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Abstract:    Inverse lithography technology (ILT) is one of the promising resolution enhancement techniques, as the advanced IC 
technology nodes still use the 193 nm light source. In ILT, optical proximity correction (OPC) is treated as an inverse imaging 
problem to find the optimal solution using a set of mathematical approaches. Among all the algorithms for ILT, the level-set-based 
ILT (LSB-ILT) is a feasible choice with good production in practice. However, the manufacturability of the optimized mask is one 
of the critical issues in ILT; that is, the topology of its result is usually too complicated to manufacture. We put forward a new 
algorithm with high pattern fidelity called regularized LSB-ILT implemented in partially coherent illumination (PCI), which has 
the advantage of reducing mask complexity by suppressing the isolated irregular holes and protrusions in the edges generated in 
the optimization process. A new regularization term named the Laplacian term is also proposed in the regularized LSB-ILT op-
timization process to further reduce mask complexity in contrast with the total variation (TV) term. Experimental results show that 
the new algorithm with the Laplacian term can reduce the complexity of mask by over 40% compared with the ordinary LSB-ILT. 
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1  Introduction 
 

The process used for manufacturing integrated 
circuits (IC) includes a sequence of microlithographic 
steps in which patterns are formed by projection 
printing (Wong et al., 2009). With the continuous 
downscaling of semiconductor critical dimensions 
(CD), the minimum feature size (e.g., 65 nm, 45 nm, 
32 nm) of modern IC is much smaller than the light 
source wavelength (193 nm).  

The CD on wafer is limited by the Rayleigh 
criterion (Wong, 2001), as shown by the following 
expression: 

 

1Resolution ,
NA

k


                       (1) 

 
where λ is the wavelength of the light source, NA is 

the numerical aperture of the projection system, and 
k1 is the process-related factor. Hence, a smaller CD 
can be printed by increasing NA or decreasing the 
lithography wavelength. Although the immersion 
lithography system with a 193-nm light source has 
NA from 1 up to 1.3, the advanced technology (such 
as 45 nm) nodes need obviously the reduction of k1. 
Different resolution enhancement techniques (RETs) 
which control the amplitude, phase, and direction of 
the optical waves are applied to minimize the process- 
related factor k1 (Schellenberg, 2004; Ma and Arce, 
2010). 

Optical proximity correction (OPC) is one of the 
most important RETs by adjusting the topology of the 
mask to make the printed pattern on the wafer as close 
to the desired pattern as possible (Lin et al., 2011). In 
general, the OPC optimization methods can be di-
vided into two classes: rule-based approaches and 
model-based approaches. Rule-based approaches are 
simple to implement, but they can compensate only 
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the warping in local features. Model-based ap-
proaches use mathematical models to represent the 
image formation process of the optical lithography 
system, and iteratively seek the optimal solution to 
improve the output pattern fidelity (Ma and Arce, 
2010). In advanced technology (such as 45 nm and 
below) nodes, rule-based approaches do not work 
well; in contrast, inverse lithography technology 
(ILT), as a special case of model-based approaches, 
produces a much better result. ILT pixelizing the 
mask with equal size treats mask synthesis as an in-
verse problem, to find a proper topology of the mask. 
The mathematical description of ILT is shown as 
follows: 

 

contour Litho(mask),                    (2) 
* 1mask Litho ( ),z                       (3) 

 
where contour is the simulation result on wafer, z 
represents the target patterns on wafer, and mask* is 
the optimal mask calculated using the ILT algorithm 
(Li et al., 2012). 

