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Abstract:    One way to speed up the execution of sequential programs is to divide them into concurrent segments and execute such 
segments in a parallel manner over a distributed computing environment. We argue that the execution speedup primarily depends 
on the concurrency degree between the identified segments as well as communication overhead between the segments. To guar-
antee the best speedup, we have to obtain the maximum possible concurrency degree between the identified segments, taking 
communication overhead into consideration. Existing code distributor and multi-threading approaches do not fulfill such re-
quirements; hence, they cannot provide expected distributability gains in advance. To overcome such limitations, we propose a 
novel approach for verifying the distributability of sequential object-oriented programs. The proposed approach  enables users to 
see the maximum speedup gains before the actual distributability implementations, as it computes an objective function which is 
used to measure different distribution values from the same program, taking into consideration both remote and sequential calls. 
Experimental results showed that the proposed approach successfully determines the distributability of different real-life software 
applications compared with their real-life sequential and distributed implementations. 
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1  Introduction 
 

Distributed systems and multi-processor ma-
chines are used nowadays to speed up execution of 
existing software programs (Al-Jaroodi et al., 2005). 
However, transforming sequential programs into dis-
tributed programs is a very challenging task, as we 
need to divide the software programs into concurrent 
segments (or clusters) that could work in a parallel 
manner (i.e., the clustering problem). Such a cluster-
ing problem is known as an NP-complete problem 
(Zhang et al., 2010). Moreover, we have to take into 
consideration the network latency between remote 
segments (clusters). For example, Fig. 1 shows a 
distributed architecture with three clusters, each of 
which has several classes. Each cluster should be 
deployed on different workstations. 

The calls between two classes within the same 
distributed segment (cluster) will be accomplished via 
synchronous calls (e.g., C1, C2, C5–C9 calls), as 
through the synchronous call two classes are executed 
in sequential manner on the machine. On the other 
hand, the calls between two classes within the dif-
ferent distributed segments (different clusters) will be 
accomplished via an asynchronous call (e.g., C3, C4, 
C10, C11 calls), as we do not want to block the caller 
classes for a long time due to network latency. Hence, 
communication overhead is crucial in determining the 
distributability of sequential programs. 

Of course, doing such a challenging process 
manually is very tedious and error-prone; hence, we 
argue that such a process must be done automatically 
to avoid potential errors and to shorten the time for 
transforming sequential programs into distributed 
multi-threaded programs. To be able to automatically 
identify such clusters, we argue that an object- 
oriented approach (Deb et al., 2006) should be used, 
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as the code of a program can be easily encapsulated 
into objects, which can be categorized into individual 
clusters using clustering methods such as the ones 
discussed in Bushehrian (2010), where each cluster 
could be deployed at a number of distinct remote 
locations and communicate by exchanging messages 
(e.g., DCOM objects) over the network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Application clustering in an object-oriented en-

vironment is aimed to break up the functionality of an 
application into the distinct set of objects that can 
operate concurrently. We argue that the execution 
speedup achieved depends mainly on the concurrency 
degree between identified clusters. Hence, to achieve 
the best speedup, we have to obtain the maximum 
possible concurrency degree between identified 
clusters. Unfortunately, existing code distribution 
tools (Zhou et al., 1993; Gentzsch, 2001; Berman et 
al., 2003; Nitzberg et al., 2004; Berman et al., 2005; 
Thain et al., 2005; Buyya and Abramson, 2009) do 
not check for the maximum possible concurrency 
degree between identified clusters. To overcome such 
limitations, in this paper we propose a novel approach 
for verifying the distributability of sequential object- 
oriented programs. We use a mathematical relation-
ship, indicated by general time estimation (GTE), to 
estimate the distribution of a program based on the 
concurrency level obtained from asynchronous re-
mote calls, considering the communication delays 
such as network latency. Then we compute the dis-
tribution speedup and search for the distribution val-
ues that maximize the achieved speedup. After de-
termining the speedup, we can determine whether a 
source code is distributable or not. To compute the 
GTE relationship, we traverse the source code and 
determine possible call destinations. This is done by 

generating a call dependency graph (CDG), whose 
vertices represent all the system classes and whose 
edges show the dependencies between these classes. 
Unlike existing approaches for generating CDG, the 
proposed approach considers the impact of implicit 
calls. Note that traditional multi-threading approaches 
do not necessarily consider the communication 
overhead between entities when determining thread 
concurrency, as they focus mainly on system func-
tionality. Hence, they cannot predict the final per-
ceived performance of the system. On the other hand, 
the proposed approach considers both system func-
tionality and perceived performance. Experimental 
results showed that the proposed approach success-
fully determines the distributability of different real- 
life software applications, compared with their real- 
life sequential and distributed implementations. 

