
Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):126-138 126

An analytical model for source code distributability verification

Ayaz ISAZADEH1, Jaber KARIMPOUR1, Islam ELGEDAWY2, Habib IZADKHAH‡1
(1Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran)

(2Department of Computer Engineering, Middle East Technical University, Northern Cyprus Campus, Mersin 10, Turkey)

E-mail: isazadeh@tabrizu.ac.ir; karimpour@tabrizu.ac.ir; elgedawy@metu.edu.tr; izadkhah@tabrizu.ac.ir

Received Mar. 18, 2013; Revision accepted July 22, 2013; Crosschecked Nov. 18, 2013

Abstract: One way to speed up the execution of sequential programs is to divide them into concurrent segments and execute such
segments in a parallel manner over a distributed computing environment. We argue that the execution speedup primarily depends
on the concurrency degree between the identified segments as well as communication overhead between the segments. To guar-
antee the best speedup, we have to obtain the maximum possible concurrency degree between the identified segments, taking
communication overhead into consideration. Existing code distributor and multi-threading approaches do not fulfill such re-
quirements; hence, they cannot provide expected distributability gains in advance. To overcome such limitations, we propose a
novel approach for verifying the distributability of sequential object-oriented programs. The proposed approach enables users to
see the maximum speedup gains before the actual distributability implementations, as it computes an objective function which is
used to measure different distribution values from the same program, taking into consideration both remote and sequential calls.
Experimental results showed that the proposed approach successfully determines the distributability of different real-life software
applications compared with their real-life sequential and distributed implementations.

Key words: Code distributability, Synchronous calls, Asynchronous calls, Distributed software systems, Source code
doi:10.1631/jzus.C1300066 Document code: A CLC number: TP31

1 Introduction

Distributed systems and multi-processor ma-
chines are used nowadays to speed up execution of
existing software programs (Al-Jaroodi et al., 2005).
However, transforming sequential programs into dis-
tributed programs is a very challenging task, as we
need to divide the software programs into concurrent
segments (or clusters) that could work in a parallel
manner (i.e., the clustering problem). Such a cluster-
ing problem is known as an NP-complete problem
(Zhang et al., 2010). Moreover, we have to take into
consideration the network latency between remote
segments (clusters). For example, Fig. 1 shows a
distributed architecture with three clusters, each of
which has several classes. Each cluster should be
deployed on different workstations.

The calls between two classes within the same
distributed segment (cluster) will be accomplished via
synchronous calls (e.g., C1, C2, C5–C9 calls), as
through the synchronous call two classes are executed
in sequential manner on the machine. On the other
hand, the calls between two classes within the dif-
ferent distributed segments (different clusters) will be
accomplished via an asynchronous call (e.g., C3, C4,
C10, C11 calls), as we do not want to block the caller
classes for a long time due to network latency. Hence,
communication overhead is crucial in determining the
distributability of sequential programs.

Of course, doing such a challenging process
manually is very tedious and error-prone; hence, we
argue that such a process must be done automatically
to avoid potential errors and to shorten the time for
transforming sequential programs into distributed
multi-threaded programs. To be able to automatically
identify such clusters, we argue that an object-
oriented approach (Deb et al., 2006) should be used,

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)

ISSN 1869-1951 (Print); ISSN 1869-196X (Online)

www.zju.edu.cn/jzus; www.springerlink.com

E-mail: jzus@zju.edu.cn

‡ Corresponding author

© Zhejiang University and Springer-Verlag Berlin Heidelberg 2014

Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):126-138 127

as the code of a program can be easily encapsulated
into objects, which can be categorized into individual
clusters using clustering methods such as the ones
discussed in Bushehrian (2010), where each cluster
could be deployed at a number of distinct remote
locations and communicate by exchanging messages
(e.g., DCOM objects) over the network.

Application clustering in an object-oriented en-

vironment is aimed to break up the functionality of an
application into the distinct set of objects that can
operate concurrently. We argue that the execution
speedup achieved depends mainly on the concurrency
degree between identified clusters. Hence, to achieve
the best speedup, we have to obtain the maximum
possible concurrency degree between identified
clusters. Unfortunately, existing code distribution
tools (Zhou et al., 1993; Gentzsch, 2001; Berman et
al., 2003; Nitzberg et al., 2004; Berman et al., 2005;
Thain et al., 2005; Buyya and Abramson, 2009) do
not check for the maximum possible concurrency
degree between identified clusters. To overcome such
limitations, in this paper we propose a novel approach
for verifying the distributability of sequential object-
oriented programs. We use a mathematical relation-
ship, indicated by general time estimation (GTE), to
estimate the distribution of a program based on the
concurrency level obtained from asynchronous re-
mote calls, considering the communication delays
such as network latency. Then we compute the dis-
tribution speedup and search for the distribution val-
ues that maximize the achieved speedup. After de-
termining the speedup, we can determine whether a
source code is distributable or not. To compute the
GTE relationship, we traverse the source code and
determine possible call destinations. This is done by

generating a call dependency graph (CDG), whose
vertices represent all the system classes and whose
edges show the dependencies between these classes.
Unlike existing approaches for generating CDG, the
proposed approach considers the impact of implicit
calls. Note that traditional multi-threading approaches
do not necessarily consider the communication
overhead between entities when determining thread
concurrency, as they focus mainly on system func-
tionality. Hence, they cannot predict the final per-
ceived performance of the system. On the other hand,
the proposed approach considers both system func-
tionality and perceived performance. Experimental
results showed that the proposed approach success-
fully determines the distributability of different real-
life software applications, compared with their real-
life sequential and distributed implementations.

