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Abstract:    This paper deals with the optimal placement of distributed generation (DG) units in distribution systems via an 
enhanced multi-objective particle swarm optimization (EMOPSO) algorithm. To pursue a better simulation of the reality and 
provide the designer with diverse alternative options, a multi-objective optimization model with technical and operational con-
straints is constructed to minimize the total power loss and the voltage fluctuation of the power system simultaneously. To enhance 
the convergence of MOPSO, special techniques including a dynamic inertia weight and acceleration coefficients have been inte-
grated as well as a mutation operator. Besides, to promote the diversity of Pareto-optimal solutions, an improved non-dominated 
crowding distance sorting technique has been introduced and applied to the selection of particles for the next iteration. After 
verifying its effectiveness and competitiveness with a set of well-known benchmark functions, the EMOPSO algorithm is em-
ployed to achieve the optimal placement of DG units in the IEEE 33-bus system. Simulation results indicate that the EMOPSO 
algorithm enables the identification of a set of Pareto-optimal solutions with good tradeoff between power loss and voltage sta-
bility. Compared with other representative methods, the present results reveal the advantages of optimizing capacities and loca-
tions of DG units simultaneously, and exemplify the validity of the EMOPSO algorithm applied for optimally placing DG units. 
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1  Introduction 

Distributed generation (DG) has attracted special 
attention all over the world. Its potential to serve as an 
alternative distribution planning option is now well 
recognized and its estimated share in power systems 
will increase significantly in the near future (Ayres et 
al., 2010; Devi and Geethanjali, 2013). However, 

conventional distribution systems (DSs) are con-
structed without considering interconnection of DGs. 
Accordingly, the placement of DG units can impact 
the current DSs, including power quality, voltage 
conditions, and system reliability (Tanaka et al., 2010; 
Gopiya Naik et al., 2013). Meanwhile, an appropriate 
placement of DG in the DSs can result in active loss 
reduction as well as other operational, environmental, 
and economic benefits (Atwa et al., 2010). Thus, the 
optimal placement of DG units in the DS is funda-
mental to ensure its positive effects.  

Optimal placement of DG can be regarded as an 
optimization problem. Conventionally, the problem 
was described mostly by a single objective to  
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determine the optimal location(s) of DG units with a 
given capacity, or the optimal capacity with given 
location(s). Considering the minimization of the total 
real power loss, Lee and Park (2009) proposed a 
Kalman filter algorithm to determine the optimal 
locations of multiple DGs. To obtain the optimal ca-
pacity of installed DG at each given bus, Mistry and 
Roy (2014) employed particle swarm optimization 
(PSO) to minimize the total system power loss 
without violating system constraints.   

Two aspects of optimizing the DG placement 
must be addressed. Firstly, to guarantee the best use of 
the DG, the key is that DG units with appropriate 
capacity should be placed at optimal location(s) in the 
DS. Secondly, to ensure the positive effects of the 
installed DG, it is insufficient for decision-making 
with only one index being considered as a criterion. 
Hence, a multi-objective analysis with consideration 
of technical, economic, and environmental constraints 
should be employed (Sheng et al., 2012; Dehghanian 
et al., 2013). In terms of multi-objective optimization 
(MOO) of the optimal location and capacity of the 
DG in the DSs, there has been much research in which 
more than one objective was considered. Akorede et 
al. (2011) proposed an optimization model to maxi-
mize the system loading margin and the distribution 
companies’ returns. Moradi and Abedini (2012) de-
veloped a model to minimize network power loss, 
better voltage regulation, and improve voltage stabil-
ity. Li et al. (2013) aimed to reduce system power loss 
and minimize the investment on DG. Yu et al. (2013) 
established a multi-objective model by considering 
the construction and operation fees, network loss, 
reliability, and the environmental factor. What is 
common to such research is that a multi-objective 
problem (MOP) is converted to a single-objective 
problem with a set of weighting factors. Although the 
weighted function can be used to handle MOPs, in a 
sense, these are still single-objective optimization 
methods and the only one best solution fails to pro-
vide the designer with alternative options. Further-
more, the corresponding weighting factors are diffi-
cult to determine due to the lack of enough informa-
tion about the problem. In fact, generally, objectives 
to be optimized are non-comparable and even conflict 
with each other, which means the solution to such 
MOPs is a set of different solutions (so-called 
Pareto-optimal solutions) representing the best pos-