In recent years, various kinds of ILT technolo-
gies have been proposed. Granik (2004; 2006) de-
scribed and compared solutions of inverse mask 
problems. Yu and Pan (2007) proposed a topological 
invariant pixel based OPC. Poonawala and Milanfar 
(2007a) formulated the mask synthesis problem using 
a continuous function optimization process and the 
gradient information to search the solution space. 
Shen et al. (2008) implemented a new inverse mask 
synthesis system using two-dimensional discrete 
cosine transform (DCT2) of the target mask. Pang et 
al. (2008) proposed an ILT algorithm based on the 
level set method. Shen et al. (2009) provided exact 
formulation and technical discussions in sufficient 
detail, and Shen et al. (2010) further proposed a sta-
tistical method which incorporates process variations 
into the inverse lithography problem. Jia and Lam 
(2010) treated mask optimization as a training process 
and adopted the stochastic gradient descent approach. 
Yu and Yu (2010) developed a gradient descent ap-
proach to investigate three different objective func-
tions and their combinations. Ma et al. (2012a; 2012b) 
first developed robust pixilated gradient-based OPC 
and phase-shifting mask (PSM) optimization algo-
rithms under a vector imaging model. Fig. 1 gives an 
example to show the mask layout generated by ILT. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are many irregular patterns, such as the 

circled one, in the optimized mask result. With this 
kind of complicated topology, manufacturing the 
mask is costly. 

No matter which ILT algorithm is adopted, ir-
regular patterns will be generated, resulting in great 
mask complexity. To enhance the manufacturability 
of the mask generated by ILT, different methods have 
been developed. Poonawala and Milanfar (2007b) 
employed the total variation (TV) penalty function to 
suppress isolated perturbations and protrusions of the 
mask. Ma and Arce (2008) introduced an effective 
detail-reduction approach referred to as ‘wavelet 
penalty’, and Ma and Arce (2011) proposed a mask 
rule check (MRC) penalty to obtain more desirable 
manufacturability characteristics for the optimized 
mask. Jia et al. (2009) put forward a scheme to ex-
plicitly discuss this problem. However, all these 
methods are implemented in the gradient-based ILT 
(GB-ILT). 

The level-set-based ILT (LSB-ILT) represents 
the mask as a 2D level-set function and the repre-
sentation allows contours to merge, break, appear, or 
disappear, in a consistent, mathematical representa-
tion (Pang et al., 2008). However, few studies were 
concerned about the complexity of the mask gener-
ated by LSB-ILT. To reduce the complexity of the 
mask, we propose a new algorithm named regularized 

(a) (b) 

Contour 

Mask 

Fig. 1  A comparison between the original design and the 
ILT optimized mask with their simulated contours 
In (a), the rectangle is the original mask pattern, and the inner 
shaded contour is the simulation result of the original mask. 
In (b), all blank polygons form the optimized mask result and 
the inner shaded contour is the simulated wafer pattern of the 
optimized mask 
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level-set-based ILT (RLSB-ILT) by changing the cost 
function. In addition, we put forward a new regu-
larization term, namely the Laplacian term, to reduce 
the mask complexity in contrast with the TV term. 
The new algorithm is implemented in a partially co-
herent illumination (PCI) condition and can be ap-
plied to real manufacturing processes. 
 
 
2  Level set method and regularization term 

2.1  Introduction to the level set method 

The level set method, proposed by Osher and 
Sethian (1988), is a numerical technique for tracking 
interfaces and shapes. The advantage of this method 
is that one can perform numerical computations in-
volving curves and surfaces on a fixed Cartesian grid 
without having to parameterize these objects. 

Santosa (1996) developed the level-set approach 
to solve inverse problems. An inverse problem can be 
posed as 

( ) ,Ag u + n                           (4) 

21
( ) ( )

2
W A u u g ,                    (5) 

 

where g, u, and n are variables defined in ú2, ||·|| is the 
L2 norm, g is the given data, and u represents the 
model parameters. The function A in Eq. (4), the 
forward map, is a map from model parameters to data. 
n represents the distance between the predicted data 
A(u) and the given data g. Eq. (5) is also called the 
decreasing function as a metric of n. An inverse 
problem can be described as seeking the u which 
minimizes W(u). 

In the level-set approach, u is described by the 
level-set function φ as follows: 
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                     (6) 

 

where x stands for the coordinate (x, y) of one point in 
the plane and ∂u is the zero level set of φ, φ(x)=0, 
namely the boundary of u. u− and u+ mean the inner 
part and outer part of u, respectively. In optimization, 
the zero level set moves with a speed function V  
(Fig. 2). 