The main advantage of our approach is that we
can determine the possibility of distributability of the
source code before its parallelization, to see if it is
indeed distributable, because the code may not be
distributable in the first place. If it is determined that
the distributor is, in this case, multi-threading, parallel
programming or clustering methods can be used in the
next step for distribution. Otherwise, if the program
cannot be distributed, knowing this ahead of time will
save a lot of time. Therefore, the overhead for de-
termining the distributability would be worthwhile.

2 Related works

Nowadays, most distributed and multi-processor
systems use task graph scheduling methods for dis-
tribution (deployment). The objective in these meth-
ods is task scheduling on distributed systems to
minimize the completion time of the last task. The
scheduling techniques are typically categorized into
two classes, homogeneous and heterogeneous. In the
homogeneous type, the processing power of all pro-
cessors is considered the same. In the heterogeneous
type, processors have different processing powers.
CONDOR (Thain et al., 2005), SGE (Gentzsch,
2001), PBS (Nitzberg et al., 2004), LSF (Zhou et al.,
1993), AppleS (Berman et al., 2003), GrADS (Ber-
man et al., 2005), and Nimrod/G (Buyya and
Abramson, 2009) are the most famous scheduling
systems. None of these schedulers, however, can

Fig. 1 A sample distributed architecture

Cluster 1

C1

C2

C3

C4

C5

C6

C8

C9

Cluster 2

Cluster 3

C11 C10

C7 n1

n2

n7 n8

n6

n4

n5

n3

Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):126-138 128

specify whether an offered application program has
the potential of becoming parallelized, or whether
speedup can be achieved in case of parallelization.

To specify whether the source code is distribut-
able or not, we require an analysis tool to determine
the actual destinations of method calls from the
source code. For this purpose, we generate the call
dependency graph (CDG). Currently, to create the
CDG from an object-oriented source code, most tools
will use: (1) for C++ programs, Acacia (Chen et al.,
1997), Columbus (Ferenc et al., 2004), and Reveal
(Matzko et al., 2002); (2) for Java programs, Chava
(Korn et al., 1999); (3) for most object oriented pro-
grams, NDepend (www.ndepend.com), Understand
(www.scitools.com), Bauhaus (Raza et al., 2006), and
Imagix-4D (Koskinen and Lehmonen, 2010). The
main problem of these algorithms is that the implicit
calls are not considered in design. Hence, these algo-
rithms could not construct the CDG precisely when
the source code includes implicit calls. In fact, a de-
pendency graph that has been produced is pessimistic
and has a number of edges (some of them are not
needed) that consequently have a reverse effect on the
concurrency results due to the many edges. Fig. 2
shows the pseudo code which does not include an
implicit call, while Fig. 3 shows an implicit call in the
pseudo code.

In Fig. 2, the declared type for variable a is class
A and a instantiated of class A. Thus, call destination
a.method1() is considered class A. In Fig. 3, the de-
clared type of a is class A but a instantiated of class B.
Thus, call destination a.method1() should be consid-
ered class B, not class A. In such cases, existing al-
gorithms consider both classes as call destinations. In
fact, a dependence graph is produced pessimistically.
This kind of call is called an implicit call. Fig. 4
shows a CDG generated for Fig. 3 by Chava, NDe-
pend, Understand, and Bauhaus algorithms. This
graph is constructed pessimistically. An appropriate
CDG for Fig. 3 is as shown in Fig. 5. Algorithms used
for constructing a CDG act pessimistically. These
algorithms construct the call graph conservatively and
do not eliminate any probable call from the graph. As
a result, the call graph obtained will have many edges
and thus a negative impact on concurrency.

The main contribution of our method is two-fold.
First, it provides a new mathematical relationship for
estimating sequential and distributed execution times,

extracted automatically from the object oriented
source code, to specify whether a program is suitable
for parallelization through studying the types of
synchronous and asynchronous method calls inside

main_Class

A B C

A B

Fig. 4 The call dependency graph generated for Fig. 3 by
Chava, NDepend, Understand, and Bauhaus algorithms

main_Class

Class A {
 Public void method1() { print (“This is A”); }
 }

Class B extends A {
 Public void method1() { print (“This is B”); }
 }

Class C extends A {
 Public void method1() { print (“This is C”); }
 }

Class Main {
Public void method2() {

 A a;
 a=new A();
 a.method1();
 }

}

Fig. 2 Sample pseudocode without an implicit call

Class A { … }
Class B extends A { … }
Class C {

 public void m1() {
 A a;
 a=new B();
 a.method1();
 }
 } // Class c

Class main_Class {
 public static void main() {
 A a=new A();
 a.m();
 C c=new C();
 c.m1();
 } // main
 } // main_Class

Fig. 3 Sample pseudocode including an implicit call

Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):126-138 129

the source code. Second, it presents a new algorithm
to determine the actual destinations of calls from the
source code.

3 Source code analysis and CDG generation

In this section, we propose an algorithm to de-

termine the actual destination of calls from source
code, taking into consideration the relationship types
between classes. In general, there are two basic crite-
ria in the relationship between classes:

1. Type of interaction: determine the ways in
which the two classes communicate with each other.

Aggregation: aggregation is a relationship be-
tween two classes, best described as a ‘has-a’ and
‘whole/part’ relationship.

Class-method: in this case, class D is a parameter
of method mc of class C.

