to be verified using the PVS 
theorem prover. Type checking is a precondition for 
the evaluation of the theorems. It represents an in-
termediary step between a completely specified 
theory and theorem proving. The PVS type checker 
searches for semantic errors, like ambiguous types or 
undeclared variables in the theory. 

In dma theory, the receive function determines 
whether an external node is in the receiving range of 
the considered node. The decision is based on the 
transmission power of the sender. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this work, the verification determines whether 
the node with which the dma wants to communicate is 
in its range. In this case, the evaluation of the 
checkCommunicationWithAllNodes theorem fails.  

A valid model is presented in Fig. 13. It also in-
cludes the sensitivity of the receiver in the theorem 
condition.  

We conclude that performing formal validation 
of all theorems defined for the CPS model ensures a 
proper validation of the assumptions made in design.  
 
 
7  Conclusions 
 

CPS applications are presented nowadays in 
various fields of activity. Many researchers are  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12  Prototype verification system (PVS) theory for a tiny radio model (a) and a DM node of an area 
(dma) model (b) 

Fig. 13  Corrected prototype verification system (PVS) method for validating the DM node of an area (dma) 
model 



Magureanu et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2013 14(5):332-346 345

seeking solutions to cover the challenges of designing 
and implementing such applications. 

High-level UML modeling is accepted as a 
suitable solution for the design of distributed em-
bedded applications. However, the informal language 
used to express UML models constitutes a disadvan-
tage in ensuring the correctness and completeness of 
the design. Although OCL offers support for UML 
design, it is not enough for a proper validation as it 
lacks the strict notations of mathematics and logic that 
permits rigorous analysis and reasoning about the 
specifications. We conclude that the CPS UML de-
sign can benefit from using OCL constraints to im-
prove model expressiveness, but the correctness and 
completeness of models require formal specification, 
especially on the dynamic part. We argue that all the 
static aspects presented in this paper in particular, and 
in CPS design in general, can be validated using OCL 
constraints exclusively. However, it is deficient in 
providing precise and unambiguous models of pro-
posed software systems. Formal specification and 
verification of UML models for CPS applications is 
therefore required.  

In this paper, we present how deployment arti-
facts can be formally expressed and verified. Addi-
tionally, this paper presents a research on using Z and 
PVS to specify and verify static aspects like the net-
work infrastructure and the internal hardware used in 
CPS applications modeled using UML deployment 
diagrams.  

Z provides a rigorous mathematical specification. 
However, Z is limited in handling dynamic aspects 
for the systems and it has no generally accepted veri-
fication tools. Therefore, we use Z to formally specify 
the static part of examples presenting reduced busi-
ness logic complexity. 

We consider PVS to overcome the deficiency in 
proper verification tools for Z. PVS demonstrate its 
advantages in case of more complex reasoning, in-
volving specifications for large-scale CPS models 
based on wireless communication. From this pers-
pective, Z involves a strong mathematical back-
ground, while PVS is closer to programming lan-
guages and object-oriented design. 

As our future work will be focused on specifying 
and also validating the dynamic aspects of the CPS 
application design, we chose PVS formal specifica-
tion and validation as a homogenous solution, appli-
cable on both static and dynamic design characteristics. 
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