 
 
 
 
 
 
 
 
 
 
 
 

To formulate this process in Fig. 2, we can de-
duce the following function: 

 

1( ) ( ) ,k k t
t

 


  


φ

x x                     (7) 

 
where ∂φ/∂t is the speed function V. To obtain the 
solution of the speed function, Santosa (1996) de-
duced the level set equation as follows: 
 

 T( ) ( ) 0,J A
t

     
φ

u u g φ            (8) 

 
where J(u)T is the Jacobian of A(u) at u and φ is the 
gradient of φ. Then we can update φ(x) according to 
Eq. (7) generating a sequence of level set φk and the 
correspondence ∂uk, until the desired solution udesired 
is reached.  

2.2  Forward lithography process 

The function of forward lithography process F 
consists mainly of two models, a lithography model 
and a resist development model. The practical par-
tially coherent imaging model can be decomposed 
into a sum-of-coherent-systems model (SOCS) (Cobb 
et al., 1996) based on Hopkins’ imaging equation 
(Hopkins, 1953). The intensity of point (x, y) with the 
mask environment M can be calculated by (Cobb and 
Zakhor, 1995) 
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     (9) 

φk=0 

φk+1=0 

Fig. 2  Evolution example of the level-set function 
The dotted arrows stand for the speed function V, the inner 
dotted ellipse is the kth zero level set curve, and the outer 
ellipse is the result of moving the kth one, the (k+1)th zero 
level set curve 
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where λi represents the ith weight value, Ki is the ith 
lithography kernel, Re(Ki) and Im(Ki) are the real and 
imaginary parts of Ki, respectively, M is the mask 
matrix, and ‘’ is the convolution operator. 

The constant threshold resist (CTR) model is 
described by the sigmoid function in Fig. 3, whose 
input is light intensity I(x, y) and the output of the 
sigmoid function indicates the resist thickness. 

 

r

1
sig( ) ,

1 exp[ ( )]a t


  
I

I
             (10) 

 
where a is the steepness of the sigmoid and tr is the 
resist image threshold. 

We can obtain F, a nonlinear function, by com-
bining the lithography model and the resist model in 
Eq. (10): 

 
( ) sig( ( )),F M I M                    (11) 

 
where F(M) is the forward lithography process. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.3  Regularization method 

Many shape optimization problems, especially 
those arising from the inverse problem, are ill-posed. 
There exists no unique solution. From the multiple 
solutions we need to choose a solution that is more 
favorable to us. Regularization methods can be se-
lected to impose desirable properties on the solutions. 

In general, we adopt the approach that adds the 
regularization term to the cost function as follows: 

 
min[cost( ) reg( )]


    ,               (12) 

where cost(χ) means the cost function, α is the regu-
larization parameter, usually very small, and reg(χ) is 
the regularization function. The regularization term 
helps direct the unknown χ towards the solution space 
that we expect. In this study, we propose a new 
regularization term named the Laplacian term, which 
can further reduce the mask complexity in a shorter 
time, and select the TV regularization term as a  
contrast. 
 
 
3  RLSB-ILT algorithm 
 

In general, an ILT algorithm is aimed to mini-
mize the cost function cost(M): 
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where M, I, Túm×n, M is the mask transmission 
matrix, I denotes the image intensity distribution, and 
T is the matrix representing the designed pattern. At 
the beginning of the new algorithm, matrices M and T 
are the same. 

The overall flow of the new algorithm is as il-
lustrated in Fig. 4. The partially coherent illumination 
(PCI) has been shown to improve the theoretical 
resolution limit in lithography (Ma and Arce, 2008). 
The speed function (SF) consists of two parts, namely 
Jacobian speed and regularization speed, which are 
used in the next step to control the evolution of φ. The 
value of the cost function is set as the criterion to 
determine whether the mask is optimized enough. 