Method-method: in this case, method md of a
class D directly invokes a method mc of a class C, or a
method md receives via a parameter a pointer to mc,
thereby invoking mc indirectly.

2. Type of relation: determine the ways in which
the two classes are related to each other.

Inheritance: in this case, class D inherits attrib-
utes and behavior of class C, or vice versa.

Friendship: in this case, a friend class has access
to the private and protected members of the class.

Other relationships between classes C and D are
interface and abstract.

Determining the actual destination of calls has a
great effect on the quality of the proposed method
since these calls are used to specify whether the
source code is distributable or not. The actual desti-
nations of the calls are determined at the run-time,

which makes them more difficult to recognize, as we
have to predict the behavior of the system. We refer to
these calls as implicit calls. To precisely determine
the destination of a call, we have to consider both
explicit and implicit calls.
Definition 1 (Destination of a method call) The
destination of a method call is identified as follows:

1. If within a class, the class is defined as the
class-attribute, then the class will be the calling
destination of the main class.

2. If within a class, the class is defined as the
class-method, then the class will be the calling
destination of the main class.

3. If a call, such as o, has a declared class type C,
the possible destination run-time of o, i.e., Destina-
tion(o), includes C and all sub-classes of C.

4. If a call of o has a declared interface I, the
possible destination run-time of o, i.e., Destination(o),
includes: (1) the set of all classes that implement I or a
sub-interface of I, which we call implements(I); (2)
all subclasses of implements(I).

The main aim is to precisely identify a set of
reaching variables to o in each call, like o.m(). This
set is called Receiving-types(o). The proposed algo-
rithm uses a graph to perform this action. For example,
we say type A reaches variable o if once at least there
would be one path in the program run to be started by
an object of type A (e.g., as v=new A()), and then this
chain of assignment would be

x1=v, x2=x1, …, xn=xn−1, o=xn. (1)

Given a program P, the destination of a call is de-
termined using Algorithm 1, considering the explicit
and implicit method analysis (EIMA). We denote this
algorithm as the EIMA algorithm.

In Fig. 6a, we provide the important parts of an
example program. Figs. 6b–6e show steps 1–4 in
Algorithm 1 for code in Fig. 6a. Fig. 6b shows con-
struction of the graph based on assignments in code.
Fig. 6c shows the initial assigned values, while
Fig. 6d shows the removal of cycles from the graph
and Fig. 6e shows the propagation of the types. It is
obvious that nodes a3 and b3, which are in a same
cycle, are converted to a united node before propaga-
tion. After calculating the Receiving-types(o) set for
each call using Algorithm 1, the actual destination of
each call is determined using Eq. (2).

Fig. 5 An appropriate call dependency graph for Fig. 3

main_Class

A C

B

C

B

main_Class

Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):126-138 130

To generate our proposed GTE relationship, we

analyze the program using Algorithm 2 and then ex-
tract the necessary facts from it and save them within
a file named intermediate code. The intermediate
code shows clear concepts and facts of methods in the
program and does not include unnecessary details,
and in fact, shows a summarized model of the pro-
gram that we need to analyze. The intermediate code
generated should include the required structure to
construct our relationship. Each method of the pro-
gram is specified through ordered elements in the
intermediate code. These elements can include one of
these three types: call statements, non-call statements,
and synchronization points, which are shown by Call,
Some_computation, and Use, respectively. Calli in-
dicates an indicator to the other method which is
called through the current method. The actual desti-
nations of the calls are determined using Algorithm 1.

Usei indicates the first use point of Calli in the method.
In this study, we use the Def-Use chain method
(which is used in a super compilers technique), to
determine Usei related to Calli. A Def-Use chain
(Zima and Chapman, 1991) can be constructed to find
the first locations within the program code where the
values affected by a remote method call are required.

Algorithm 1 Determining the destination of a call
Step 1: Graph construction, in which nodes show variables and

each edge as a→b shows an assignment as b=a.
 Step 1.1: Nodes are created as follows:

1. For each field f (where f has a reference to a class) in
class C into namespace NS, create a new node labeled
NS.C.f.

// This condition occurs when a class is defined as
// static class or aggregation occurs

 2. For each method m in class C into namespace NS,
create a new node labeled NS.C.m.

 Step 1.2: Edges are added as follows:
 For each statement of form lvariable=rvariable or

lvariable=(C)rvariable, where lvariable and rvariable
must be an ordinary, field or array reference, add a
directed edge from the rvariable node to the lvariable
node.

Step 2: Initialize the graph, in which all assignments would be
searched as lvariable=new type and type would be
placed as the initial value in Receiving-types(lvariable)
set.

Step 3: Remove all cycles from the graph and generate a new
directed graph without cycles. To remove cycles, the
nodes are those that are located in a cycle to be con-
verted into a node. Receiving-types(lvariable) of this
node would be obtained from the union of nodes.

Step 4: Compute the Receiving-types(o) set for each call
through propagation of types in the graph.