The main advantage of our approach is that we 
can determine the possibility of distributability of the 
source code before its parallelization, to see if it is 
indeed distributable, because the code may not be 
distributable in the first place. If it is determined that 
the distributor is, in this case, multi-threading, parallel 
programming or clustering methods can be used in the 
next step for distribution. Otherwise, if the program 
cannot be distributed, knowing this ahead of time will 
save a lot of time. Therefore, the overhead for de-
termining the distributability would be worthwhile.  

 
 

2  Related works 
 

Nowadays, most distributed and multi-processor 
systems use task graph scheduling methods for dis-
tribution (deployment). The objective in these meth-
ods is task scheduling on distributed systems to 
minimize the completion time of the last task. The 
scheduling techniques are typically categorized into 
two classes, homogeneous and heterogeneous. In the 
homogeneous type, the processing power of all pro-
cessors is considered the same. In the heterogeneous 
type, processors have different processing powers. 
CONDOR (Thain et al., 2005), SGE (Gentzsch, 
2001), PBS (Nitzberg et al., 2004), LSF (Zhou et al., 
1993), AppleS (Berman et al., 2003), GrADS (Ber-
man et al., 2005), and Nimrod/G (Buyya and 
Abramson, 2009) are the most famous scheduling 
systems. None of these schedulers, however, can 

Fig. 1  A sample distributed architecture 
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specify whether an offered application program has 
the potential of becoming parallelized, or whether 
speedup can be achieved in case of parallelization. 

To specify whether the source code is distribut-
able or not, we require an analysis tool to determine 
the actual destinations of method calls from the 
source code. For this purpose, we generate the call 
dependency graph (CDG). Currently, to create the 
CDG from an object-oriented source code, most tools 
will use: (1) for C++ programs, Acacia (Chen et al., 
1997), Columbus (Ferenc et al., 2004), and Reveal 
(Matzko et al., 2002); (2) for Java programs, Chava 
(Korn et al., 1999); (3) for most object oriented pro-
grams, NDepend (www.ndepend.com), Understand 
(www.scitools.com), Bauhaus (Raza et al., 2006), and 
Imagix-4D (Koskinen and Lehmonen, 2010). The 
main problem of these algorithms is that the implicit 
calls are not considered in design. Hence, these algo-
rithms could not construct the CDG precisely when 
the source code includes implicit calls. In fact, a de-
pendency graph that has been produced is pessimistic 
and has a number of edges (some of them are not 
needed) that consequently have a reverse effect on the 
concurrency results due to the many edges. Fig. 2 
shows the pseudo code which does not include an 
implicit call, while Fig. 3 shows an implicit call in the 
pseudo code. 

In Fig. 2, the declared type for variable a is class 
A and a instantiated of class A. Thus, call destination 
a.method1() is considered class A. In Fig. 3, the de-
clared type of a is class A but a instantiated of class B. 
Thus, call destination a.method1() should be consid-
ered class B, not class A. In such cases, existing al-
gorithms consider both classes as call destinations. In 
fact, a dependence graph is produced pessimistically. 
This kind of call is called an implicit call. Fig. 4 
shows a CDG generated for Fig. 3 by Chava, NDe-
pend, Understand, and Bauhaus algorithms. This 
graph is constructed pessimistically. An appropriate 
CDG for Fig. 3 is as shown in Fig. 5. Algorithms used 
for constructing a CDG act pessimistically. These 
algorithms construct the call graph conservatively and 
do not eliminate any probable call from the graph. As 
a result, the call graph obtained will have many edges 
and thus a negative impact on concurrency. 

The main contribution of our method is two-fold. 
First, it provides a new mathematical relationship for 
estimating sequential and distributed execution times, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

extracted automatically from the object oriented 
source code, to specify whether a program is suitable 
for parallelization through studying the types of 
synchronous and asynchronous method calls inside 
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Fig. 4  The call dependency graph generated for Fig. 3 by 
Chava, NDepend, Understand, and Bauhaus algorithms

main_Class

Class A { 
 Public void method1() { print (“This is A”); } 
   } 

Class B extends A { 
 Public void method1() { print (“This is B”); } 
 } 

Class C extends A { 
 Public void method1() { print (“This is C”); } 
 } 

Class Main { 
Public void method2() { 

        A a; 
        a=new A(); 
        a.method1(); 
                                    } 