3.1  Time-dependent model 

In level set methods, we introduce a function B(φ) 
to describe the relationship between level-set matrix φ 
and mask matrix M, defined as 
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Fig. 3  Sigmoid function sig(I)=1/{1+exp[−85(I−0.4)]}
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where x represents the spatial coordinates (x, y), d(x) 
represents the distance between pixel x and the 
boundary of M. ∂M is the boundary of mask pattern 
M. The zero level set of φ, φ(x)=0, is defined on the 
boundary of mask pattern. M− and M+ represent the 
inner part and outer part of the mask, respectively. For 
the inner part, the value of function φ(x) is negative, 
namely −d(x); for the outer part, the value is positive, 
namely d(x). 

Unlike other ILTs, level-set based ILT (LSB-ILT) 
optimizes φ(x) from the evolution equation instead of 
M. Shen et al. (2009) gave a detailed derivation op-
timizing the φ(x) using LSB-ILT in a coherent image 
system. In the real world, however, the imaging sys-
tems are partially coherent. In our new algorithm, we 
apply a sum-of-coherent-systems method (Cobb et al., 
1996) to approximate the Hopkins partial coherence 
model. 

From Eq. (8), we can derive the time-dependent 
evolution equation in the partially coherent imaging 
system: 

 

( , )t
t


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
φ

M φ ,                 (16) 

 

where α(M, t) is the Jacobian of the decreasing func-

tion at M, namely Jacobian speed. In our ILT problem, 
the decreasing function is the cost function (13). Thus, 
the Jacobian part can be calculated as follows: 
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where T0 represents the designed pattern and ‘’ 
means the Hadamard product (element-by-element 
multiplication) of two matrices. 

3.2 Overall implementation of the RLSB-ILT  
algorithm 

Using the ordinary LSB-ILT algorithm, many 
unwanted patterns will be generated in the mask, 
which will increase the cost of mask manufacturing. 
To suppress these patterns, we adopt the penalty 
method by adding a regularization function to the cost 
function (Marquina and Osher, 2000) and propose a 
new algorithm, namely the RLSB-ILT algorithm. 

In the new algorithm, the regularization term is 
defined as Reg(∂φ/∂x, ∂φ/∂y) to control the regularity 
of φ. The problem can be formulated as follows: 

 

Reg Regargmin cost(B( )) cost , ,
x y
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  (18) 
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 x

   
      (19) 

 

where λReg is a user-defined weight of the regulariza-
tion function costReg and Ω={(x, y)|0≤x≤m, 0≤y≤n} 
means the area of the level-set matrix φ. By expand-
ing the Euler-Lagrange equation of Eq. (18), we can 
conclude the regularized level-set evolution equation 
as follows: 

Fig. 4  Overall flow of regularized level-set based ILT
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(20) 
 
where u means ∂φ/∂x and v means ∂φ/∂y, Regu and 
Regv represent the partial derivatives. α(M, t) can be 
calculated according to Eq. (17). β(φ, t) represents the 
regularization speed function. Different regulariza-
tion functions can be used to compute β(φ, t). 

Our new algorithm procedure is given as the 
following: 

 
Algorithm 1    RLSB-ILT algorithm 
Input: the mask that needs to be optimized (M), desired pat-
tern (z0), optical kernels, and resist parameters. 
Output: updateMask. 
1   updateMask=M 
2   updateLevelimage=φ 
3   ITER=0 
4   repeat 
5       Compute Jacobian speed α(M, t) 
6       Compute regularization speed β(φ, t) 
7       Compute SF=−α(M, t)+λ·β(φ, t) 
8       deltaφ←upwind(SF, φ) 
// upwind is the numerical method to evaluate the  
// spatial derivatives of φ (Shen et al., 2009) 
9       updateφ=updateφ+dt·deltaφ 
10     updateMask←B(φ) 
11     Compute costFunction 
12     ITER+=1 
13  until costfunction<setnumber 

 

3.3  Regularization term 

In general, many studies on the level set method 
refer to the TV term as the regularization function. 
The TV term does not penalize discontinuities in φ, 
and thus allows us to recover the edges of the original 
image (Marquina and Osher, 2000). The TV regu-
larization function is expressed as 
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The regularization speed function β(φ, t) of the TV 
term is expressed as follows: 

( , ) Reg Reg .u vt
x y

  
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      (22) 