Step 5: After the above steps, the actual destination of each
call, EIMA(o), would be obtained by the following
relationship:

EIMA(o)=Destination(o)Receiving-types(o). (2)

(b)

Class main

 a1 a2 a3

b1 b2 b3

c

Class C

a b

 (c)

Class main

{B}

{A} {A}

{B}

{A}

a1 a2 a3

b1 b2 b3

c

 Class C

{B}

a b

{B}

Fig. 6 Computing the Receiving-types(o) set for each call
(a) Important parts of an example program; (b) Graph con-
struction based on assignments in code; (c) Initial assigned
values; (d) Removal of cycles from the graph; (e) Type propa-
gation in the graph

(d)

 Class C

{B} {B}

a b

 {A}

a1 a2 a3

b1 b2 b3

c

{A} {A}

{B} {B}

Class C

{B} {B}

a b

{A}

{A} {A}

{A, B} {A, B}
{A, B}

a1 a2 a3

b1 b2 b3

c

(e)

Class A {…}
Class B extends A
 {
 public m() { … }
 }
Class C extends A
{public void m1() {
 A a=new B();
 a.m();
 B b=new B();
 a=b;
 }
}
Class main ()
{public void m2() {
A a1, a2, a3;
B b1, b2, b3;
C c;
a1=new A();
a2=new A();
b1=new B();
b2=new B();
c=new A();
a1=a2;
b2=a2;
a3=a1;
a3=b3;
b3=b2;
b3=(B)a3;
b1=b2;
b1=c; }
}

(a)

Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):126-138 131

Some_computationi indicates the estimated execution
time of sequence of the instructions in the method
between Calli and Usei without considering the call
statement. We have used the WCET method (Schoe-
berl and Pedersen, 2006) to estimate execution time
of instructions and loops. Algorithm 2 shows how to
transform the source code into the intermediate code.
For example, if the code in Fig. 7 is given as the input
to Algorithm 2, then the intermediate code generated
will be as shown in Fig. 8.

4 Source code distributability verification

The transformation of synchronous local calls

into asynchronous remote calls can have negative
effects on the program execution speed (Parsa and
Khalilpoor, 2006), as when there are many calls be-
tween two entities (e.g., classes), the network traffic
increases and as a result, the efficiency of the dis-
tributed system decreases due to communication
overhead. Therefore, before starting the process of
source code distribution, we should determine
whether its distribution could cause speedup or not.
To achieve this goal, we propose general time esti-
mation (GTE) relationship to measure the values of
different distributions of source code from its inter-
mediate code. Two modes are considered for each call,
asynchronous and sequential. Concurrency is
achieved through asynchronous calls between the
distributed segments. To estimate the concurrency
level generated in a program by a distribution, the
execution time of the program should be estimated
with respect to the way in which it is distributed. The
execution time of all instructions, except the nested
calls, can be computed using the available methods
proposed by, for example, Healy et al. (1998) and
Schoeberl (2006). The available methods cannot be
applied easily to calculate the execution time of the
nested calls because the execution time of a caller
method is dependent on the fact that a caller method is
executed in a synchronous or asynchronous manner
with a callee method. For example, in Fig. 9, at time t1,
the current method (caller method) will continue to
work in a non-stop manner until the use point of the
results of a callee method is reached. This point is
shown by S. As shown in Fig. 9, the level of concur-
rency in executing the caller and callee methods

Algorithm 2 Transforming source code to inter-
mediate code
For each package in source code

For each class into a package
For each method into each class, do the following:

1. Write ("Method" + className + methodName).
2. For each call, determine the actual destination of

the call using Algorithm 1 and write ("Call" +
destination className + destination method-
Name).

3. Determine the execution time of instructions us-
ing the WCET method (Schoeberl and Pedersen,
2006) as the following:

- the execution time for the total instruction from
the start point of the method to the first call,

- the execution time between the call and the first
point of its usage, and

- the execution time between the usage point up to
the next call and/or end of the method.

4. For each call, determine where a call is used using
the Def-Use algorithm (Zima and Chapman,
1991) and write ("Use" + destination className +
destination methodName).

End
End

End

package NS1
{

class B extends ClassFormatError, ThreadDeath
{ A a;

 C c;
 public M()
 { a=new A(); c=new C();
 Some_computation;
 y=a.m();
 Some_computation; z=c.n(); print(z);
 Some_computation;
 While (y!=0) { … }
 }

}
}

Fig. 7 Sample source code

Method B.M
Begin method

Some_computation
Call A.m
Some_computation
Call C.n
Use C.n
Some_computation
Use A.m

EndMethod B.M

Fig. 8 The intermediate code generated for Fig. 7

Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):126-138 132

depends on the time interval between the call point
and the use point. The difficulty lies in the estimation
of this interval time. As shown in Fig. 10, there may
be other calls within the distance between the call
point and use point, and the execution of these calls
can be either synchronous or asynchronous. The dis-
tributed segments connect to each other asynchro-
nously; i.e., one segment continues to work after
calling a method from a remote location (other dis-
tributed segments) and waits for a call response only
when it requires that response. We call these points
‘synchronization points’ (Maani and Parsa, 2007).

4.1 Estimated execution time for sequential
execution

In sequential execution, all methods are exe-
cuted on the same processor. Pi represents the proc-
essing power of processor i in terms of the number of
cycles per byte, given as one of the inputs. In Fig. 9, if
method m and method R are executed serially (or
synchronously), the estimated execution time will be
as shown in Eq. (3). The time ti indicates the program
instruction times, estimated by the WCET algorithm
(Schoeberl and Pedersen, 2006). WCET does not
consider a specific processor processing power in

estimating the execution time of instructions. There-
fore, to calculate the real execution time of instruc-
tions, it should be divided by the estimated execution
time (i.e., ti) to processing power of processor i in
terms of the number of cycles per byte (i.e., Pi).

seq 0 3 1 2GTE .m
i i i i

t t t t

P P P P
 (3)