} 

Fig. 2  Sample pseudocode without an implicit call

Class A { … } 
Class B extends A { … } 
Class C { 

 public void  m1() { 
  A a; 
                                a=new B(); 
  a.method1();   
  } 
 } // Class c 

Class main_Class { 
 public static void main() { 
  A a=new A(); 
  a.m();   
  C c=new C(); 
  c.m1(); 
  } // main 
 } // main_Class 

Fig. 3  Sample pseudocode including an implicit call
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the source code. Second, it presents a new algorithm 
to determine the actual destinations of calls from the 
source code. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  Source code analysis and CDG generation 
 
In this section, we propose an algorithm to de-

termine the actual destination of calls from source 
code, taking into consideration the relationship types 
between classes. In general, there are two basic crite-
ria in the relationship between classes: 

1. Type of interaction: determine the ways in 
which the two classes communicate with each other. 

Aggregation: aggregation is a relationship be-
tween two classes, best described as a ‘has-a’ and 
‘whole/part’ relationship.  

Class-method: in this case, class D is a parameter 
of method mc of class C. 

Method-method: in this case, method md of a 
class D directly invokes a method mc of a class C, or a 
method md receives via a parameter a pointer to mc, 
thereby invoking mc indirectly. 

2. Type of relation: determine the ways in which 
the two classes are related to each other. 

Inheritance: in this case, class D inherits attrib-
utes and behavior of class C, or vice versa.  

Friendship: in this case, a friend class has access 
to the private and protected members of the class.  

Other relationships between classes C and D are 
interface and abstract. 

Determining the actual destination of calls has a 
great effect on the quality of the proposed method 
since these calls are used to specify whether the 
source code is distributable or not. The actual desti-
nations of the calls are determined at the run-time, 

which makes them more difficult to recognize, as we 
have to predict the behavior of the system. We refer to 
these calls as implicit calls. To precisely determine 
the destination of a call, we have to consider both 
explicit and implicit calls. 
Definition 1 (Destination of a method call)    The 
destination of a method call is identified as follows: 

1. If within a class, the class is defined as the 
class-attribute, then the class will be the calling 
destination of the main class.  

2. If within a class, the class is defined as the 
class-method, then the class will be the calling 
destination of the main class. 

3. If a call, such as o, has a declared class type C, 
the possible destination run-time of o, i.e., Destina-
tion(o), includes C and all sub-classes of C. 

4. If a call of o has a declared interface I, the 
possible destination run-time of o, i.e., Destination(o), 
includes: (1) the set of all classes that implement I or a 
sub-interface of I, which we call implements(I); (2) 
all subclasses of implements(I). 

The main aim is to precisely identify a set of 
reaching variables to o in each call, like o.m(). This 
set is called Receiving-types(o). The proposed algo-
rithm uses a graph to perform this action. For example, 
we say type A reaches variable o if once at least there 
would be one path in the program run to be started by 
an object of type A (e.g., as v=new A()), and then this 
chain of assignment would be  

 
x1=v, x2=x1, …, xn=xn−1, o=xn.             (1) 

 
Given a program P, the destination of a call is de-
termined using Algorithm 1, considering the explicit 
and implicit method analysis (EIMA). We denote this 
algorithm as the EIMA algorithm. 

In Fig. 6a, we provide the important parts of an 
example program. Figs. 6b–6e show steps 1–4 in 
Algorithm 1 for code in Fig. 6a. Fig. 6b shows con-
struction of the graph based on assignments in code. 
Fig. 6c shows the initial assigned values, while  
Fig. 6d shows the removal of cycles from the graph 
and Fig. 6e shows the propagation of the types. It is 
obvious that nodes a3 and b3, which are in a same 
cycle, are converted to a united node before propaga-
tion. After calculating the Receiving-types(o) set for 
each call using Algorithm 1, the actual destination of 
each call is determined using Eq. (2). 

Fig. 5  An appropriate call dependency graph for Fig. 3
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To generate our proposed GTE relationship, we 

analyze the program using Algorithm 2 and then ex-
tract the necessary facts from it and save them within 
a file named intermediate code. The intermediate 
code shows clear concepts and facts of methods in the 
program and does not include unnecessary details, 
and in fact, shows a summarized model of the pro-
gram that we need to analyze. The intermediate code 
generated should include the required structure to 
construct our relationship. Each method of the pro-
gram is specified through ordered elements in the 
intermediate code. These elements can include one of 
these three types: call statements, non-call statements, 
and synchronization points, which are shown by Call, 
Some_computation, and Use, respectively. Calli in-
dicates an indicator to the other method which is 
called through the current method. The actual desti-
nations of the calls are determined using Algorithm 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Usei indicates the first use point of Calli in the method. 
In this study, we use the Def-Use chain method 
(which is used in a super compilers technique), to 
determine Usei related to Calli. A Def-Use chain 
(Zima and Chapman, 1991) can be constructed to find 
the first locations within the program code where the 
values affected by a remote method call are required. 