 

·(φ/|φ|) is usually called the mean curvature. 
We propose a new term called the Laplacian 

regularization term, which can also be used to effi-
ciently reduce the irregular pattern generated in the 
mask. For the Laplacian regularization function, 
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Similarly, the regularization speed function, 

namely β(φ, t), is expressed as 
 

( , ) Reg Reg ( ) .u vt
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  
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4  Experiments and comparison 
 

We implemented the regularized level-set-based 
algorithm using Matlab, and adopted an advanced 
node lithography model which includes λ=193 nm, 
NA=1.2, with quad-crescent illumination. The test 
patterns were taken mainly from a 40 nm layout de-
sign. All computations were performed on a Dell 
PowerEdge R610 (Xeon 2.8 GHz and 32 GB memory) 
workstation. 

To verify the quality and efficiency of our new 
algorithm, different test patterns have been used, 
which are classified as three groups: 

1. Special layout pattern (SLP): SLP consists of 
five special layout patterns. Three of them are 36 nm 
layout examples to demonstrate the convergence 
efficiency of our algorithm and the other two patterns 
are from the 40 nm layout design. 

2. Medium layout pattern (MLP): MLP consists 
of five medium area layouts from the 40 nm design 
layout. 

3. Large layout pattern (LLP): LLP consists of 
five large area layouts from the 40 nm design layout. 

Because the experimental layouts were with a 
small CD, the pixel grid was set to the appropriate 
size of 3 nm×3 nm. The value of the cost function in 
Eq. (13) was used as a metric of contour fidelity. 
Besides, the mask fabricating time and cost were 
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proportional to the number of rectangles in the frac-
tured mask pattern. We adopted the total number of 
rectangles as a metric of mask complexity, which can 
be expressed as (Ma and Li, 2011) 

 

1

3 1
concave convex

4 4

K

i i
i




   
 

 ,          (25) 

 

where ε is the total number of rectangles in the test 
pattern, concaveiù

+ denotes the number of all the 
concave vertices of one polygon, convexiù

+ denotes 
the number of all the convex vertices of one polygon, 
and K is the number of all polygons in the test pattern 
(Ma and Li, 2011). 

To measure the algorithm’s strength for reducing 
mask complexity, we define the complexity reduction 
rate η as follows: 

 

o r

o

100%,
 



                     (26) 

 

where εo means the ε using the ordinary LSB-ILT 
algorithm and εr means the ε using the RLSB-ILT 
algorithm. The simulation results are presented in 
Table 1. 

The initial cost calculated as cost(T) means 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

contour fidelity before mask optimization. T is the 
design layout pattern. The final cost calculated as 
cost(OptM) stands for contour fidelity after mask 
optimization, where OptM means the optimized mask. 

For every test pattern, the final costs with three 
algorithms were set to the same level, as Shen et al. 
(2009) did, to compare the complexity of the mask in 
the same condition. 

As a result, our new algorithm showed high 
complexity reduction efficiency. The average reduc-
tion rate η with the Laplacian term was 41.08%, and 
the average reduction rate η with the TV term was 
33.97%. 

Figs. 5a–5c show the masks optimized using the 
LSB-ILT algorithm, the RLSB-ILT algorithm with the 
Laplacian term, and the RLSB-ILT algorithm with the 
TV term, respectively. 

The simulated contours on wafer are shown in 
Fig. 6. Fig. 6a is the design layout. Figs. 6b–6d are the 
simulated contours on wafer using the LSB-ILT al-
gorithm, the RLSB-ILT algorithm with the Laplacian 
term, and the RLSB-ILT algorithm with the TV term, 
respectively. The edge placement errors (EPEs) be-
tween the simulated contours and the design layout of 
the three contours are all within the EPE accuracy 
range of 6 nm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Performance comparison between the ordinary LSB-ILT algorithm and the RLSB-ILT algorithm with the 
Laplacian term or TV term 

Group Test target Initial cost Final cost ε metrica ε metricb ε metricc Rate ηb (%) Rate ηc (%)