Also, Eq. (3) can be written in recursive form as the
following:

seq seq0 1 2

seq 3

GTE GTE ,

GTE .

m R
i i i

R
i

t t t

P P P

t

P

 (4)

Since the aim is to compare sequential time to
parallel time, in Eq. (4), Pi is related to the most
powerful processor for heterogeneous processors and
to a power of one for homogeneous processors. No-
tice that, in Fig. 10 the depth of the nested calls is 2.
The estimated time of the sequential execution for
Fig. 10 will be as follows:

seq 0 3 6 54 1 2

0 3 6 4 5 1 2

GTE

1
().

m
i i i i i i i

i

t t t tt t t

P P P P P P P

t t t t t t t
P

 (5)

We can rewrite the above relationship for Fig. 10 in
recursive form (like Eq. (6)) and expand it for the
nested call with any depth.

seq seqo 1 2

seq seq3 54

seq 6

GTE GTE ,

GTE GTE ,

GTE .

m R
i i i

R P
i i i

P
i

t t t

P P P

t tt

P P P

t

P

 (6)

Generally, for the sequential (or synchronous) call,
the estimated execution time relationship for the cases
in which the processors power is specified is

seq seqGTE GTE .i
m R

i

t

P
 (7)

Fig. 10 Number of nested calls

Method m Method R Method P

t0

t1

t2

S

t6

t5

t3

t4

Fig. 9 Calls between methods

t0

Callee method R Caller method m

t3
t1

t2

S

Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):126-138 133

4.2 Estimated execution time for asynchronous
mode

In this section, we will calculate the estimated
execution time when methods are executed in parallel
(asynchronously) and have specified the number and
the power of the processors. See again Fig. 9. If
method m and method R are executed asynchronously,
the program estimation time is expressed as

asynch 0 1
init

3 1 2
init

GTE

max ,0 ,

m
i i

t
j i i

t t
I

P P

t t t
C I

P P P

 (8)

i≠j, i, j=1, 2, …, number of processors,

where Pi represents the processing power of processor
i, Ct is the communication time, and Iinit indicates
program preparation time for remote calling. The
values of Ct’s could be extracted from a latency ma-
trix between processors and given as one of the inputs.
Since the aim is parallel execution, the processor of
method R should not be the same as the processor of
method m. The aim is to find the processors that

minimize asynchGTE .m

See again Fig. 10 in which the depth of the
nested calls is 2. We can write the estimated execution
time in recursive form for parallel execution:

asynch 0 1
init

asynch 1 2
init

asynch 3 4
init

asynch 54
init

asynch 6

GTE

max GTE ,0 ,

GTE

max GTE ,0 ,

GTE .

m
i i

R t
i i

R
j j

P t
j j

P
k

t t
I

P P

t t
C I

P P

t t
I

P P

tt
C I

P P

t

P

 (9)

The aim is to find the processors that can minimize
asynchGTE .m In general, when the number and power of

processors are known, the estimated time relation-
ships for the parallel (or asynchronous) execution are

asynch asynch
init

init

GTE max(GTE

 / ,0).

i

i
m R

i

i i t

t
I

P

t P C I

 (10)

4.3 General time estimation relation

For Fig. 9, the following relationship will be
obtained if the estimated times for the asynchronous
and sequential execution are combined:

0 1
1 1 init

1 2
init

3

GTE GTE (1)

max GTE ,0 ,

GTE .

m R
i i

R t
i i

R
j

t t
a a I

P P

t t
C I

P P

t

P

 (11)

Also, for Fig. 10, Eq. (12) will be obtained if the
estimated times for the asynchronous and sequential
executions are combined:

0 1
1 1 init

1 2
init

3 4
2 2 init

54
init

6

GTE GTE (1)

max GTE ,0 ,

GTE GTE (1)

max GTE ,0 ,

GTE .

m R
i i

R t
i i

R P
j j

P t
j j

P
k

t t
a a I

P P

t t
C I

P P

t t
a a I

P P

tt
C I

P P

t

P

(12)

The purpose of this combination is that there is a need
to consider the synchronous and asynchronous modes
for each call, to determine which one is causing the
speedup. Considering Eqs. (7) and (10), the general
mathematical formula of a GTE relationship is writ-
ten as

init

init

GTE GTE (1)

max (GTE) ,0 .

i i

i

i
m i I i

i

i
I t

i

t
a a I

P

t
C I

P

(13)

Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):126-138 134

Also, if the user cannot determine the power or the
number of processors, we can delete Pi from the
above relationships and therefore Eq. (13) can be
written as follows:

init

init

GTE GTE (1)

 max((GTE) ,0) .

i i

i

m i i I i

I t i

t a a I

C t I

 (14)

In the above relationship, depending on the call to be
synchronous or asynchronous, the value of ai is con-
sidered as 1 or 0, respectively. The aim is to determine
ai and Pi, to minimize GTEm. In Eqs. (13) and (14),
the communication time from performing the remote
and asynchronous calls is Ct, and ti is the estimated
time between the callee point of Ii and the synchro-
nization point of Si (use point). However, there may
be cycles in the CDG, resulting from direct or indirect
recursive calls. Assuming that Ii is an invocation to a
method in the cycle (and Ii itself is not in the cycle)
and the estimated number of recursions is ni, then the
GTE of Ii should be multiplied by ni and the back edge
of the recursion should be removed from the call
graph. In this case, Eq. (13) will be modified as
follows:

initGTE GTE (1)

max (GTE) ,0 .

i i

i

i
m i i I i

i

i
I t

i

t
a n a I

P

t
C

P

(15)

An invocation Ii or a synchronization point Si

may be located within a loop statement. Therefore, to
consider the impact of loop iterations on time esti-
mation, Eq. (13) may be modified as follows:

init

GTE GTE (1)

 max (GTE) ,0 .

i

i i

i
m i i i I i

i

i
I t

i

t
a n m a

P

t
I C

P

 (16)

In Fig. 11, as calls I1–I5 are synchronous or

asynchronous, S1–S4 are synchronization points (use
point) for the values returned from calls I1–I5, and
T1–T5 are the execution times of non-call statements.