Algorithm 1    Determining the destination of a call 
Step 1: Graph construction, in which nodes show variables and 

each edge as a→b shows an assignment as b=a.  
    Step 1.1: Nodes are created as follows: 

1. For each field f (where f has a reference to a class) in 
class C into namespace NS, create a new node labeled 
NS.C.f. 

// This condition occurs when a class is defined as  
// static class or aggregation occurs 

         2. For each method m in class C into namespace NS, 
create a new node labeled NS.C.m. 

    Step 1.2: Edges are added as follows: 
              For each statement of form lvariable=rvariable or 

lvariable=(C)rvariable, where lvariable and rvariable 
must be an ordinary, field or array reference, add a 
directed edge from the rvariable node to the lvariable 
node. 

Step 2: Initialize the graph, in which all assignments would be 
searched as lvariable=new type and type would be 
placed as the initial value in Receiving-types(lvariable) 
set.  

Step 3: Remove all cycles from the graph and generate a new 
directed graph without cycles. To remove cycles, the 
nodes are those that are located in a cycle to be con-
verted into a node. Receiving-types(lvariable) of this 
node would be obtained from the union of nodes. 

Step 4: Compute the Receiving-types(o) set for each call 
through propagation of types in the graph. 

Step 5: After the above steps, the actual destination of each 
call, EIMA(o), would be obtained by the following 
relationship: 

 

EIMA(o)=Destination(o)Receiving-types(o). (2)

(b) 
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Fig. 6  Computing the Receiving-types(o) set for each call
(a) Important parts of an example program; (b) Graph con-
struction based on assignments in code; (c) Initial assigned 
values; (d) Removal of cycles from the graph; (e) Type propa-
gation in the graph 
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(e) 

Class A {…} 
Class B extends A
  { 
      public m() { … }
  } 
Class C extends A
{public void m1() {
      A a=new B(); 
      a.m(); 
      B b=new B(); 
      a=b; 
      } 
} 
Class main () 
{public void m2() {
A a1, a2, a3; 
B b1, b2, b3; 
C c; 
a1=new A(); 
a2=new A(); 
b1=new B(); 
b2=new B(); 
c=new A(); 
a1=a2; 
b2=a2; 
a3=a1; 
a3=b3; 
b3=b2; 
b3=(B)a3; 
b1=b2; 
b1=c; } 
} 

(a) 
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Some_computationi indicates the estimated execution 
time of sequence of the instructions in the method 
between Calli and Usei without considering the call 
statement. We have used the WCET method (Schoe-
berl and Pedersen, 2006) to estimate execution time 
of instructions and loops. Algorithm 2 shows how to 
transform the source code into the intermediate code. 
For example, if the code in Fig. 7 is given as the input 
to Algorithm 2, then the intermediate code generated 
will be as shown in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
4  Source code distributability verification 

 
The transformation of synchronous local calls 

into asynchronous remote calls can have negative 
effects on the program execution speed (Parsa and 
Khalilpoor, 2006), as when there are many calls be-
tween two entities (e.g., classes), the network traffic 
increases and as a result, the efficiency of the dis-
tributed system decreases due to communication 
overhead. Therefore, before starting the process of 
source code distribution, we should determine 
whether its distribution could cause speedup or not. 
To achieve this goal, we propose general time esti-
mation (GTE) relationship to measure the values of 
different distributions of source code from its inter-
mediate code. Two modes are considered for each call, 
asynchronous and sequential. Concurrency is 
achieved through asynchronous calls between the 
distributed segments. To estimate the concurrency 
level generated in a program by a distribution, the 
execution time of the program should be estimated 
with respect to the way in which it is distributed. The 
execution time of all instructions, except the nested 
calls, can be computed using the available methods 
proposed by, for example, Healy et al. (1998) and 
Schoeberl (2006). The available methods cannot be 
applied easily to calculate the execution time of the 
nested calls because the execution time of a caller 
method is dependent on the fact that a caller method is 
executed in a synchronous or asynchronous manner 
with a callee method. For example, in Fig. 9, at time t1, 
the current method (caller method) will continue to 
work in a non-stop manner until the use point of the 
results of a callee method is reached. This point is 
shown by S. As shown in Fig. 9, the level of concur-
rency in executing the caller and callee methods  

Algorithm 2    Transforming source code to inter-
mediate code 
For each package in source code 

For each class into a package 
For each method into each class, do the following:  

1. Write ("Method" + className + methodName). 
2. For each call, determine the actual destination of 

the call using Algorithm 1 and write ("Call" + 
destination className + destination method-
Name). 