 SGL1* 6648 2598±5 252 138 170 45.24 32.54 

 SGL2* 5891 3088±5 292 142 161 51.40 44.86 

SLP NOR2* 9596 3799±5 298 216 238 27.51 20.13 

 OR1 7039 4229±5 186 122 145 34.41 22.04 

 INV0 6675 3519±5 168 93 101 44.64 39.88 

 AND2V 11 978 4596±5 588 323 350 45.07 40.48 

 NAND2H 16 091 5994±5 527 378 418 28.27 20.68 

MLP NOR3 11 881 5199±5 794 410 451 48.36 43.20 

 OR2H 10 670 5249±5 496 340 372 31.45 25.00 

 OR2V 10 776 5399±5 658 360 400 45.29 39.21 

 NOR4H 39 740 13 397±5 3733 1885 2317 49.50 37.93 

 AND4H 42 839 14 494±5 4233 2737 2918 35.34 31.07 

LLP DQ4V 37 882 12 779±5 2599 1620 1806 37.67 30.51 

 NAND4V 39 823 13 417±5 3385 1951 2099 42.36 37.99 

 OR4H 42 473 14 318±5 3645 1835 2039 49.66 44.06 

The first three patterns with ‘*’ are the 36 nm layout pattern. a Using the ordinary LSB-ILT algorithm; b using the RLSB-ILT algorithm with 
the Laplacian regularization function; c using the RLSB-ILT algorithm with the TV regularization function 
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Since the running time varies for different pat-
terns, the simulation time of the ordinary LSB-ILT 
algorithm was set as the comparison basis to which 
the simulation times with the other two algorithms 
were normalized. Fig. 7 shows the relative simulation 
time using three methods, namely the ordinary 
LSB-ILT, RLSB-ILT with the Laplacian penalty term, 
and RLSB-ILT with the TV penalty term, among 15 
experiment patterns. The average simulation time 
using RLSB-ILT with the Laplacian penalty term was 
1.191 and the average simulation time using 
RLSB-ILT with the TV penalty term was 1.361. 

As a result, in the partially coherent illumination 
condition, the ordinary LSB-ILT algorithm generated 
many irregular patterns in the optimized mask. This 
greatly increased the mask complexity. Our new al-
gorithm can suppress these unwanted patterns from 
being generated and reduce the mask complexity 
obviously. Besides, for the two different regulariza-
tion terms, the Laplacian term showed much better 
performance than the TV term. The Laplacian term 
was 7.11% better than the TV term in terms of the 
complexity reduction rate, and its optimization time 
was only 87.51% of that of the TV term. 
 
 
5  Conclusions 
 

In this paper, we propose a new ILT algorithm 
called the regularized level-set-based inverse lithog-
raphy algorithm. Our new algorithm is based on  
the partially coherent imaging model which is the 
lithography condition applied on the practical  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) (b)(a) 

Fig. 5  Optimized masks with pattern OR1 
(a)–(c) are the optimized masks obtained using the LSB-ILT 
algorithm, the RLSB-ILT algorithm with the Laplacian term,
and the RLSB-ILT algorithm with the TV term, respectively

Fig. 6  Simulated contours with pattern OR1 
(a) is the design layout; (b)–(d) are the simulated contours on 
wafer obtained using the LSB-ILT algorithm, the RLSB-ILT 
algorithm with the Laplacian term, and the RLSB-ILT algo-
rithm with the TV term, respectively 

(a) (b) (c) (d) 

Fig. 7  Comparison of the simulation time of 15 test patterns between the ordinary LSB-ILT algorithm and the
RLSB-ILT algorithm with the Laplacian term or TV term 
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manufacturing process. By adding the regularization 
function in the optimization process, our new algo-
rithm shows better performance in reducing mask 
complexity. Furthermore, we propose a new regu-
larization term named the Laplacian penalty term. 
Experimental results illustrate that the RLSB-ILT 
algorithm with the Laplacian term performs better 
than it with the TV term, with a higher complexity 
reduction rate (7.11% more than TV’s) and a shorter 
simulation time (87.51% of TV’s). 
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