In Fig. 12, a1–a5 are considered as 0 or 1. The above
relationship is aimed to determine a1–a5 in a way to
minimize GTE (A.main). We use the simplex opti-
mization method in operation research to determine
the binary values of ai. After determining ai and
specifying the estimated time of parallel execution,
the sequential execution time of the program is cal-
culated as well. Finally, the speedup is calculated by
dividing the sequential time into parallel estimation
time. If this value is larger than one, the parallel ex-
ecution of the program is faster than the sequential
execution. In fact, the source code can be paralleled.
For the relations in Fig. 11, the times of calls I1–I5 are
60, 60, 30, 20, and 30 s respectively, and T1–T5 are 30,
35, 32, 50, and 43 s respectively. Also, the commu-
nication overhead in a remote call is considered ran-
dom communication costs. These communication
costs are distributed uniformly within (1, 5) s. Table 1
shows the distributed, sequential, and speedup exe-
cution times.

Class A {
 void main(string[] arg) {
 int r1, r2, r3;
 B b=new B(); C c=new C(); D d=new D();
 r1=b.m(); // I1
 r2=c.n(); // I2
 for(i=0; i<n; i++) {
 r3=d.p(); // I3
 }
 While (r2==1) { … } // S2
 // some statements: T1
 If (r1>r2 && r1>r3) { … } // S1 and S3
 // some statements: T2
 }
} // class
Class B {

 static int m() {
 // some statements: T3
} } // Class
Class C {

 int m1() {
 int r3;
 D d=new D();
 for (i=0; i<n; i++)
 r3=d.p(); // I4
 Print(r3); // S4
} } // Class
Class D {

 int p() {
 int r4; A a=new A();
 r4=a.main(); // I5
 // some statements: T4
} } // Class

Fig. 11 Code of a sample program

Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):126-138 135

Considering the program code in Fig. 11 and
intermediate code generated for that in Fig. 12,
GTEA.main can be written as Fig. 13.

5 Evaluation results

To evaluate the proposed approach, we tested
our approach against different types of software sys-

tems, and then compared the estimated results ob-
tained against their real life executions. We used the
well-known travelling salesman problem (TSP;
http://www.adaptivebox.net/CILib/code/tspcodes_link.
html) and two practical applications (robot control
program and sparse matrix solver) to evaluate the
proposed method. The sparse matrix solver is a sparse
matrix solver of an electronic circuit simulation gen-
erated by the OSCAR FORTRAN compiler. This
application is known to have a relatively high level of
parallelism (Gotoda et al., 2012). The robot control
program is a Newton-Euler dynamic control calcula-
tion for the six-degree-of-freedom Stanford manipu-
lator, which has a lower level of parallelism compared
to the sparse matrix solver (Gotoda et al., 2012). Our
assessment method is such that we first extract the
call graph using the method proposed in Section 3 and
then extract GTEseq and GTEasynch from the call graph.
Then we predict from the GTE relationship the esti-
mated time of the parallel and sequential execution
and calculate the speedup for them. Afterward, we
distribute them on the network including the number
of computers (specified as above) using the jDis-
tributor tool and calculate the parallel and sequential
execution time. Speedup is defined as the execution
time of a sequential program divided by the execution
time of a parallel program that computes the same
result; in particular, speedup=TS/TP, where TS is the
sequential execution time and TP is the parallel exe-
cution time on P processors. We used a network in-
cluding a number of personal computers (PC). Each
PC has an Intel Core i7 920 (2.67 GHz) as the CPU,
Intel Gigabit CT Desktop Adaptor EXPI9301CT as
the network interface card, and 6.0 GB of memory. In
Parsa and Khalilpoor (2006) a tool named jDistributor
was provided for semi-automatic distribution of the
sequential program on the homogeneous distributed
systems. This tool distributes using Java Symphony
middleware. The algorithm used in the jDistributor
tool is a clustering method and its goal is to find an
appropriate clustering for distribution. The results are
shown in Tables 2 and 3.

Tables 2 and 3 show that the results obtained
using the proposed method are in accordance with
their real execution results. That is, when a speedup
obtained from the proposed method is larger than 1,
through the real execution, its distributed execution is
faster than its sequential execution; if the speedup is

Table 1 Distributed execution time, sequential exe-
cution time, and speedup for Fig. 11

Sequential time (s) Distributed time (s) Speedup

267 221 1.208

GTE(A.main)=a1*GTE(B.m)+a2*GTE(C.n)+a3*GTE(D.p)
+(1-a2)*T(S1)+t1+(1-a1)*T(S2)+(1-a3)*T(S3)+t2

T(S1)=max((GTE(C.n)+Ci)-(a3*GTE(D.p)),0)
T(S2)=max((GTE(B.m)+Ci)-(t1+(1-a2)*T(S1)