3. Determine the execution time of instructions us-
ing the WCET method (Schoeberl and Pedersen, 
2006) as the following: 

-  the execution time for the total instruction from 
the start point of the method to the first call,  

-  the execution time between the call and the first 
point of its usage, and 

-  the execution time between the usage point up to 
the next call and/or end of the method. 

4. For each call, determine where a call is used using 
the Def-Use algorithm (Zima and Chapman, 
1991) and write ("Use" + destination className + 
destination methodName). 

End 
End 

End 

 
package NS1 
{ 

class B extends ClassFormatError, ThreadDeath  
{   A a; 

          C c; 
          public M( ) 
              {  a=new A( ); c=new C( ); 
                 Some_computation; 
                 y=a.m(); 
                 Some_computation; z=c.n(); print(z); 
                 Some_computation; 
                 While (y!=0) { … }             
              } 

} 
} 

Fig. 7  Sample source code 

Method B.M   
Begin method 

Some_computation           
Call A.m               
Some_computation         
Call C.n                         
Use C.n                          
Some_computation        
Use A.m                           

EndMethod B.M 

Fig. 8  The intermediate code generated for Fig. 7
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depends on the time interval between the call point 
and the use point. The difficulty lies in the estimation 
of this interval time. As shown in Fig. 10, there may 
be other calls within the distance between the call 
point and use point, and the execution of these calls 
can be either synchronous or asynchronous. The dis-
tributed segments connect to each other asynchro-
nously; i.e., one segment continues to work after 
calling a method from a remote location (other dis-
tributed segments) and waits for a call response only 
when it requires that response. We call these points 
‘synchronization points’ (Maani and Parsa, 2007). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1 Estimated execution time for sequential  
execution 

In sequential execution, all methods are exe-
cuted on the same processor. Pi represents the proc-
essing power of processor i in terms of the number of 
cycles per byte, given as one of the inputs. In Fig. 9, if 
method m and method R are executed serially (or 
synchronously), the estimated execution time will be 
as shown in Eq. (3). The time ti indicates the program 
instruction times, estimated by the WCET algorithm 
(Schoeberl and Pedersen, 2006). WCET does not 
consider a specific processor processing power in 

estimating the execution time of instructions. There-
fore, to calculate the real execution time of instruc-
tions, it should be divided by the estimated execution 
time (i.e., ti) to processing power of processor i in 
terms of the number of cycles per byte (i.e., Pi). 

 

seq 0 3 1 2GTE .m
i i i i

t t t t

P P P P
                     (3) 

 

Also, Eq. (3) can be written in recursive form as the 
following: 
 

seq seq0 1 2

seq 3

GTE GTE ,

GTE .

m R
i i i

R
i

t t t

P P P

t

P

    

 


         (4) 

 

Since the aim is to compare sequential time to 
parallel time, in Eq. (4), Pi is related to the most 
powerful processor for heterogeneous processors and 
to a power of one for homogeneous processors. No-
tice that, in Fig. 10 the depth of the nested calls is 2. 
The estimated time of the sequential execution for  
Fig. 10 will be as follows: 

 

seq 0 3 6 54 1 2

0 3 6 4 5 1 2

GTE

1
( ).

m
i i i i i i i

i

t t t tt t t

P P P P P P P

t t t t t t t
P

      

      
       (5) 

 

We can rewrite the above relationship for Fig. 10 in 
recursive form (like Eq. (6)) and expand it for the 
nested call with any depth. 
 

seq seqo 1 2

seq seq3 54

seq 6

GTE GTE ,

GTE GTE ,

GTE .

m R
i i i

R P
i i i

P
i

t t t

P P P

t tt

P P P

t

P


   


    






          (6) 

 

Generally, for the sequential (or synchronous) call, 
the estimated execution time relationship for the cases 
in which the processors power is specified is 
 

seq seqGTE GTE .i
m R

i

t

P
                   (7) 

Fig. 10  Number of nested calls 
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4.2  Estimated execution time for asynchronous 
mode 

In this section, we will calculate the estimated 
execution time when methods are executed in parallel 
(asynchronously) and have specified the number and 
the power of the processors. See again Fig. 9. If 
method m and method R are executed asynchronously, 
the program estimation time is expressed as 

 

asynch 0 1
init

3 1 2
init

GTE

max ,0 ,

m
i i

t
j i i

t t
I

P P

t t t
C I

P P P

  

 
      

 

  (8) 

i≠j, i, j=1, 2, …, number of processors, 
 

where Pi represents the processing power of processor 
i, Ct is the communication time, and Iinit indicates 
program preparation time for remote calling. The 
values of Ct’s could be extracted from a latency ma-
trix between processors and given as one of the inputs. 
Since the aim is parallel execution, the processor of 
method R should not be the same as the processor of 
method m. The aim is to find the processors that 

minimize asynchGTE .m  

See again Fig. 10 in which the depth of the 
nested calls is 2. We can write the estimated execution 
time in recursive form for parallel execution: 
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The aim is to find the processors that can minimize 
asynchGTE .m  In general, when the number and power of 

processors are known, the estimated time relation-
ships for the parallel (or asynchronous) execution are 

asynch asynch
init

init

GTE max(GTE
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4.3  General time estimation relation 

For Fig. 9, the following relationship will be 
obtained if the estimated times for the asynchronous 
and sequential execution are combined: 
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Also, for Fig. 10, Eq. (12) will be obtained if the 
estimated times for the asynchronous and sequential 
executions are combined: 
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The purpose of this combination is that there is a need 
to consider the synchronous and asynchronous modes 
for each call, to determine which one is causing the 
speedup. Considering Eqs. (7) and (10), the general 
mathematical formula of a GTE relationship is writ-
ten as 
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Also, if the user cannot determine the power or the 
number of processors, we can delete Pi from the 
above relationships and therefore Eq. (13) can be 
written as follows: 
 

init

init

GTE GTE (1 )

 max((GTE ) ,0) .

i i

i

m i i I i

I t i

t a a I

C t I
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In the above relationship, depending on the call to be 
synchronous or asynchronous, the value of ai is con-
sidered as 1 or 0, respectively. The aim is to determine 
ai and Pi, to minimize GTEm. In Eqs. (13) and (14), 
the communication time from performing the remote 
and asynchronous calls is Ct, and ti is the estimated 
time between the callee point of Ii and the synchro-
nization point of Si (use point). However, there may 
be cycles in the CDG, resulting from direct or indirect 
recursive calls. Assuming that Ii is an invocation to a 
method in the cycle (and Ii itself is not in the cycle) 
and the estimated number of recursions is ni, then the 
GTE of Ii should be multiplied by ni and the back edge 
of the recursion should be removed from the call 
graph. In this case, Eq. (13) will be modified as  
follows: 
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An invocation Ii or a synchronization point Si 

may be located within a loop statement. Therefore, to 
consider the impact of loop iterations on time esti-
mation, Eq. (13) may be modified as follows: 
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In Fig. 11, as calls I1–I5 are synchronous or 

asynchronous, S1–S4 are synchronization points (use 
point) for the values returned from calls I1–I5, and 
T1–T5 are the execution times of non-call statements. 

In Fig. 12, a1–a5 are considered as 0 or 1. The above 
relationship is aimed to determine a1–a5 in a way to 
minimize GTE (A.main). We use the simplex opti-
mization method in operation research to determine 
the binary values of ai. After determining ai and 
specifying the estimated time of parallel execution, 
the sequential execution time of the program is cal-
culated as well. Finally, the speedup is calculated by 
dividing the sequential time into parallel estimation 
time. If this value is larger than one, the parallel ex-
ecution of the program is faster than the sequential 
execution. In fact, the source code can be paralleled. 
For the relations in Fig. 11, the times of calls I1–I5 are 
60, 60, 30, 20, and 30 s respectively, and T1–T5 are 30, 
35, 32, 50, and 43 s respectively. Also, the commu-
nication overhead in a remote call is considered ran-
dom communication costs. These communication 
costs are distributed uniformly within (1, 5) s. Table 1 
shows the distributed, sequential, and speedup exe-
cution times. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Class A { 
   void main(string[] arg) { 
       int r1, r2, r3; 
       B b=new B(); C c=new C(); D d=new D(); 
       r1=b.m();                        // I1 
       r2=c.n();                         // I2 
       for(i=0; i<n; i++) {    
            r3=d.p();                    // I3 
        }  
      While (r2==1) { … }           // S2 
           // some statements: T1 
      If (r1>r2 && r1>r3) { … }    // S1 and S3 
           // some statements: T2 
      } 
} // class 
Class B { 