+a3*GTE(D.p)+a2*GTE(C.n)),0)
T(S3)=max((GTE(D.p)+Ci)-((1-a1)*T(S2)+t1

+(1-a2)*T(S1)),0)
GTE(B.m)=t3
GTE(C.n)=a4*GTE(D.p)+(1-a4)*T(S4)

T(S4)=max((GTE(D.p)+Ci),0)
GTE(D.p)=a5*GTE(A.main)+t4

Fig. 13 General time estimation relationships for Fig. 11

Method A.main
Begin method

Call B.m // The actual destination of a call
// is determined using Algorithm 1

Call C.n
Call D.p
Use C.n
Some_computation
Use B.m // determined using the Def-Use

 // chain method
Use C.n
Use D.p

EndMethod A.main
Method B.m

Begin method
Some_computation

EndMethod B.m
Method C.m1

Call D.p
Use D.p

EndMethod C.m1
Method D.p

Call A.main
Some_computation

EndMethod D.p

Fig. 12 Intermediate code for Fig. 11

Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):126-138 136

less than 1, its distributed execution is slower than its
sequential execution and in such a case the program
should not be executed in distributed form. Indeed,
we can specify (predict) based on the speedup ob-
tained from the proposed method whether the source
code is distributable or not.

Table 4 shows that the execution time of the
robot control program on the network including three
processors, will speed up compared with the sequen-
tial mode. As Gotoda et al. (2012) mentioned, this
application has a lower level of parallelism. Therefore,
its execution on the network including four and six
processors will reduce the speedup compared to the
sequential manner. This is due to the increased

communication time between processors. In fact, its
distributed execution is slower than its sequential
execution.

Table 4 also shows that the distributed execution
of a sparse matrix solver on the network including
three, four, and six computers is faster than its se-
quential execution. However, in the network includ-
ing four processors, speedup is more than the speedup
of the network including six processors. This is due to
the increased communication time between proces-
sors. GTE only shows whether a program can be
paralleled or not, and provides no information about
the way in which the distribution is performed or the
type of clustering for the distribution.

Table 2 TSP comparison: estimated execution vs. real execution time using the jDistributor tool on the network
including three computers

Sequential time (ms) Distributed time (ms) Speedup
Number
of nodes

Number
of edges

Estimated exe-
cution time*

Real execu-
tion time***

Estimated exe-
cution time**

Real execu-
tion time***

Estimated exe-
cution time

Real execu-
tion time***

20 40 475 573 5342 7357 0.089 0.078

40 81 981 1383 5532 7810 0.177 0.177

60 122 2870 3246 5901 8163 0.486 0.398

80 163 7560 11 214 7120 11 109 1.062 1.009

100 204 15 341 19 773 10 098 14 741 1.519 1.341

120 245 25 987 43 517 15 675 30 722 1.657 1.416

140 286 49 621 60 871 19 676 25 362 2.522 2.400
* Using Eq. (7); ** using Eq. (16); *** using the jDistributor tool

Table 3 Comparison of estimated execution time and real execution time using the jDistributor tool on the network
including four computers between two famous applications

 Sequential time (ms) Distributed time (ms) Speedup
Application Estimated exe-

cution time*
Real execu-
tion time***

Estimated exe-
cution time**

Real execu-
tion time***

Estimated exe-
cution time

Real execu-
tion time***

Robot control
program

475 573 542 728 0.876 0.787

Sparse matrix
solver

981 1383 325 465 3.014 2.977

* Using Eq. (7); ** using Eq. (16); *** using the jDistributor tool

Table 4 Comparison of estimated execution time and speedup on the network including 3, 4, and 6 processors using
the robot control program and the sparse matrix solver

Estimated sequential time (ms) Estimated distributed time (ms) Speedup
Application

3 4 6 3 4 6 3 4 6

Robot control program 475 475 475 237 542 1084 2.008 0.876 0.438

Sparse matrix solver 981 981 981 466 325 346 2.107 3.014 2.836

Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):126-138 137

6 Conclusions

In this paper, we introduce a new approach for

source code distributability verification. The ap-
proach enables users to determine the expected
speedup gains before going into a real-life dis-
tributability implementation. We propose an analyti-
cal model for object oriented programs, which ana-
lyzes the programs statistically through studying the
types of synchronous and asynchronous calls inside
the source code, and we propose criteria that specify
whether a program is suitable for parallelization on
homogeneous or heterogeneous processors. Experi-
mental results showed that the proposed approach
successfully determines the distributability of dif-
ferent real-life software applications when compared
with their real-life sequential and distributed
implementations.

The following directions can be explored to ex-
tend and improve this work. First, study the effect of
code instructions shift at compile time on program
concurrency, and see if such shift operations could
improve program distributability. Second, study the
effect of near optimal partitioning on the analytical
model from a performance viewpoint.

References
Al-Jaroodi, J., Mohamad, N., Jiang, H., et al., 2005. JOPI: a

Java object passing interface. Concurr. Comput. Pract.
Exp., 17(7-8):775-795. [doi:10.1002/cpe.854]

Berman, F., Wolski, R., Casanova, H., et al., 2003. Adaptive
computing on the Grid using AppLeS. IEEE Trans.
Parall. Distr. Syst., 14(4):369-382. [doi:10.1109/TPDS.
2003.1195409]

Berman, F., Casanova, H., Chien, A., et al., 2005. New Grid
scheduling and rescheduling methods in the GrADS
project. Int. J. Parall. Program., 33(2):209-229. [doi:10.
1007/s10766-005-3584-4]

Bushehrian, O., 2010. Automatic actor-based program
partitioning. J. Zhejiang Univ.-Sci. C (Comput. &
Electron.), 11(1):45-55. [doi:10.1631/jzus.C0910096]

Buyya, R., Abramson, D., 2009. The Nimrod/G grid resource
broker for economic-based scheduling. In: Buyya, R.,
Bubendorfer, K. (Eds.), Market-Oriented Grid and Utility
Computing. John Wiley & Sons, Inc., Hoboken, NJ, USA,
p.3-27. [doi:10.1002/9780455432.ch17]

Chen, Y., Gansner, E., Koutsofios, E., 1997. A C++ data
model supporting reachability analysis and dead code
detection. Proc. 6th European Software Engineering Conf.
and the 5th ACM SIGSOFT Symp. on the Foundations of

Software Engineering, p.414-431. [doi:10.1007/3-540-
63531-9_28]

Deb, D., Fuad, M., Oudshoom, M.J., 2006. Towards
autonomic distribution of existing object oriented
programs. Int. Conf. on Autonomic and Autonomous
Systems, p.17. [doi:10.1109/ICAS.2006.61]

Ferenc, R., Beszedes, A., Gyimóthy, T., 2004. Extracting facts
with Columbus from C++ code. Proc. 8th European Conf.
on Software Maintenance and Reengineering, p.4-8.

Gentzsch, W., 2001. Sun Grid Engine: towards creating a
compute power grid. Proc. 1st IEEE/ACM Int. Symp. on
Cluster Computing and the Grid, p.35-36. [doi:10.1109/
CCGRID.2001.923173]

Gotoda, S., Ito, M., Shibata, N., 2012. Task scheduling
algorithm for multicore processor system for minimizing
recovery time in case of single node fault. Proc. 12th
IEEE/ACM Int. Symp. on Cluster, Cloud and Grid
Computing, p.260-267. [doi:10.1109/CCGrid.2012.23]

Healy, C.A., Sjodin, M., Rustagi, V., et al., 1998. Bounding
loop iterations for timing analysis. Proc. 4th IEEE Real-
Time Technology and Applications Symp., p.12-21.
[doi:10.1109/RTTAS.1998.683183]

Korn, J., Chen, Y., Koutsofios, E., 1999. Chava: reverse
engineering and tracking of Java applets. Proc. 6th
Working Conf. on Reverse Engineering, p.314-325.
[doi:10.1109/WCRE.1999.806970]

Koskinen, J., Lehmonen, T., 2010. Analysis of ten reverse
engineering tools. Advanced Techniques in Computing
Sciences and Software Engineering, p.389-394. [doi:10.
1007/978-90-481-3660-5_67]

Maani, R., Parsa, S., 2007. An algorithm to improve
parallelism in distributes systems using asynchronous
calls. Proc. 7th Int. Conf. on Parallel Processing and
Applied Mathematics, p.49-58. [doi:10.1007/978-3-540-
68111-3_6]

Matzko, S., Clarke, P.J., Gibbs, T.H., et al., 2002. Reveal: a
tool to reverse engineer class diagrams. Proc. 40th Int.
Conf. on Tools Pacific: Objects for Internet, Mobile and
Embedded Applications, p.13-21.

Nitzberg, B., Schopf, J.M., Jones, J.P., 2004. PBS Pro: grid
computing and scheduling attributes. In: Grid Resource
Management. Kluwer Academic Publishers, Norwell,
MA, USA, p.183-190. [doi:10.1007/978-1-4615-0509-
9_13]

Parsa, S., Khalilpoor, V., 2006. Automatic distribution of
sequential code using JavaSymphony middleware. Proc.
32nd Conf. on Current Trends in Theory and Practice of
Computer Science, p.440-450. [doi:10.1007/11611257_
42]

Raza, A., Vogel, G., Plödereder, E., 2006. Bauhaus—a tool
suite for program analysis and reverse engineering. Proc.
11th Ada-Europe Int. Conf. on Reliable Software
Technologies, p.71-83. [doi:10.1007/11767077_6]

Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(2):126-138 138

Schoeberl, M., 2006. A time pedictable Java pocessor. Proc.
Design, Automation and Test in Europe, p.1-6. [doi:10.
1109/DATE.2006.244146]

Schoeberl, M., Pedersen, R., 2006. WCET analysis for a Java
processor. Proc. 4th Int. Workshop on Java Technologies
for Real-Time and Embedded Systems, p.202-211.
[doi:10.1145/1167999.1168033]

Thain, D., Tannenbaum, T., Livny, M., 2005. Distributed
computing in practice: the condor experience. Concurr.
Comput. Pract. Exp., 17(2-4):323-356. [doi:10.1002/
cpe.938]

Zhang, Q.F., Qiu, D.H., Tian, Q.B., et al., 2010. Object-
oriented software architecture recovery using a new
hybrid clustering algorithm. Proc. 7th Int. Conf. on Fuzzy
Systems and Knowledge Discovery, p.2546-2550.
[doi:10.1109/FSKD.2010.5569799]

Zhou, S., Zheng, X., Wang, J., et al., 1993. Utopia: a load
sharing facility for large, heterogeneous distributed
computer systems. Softw. Pract. Exp., 23(12):1305-1336.
[doi:10.1002/spe.4380231203]

Zima, H., Chapman, B., 1991. Supercompilers for Parallel and
Vector Computers (1st Ed.). Addison Wesley, MA, USA.