        static int m() { 
           // some statements: T3 
} }     // Class 
Class C { 

    int m1() { 
    int r3; 
    D d=new D(); 
    for (i=0; i<n; i++)      
        r3=d.p();                          // I4 
        Print(r3);                         // S4 
} }    // Class 
Class D { 

    int p() { 
      int r4;  A a=new A(); 
      r4=a.main();                      // I5 
          // some statements: T4 
} }    // Class 

Fig. 11  Code of a sample program 
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Considering the program code in Fig. 11 and 
intermediate code generated for that in Fig. 12, 
GTEA.main can be written as Fig. 13. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5  Evaluation results 
 

To evaluate the proposed approach, we tested 
our approach against different types of software sys-

tems, and then compared the estimated results ob-
tained against their real life executions. We used the 
well-known travelling salesman problem (TSP; 
http://www.adaptivebox.net/CILib/code/tspcodes_link. 
html) and two practical applications (robot control 
program and sparse matrix solver) to evaluate the 
proposed method. The sparse matrix solver is a sparse 
matrix solver of an electronic circuit simulation gen-
erated by the OSCAR FORTRAN compiler. This 
application is known to have a relatively high level of 
parallelism (Gotoda et al., 2012). The robot control 
program is a Newton-Euler dynamic control calcula-
tion for the six-degree-of-freedom Stanford manipu-
lator, which has a lower level of parallelism compared 
to the sparse matrix solver (Gotoda et al., 2012). Our 
assessment method is such that we first extract the 
call graph using the method proposed in Section 3 and 
then extract GTEseq and GTEasynch from the call graph. 
Then we predict from the GTE relationship the esti-
mated time of the parallel and sequential execution 
and calculate the speedup for them. Afterward, we 
distribute them on the network including the number 
of computers (specified as above) using the jDis-
tributor tool and calculate the parallel and sequential 
execution time. Speedup is defined as the execution 
time of a sequential program divided by the execution 
time of a parallel program that computes the same 
result; in particular, speedup=TS/TP, where TS is the 
sequential execution time and TP is the parallel exe-
cution time on P processors. We used a network in-
cluding a number of personal computers (PC). Each 
PC has an Intel Core i7 920 (2.67 GHz) as the CPU, 
Intel Gigabit CT Desktop Adaptor EXPI9301CT as 
the network interface card, and 6.0 GB of memory. In 
Parsa and Khalilpoor (2006) a tool named jDistributor 
was provided for semi-automatic distribution of the 
sequential program on the homogeneous distributed 
systems. This tool distributes using Java Symphony 
middleware. The algorithm used in the jDistributor 
tool is a clustering method and its goal is to find an 
appropriate clustering for distribution. The results are 
shown in Tables 2 and 3. 

Tables 2 and 3 show that the results obtained 
using the proposed method are in accordance with 
their real execution results. That is, when a speedup 
obtained from the proposed method is larger than 1, 
through the real execution, its distributed execution is 
faster than its sequential execution; if the speedup is 

Table 1  Distributed execution time, sequential exe-
cution time, and speedup for Fig. 11 

Sequential time (s) Distributed time (s) Speedup 

267 221 1.208 

GTE(A.main)=a1*GTE(B.m)+a2*GTE(C.n)+a3*GTE(D.p) 
+(1-a2)*T(S1)+t1+(1-a1)*T(S2)+(1-a3)*T(S3)+t2 

T(S1)=max((GTE(C.n)+Ci)-(a3*GTE(D.p)),0) 
T(S2)=max((GTE(B.m)+Ci)-(t1+(1-a2)*T(S1) 

+a3*GTE(D.p)+a2*GTE(C.n)),0)     
T(S3)=max((GTE(D.p)+Ci)-((1-a1)*T(S2)+t1 

+(1-a2)*T(S1)),0) 
GTE(B.m)=t3 
GTE(C.n)=a4*GTE(D.p)+(1-a4)*T(S4) 

T(S4)=max((GTE(D.p)+Ci),0) 
GTE(D.p)=a5*GTE(A.main)+t4 

Fig. 13  General time estimation relationships for Fig. 11

Method A.main   
Begin method 

Call B.m  // The actual destination of a call  
// is determined using Algorithm 1  

Call C.n 
Call D.p 
Use C.n 
Some_computation   
Use B.m  // determined using the Def-Use  

             // chain method 
Use C.n 
Use D.p 

EndMethod A.main 
Method B.m   

Begin method 
Some_computation   

EndMethod B.m 
Method C.m1 

Call D.p 
Use D.p 

EndMethod C.m1 
Method D.p 

Call A.main 
Some_computation   

EndMethod D.p 

Fig. 12  Intermediate code for Fig. 11 



Isazadeh et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2014 15(2):126-138 136 

less than 1, its distributed execution is slower than its 
sequential execution and in such a case the program 
should not be executed in distributed form. Indeed, 
we can specify (predict) based on the speedup ob-
tained from the proposed method whether the source 
code is distributable or not. 

Table 4 shows that the execution time of the 
robot control program on the network including three 
processors, will speed up compared with the sequen-
tial mode. As Gotoda et al. (2012) mentioned, this 
application has a lower level of parallelism. Therefore, 
its execution on the network including four and six 
processors will reduce the speedup compared to the 
sequential manner. This is due to the increased 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

communication time between processors. In fact, its 
distributed execution is slower than its sequential 
execution. 

Table 4 also shows that the distributed execution 
of a sparse matrix solver on the network including 
three, four, and six computers is faster than its se-
quential execution. However, in the network includ-
ing four processors, speedup is more than the speedup 
of the network including six processors. This is due to 
the increased communication time between proces-
sors. GTE only shows whether a program can be 
paralleled or not, and provides no information about 
the way in which the distribution is performed or the 
type of clustering for the distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  TSP comparison: estimated execution vs. real execution time using the jDistributor tool on the network 
including three computers 

Sequential time (ms) Distributed time (ms) Speedup 
Number 
of nodes 

Number 
of edges 

 

Estimated exe- 
cution time* 

Real execu-
tion time***

Estimated exe- 
cution time**

Real execu-
tion time***

Estimated exe-
cution time 

Real execu-
tion time***

20 40  475 573 5342 7357 0.089 0.078 

40 81  981 1383 5532 7810 0.177 0.177 

60 122  2870 3246 5901 8163 0.486 0.398 

80 163  7560 11 214 7120 11 109 1.062 1.009 

100 204  15 341 19 773 10 098 14 741 1.519 1.341 

120 245  25 987 43 517 15 675 30 722 1.657 1.416 

140 286  49 621 60 871 19 676 25 362 2.522 2.400 
* Using Eq. (7); ** using Eq. (16); *** using the jDistributor tool 

Table 3  Comparison of estimated execution time and real execution time using the jDistributor tool on the network 
including four computers between two famous applications 

 Sequential time (ms) Distributed time (ms) Speedup 
Application  Estimated exe- 

cution time* 
Real execu-
tion time***

Estimated exe-
cution time**

Real execu-
tion time***

Estimated exe- 
cution time 

Real execu-
tion time***

Robot control 
program 

 
475 573 542 728 0.876 0.787 

Sparse matrix 
solver 

 
981 1383 325 465 3.014 2.977 

* Using Eq. (7); ** using Eq. (16); *** using the jDistributor tool 

 

Table 4  Comparison of estimated execution time and speedup on the network including 3, 4, and 6 processors using 
the robot control program and the sparse matrix solver 

Estimated sequential time (ms) Estimated distributed time (ms) Speedup 
Application 

3 4 6 3 4 6 3 4 6 

Robot control program 475 475 475 237 542 1084 2.008 0.876 0.438

Sparse matrix solver 981 981 981 466 325 346 2.107 3.014 2.836
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6  Conclusions 
 
In this paper, we introduce a new approach for 

source code distributability verification. The ap-
proach enables users to determine the expected 
speedup gains before going into a real-life dis-
tributability implementation. We propose an analyti-
cal model for object oriented programs, which ana-
lyzes the programs statistically through studying the 
types of synchronous and asynchronous calls inside 
the source code, and we propose criteria that specify 
whether a program is suitable for parallelization on 
homogeneous or heterogeneous processors. Experi-
mental results showed that the proposed approach 
successfully determines the distributability of dif-
ferent real-life software applications when compared 
with their real-life sequential and distributed  
implementations. 

The following directions can be explored to ex-
tend and improve this work. First, study the effect of 
code instructions shift at compile time on program 
concurrency, and see if such shift operations could 
improve program distributability. Second, study the 
effect of near optimal partitioning on the analytical 
model from a performance viewpoint.  
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