sible compromises among the objectives (Sierra and 
Coello, 2006). MOO is able to identify such Pareto- 
optimal solutions and has been testified to be an effi-
cient method to solve MOPs by tackling multiple 
conflict objectives concurrently. Such MOO algo-
rithms have been employed to deal with placement of 
the DG units. Chen and Cheng (2012) and Hu et al. 
(2013) presented MOO methods for optimizing the 
capacity and locations of DG units, considering loss 
reduction, voltage promotion, emission decrease, and 
reliability improvement. They employed NSGA-II 
(Deb et al., 2002) to solve the specific MOPs and 
essentially realized the MOO of optimally placing 
DG units. Although NSGA-II is a milestone in the 
history of MOO, its performance needs to be further 
explored. Thus, it is desirable to apply MOO algo-
rithms of better performance to the complex problem 
of optimally placing DG units. 

Based on the above comments, in this paper we 
propose an improved multi-objective PSO (MOPSO) 
algorithm for optimally placing DG units to decrease 
the total active power loss of the DS and reinforce 
system reliability. The contributions and characteris-
tics of this paper are:  

1. An MOO model is constructed for optimally 
placing DG units, taking into account economic is-
sues (reducing the total power loss) and technical 
aspects (decreasing the voltage stability index, VSI). 
In addition, various constraints have been considered 
in the model.  

2. An enhanced MOPSO (EMOPSO) algorithm 
is proposed to solve the MOP with non-linear con-
straints and objectives. A dynamic inertia weight, 
acceleration coefficients, and circular crowding 
sorting applied to the selection of particle swarm for 
the next iteration, have been integrated to guarantee 
the algorithm performance. 

3. Both locations and capacities of dispersed DG 
units are optimized, instead of locations or capacities 
alone. The optimization method can also be used to 
optimize either locations or capacities. 

 
 

2  Multi-objective optimization model 
 

To realize the optimal development and opera-
tion of the power system, engineering aspects of 
system planning require various objectives to be  
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simultaneously accomplished (Sheng et al., 2012). 
Furthermore, because integration of DG to DS brings 
about both technical and economic effects, the re-
sulting placement of DG units has conflicting objec-
tives and an MOO model can efficaciously replicate 
different perspectives of the DG placement. In this 
study, unlike the conventional way to place emphasis 
on economic benefit, the main goal of installing DG 
units is supposed to result in both economic benefit 
and improvement in the security, stability, and quality 
of the DS. Accordingly, reducing the total active 
power loss and maximizing the voltage stability of the 
system are chosen as the two main objectives. 

Fig. 1 illustrates the radial DS model penetrated 
with DG located at bus i. The following assumptions 
are integrated to establish the MOO model: 

1. DG is regarded as a negative power load in 
case of being installed at some bus (Lee and Park, 
2009; Akorede et al., 2011). 

2. Candidate of DG units’ locations can be any 
bus, except the slack bus. 

3. The power factor of the installed DG is unity. 
4. Capacity of DG units is a set of discrete values, 

which are integral multiples of DG-unit capacity. 
5. The maximum permitted total capacity of in-

tegrated DG units is given. 
 
 
 
 
 
 

 
 
 
 

2.1  Objective function 

Because improper allocation can result in ex-
cessive loss and cause the feeders to overheat, power 
loss is a key and greatly concerned consideration for 
the placement of DG units (Gopiya Naik et al., 2013). 
Minimizing the power loss of DS is propitious to 
alleviate the feeders, lower the voltage drop, promote 
the voltage profile, and possess other environmental 
and economic benefits (Atwa et al., 2010). Therefore, 
the first objective is to minimize the power loss of the 
system. The mathematical formulation of the active 
power loss can be expressed as 

bra
2 2

P loss
1

min ( 2 cos ),
N

k i j i j ij
k

f G V V VV 


       (1) 

 

where Nbra denotes the total number of branches in the 
system, Gk indicates the conductance of branch k 
which connects buses i and j, and V and θ represent 
the bus voltage magnitude and angle, respectively. 
θij=θi−θj. 

Obviously, integrating DG into DS has a strong 
effect on the security and reliability of the system, and 
the effect varies in accordance with the type, location, 
capacity, and load of the DG. The reliability of the 
system could be harmed by the improperly placed DG. 
Specifically, the modern load level of the DS changes 
distinctly from low to high every day, and the DS may 
experience voltage collapse under certain critical 
loading conditions. Thus, considering the security and 
reliability of the system, minimization of the voltage 
stability index (VSI) of the DS is selected to be the 
second objective-function of the MOO model. VSI in 
a DS has been analyzed by Liu et al. (2002), and a 
modified VSI is adopted.  

The VSI of branch k can be expressed as 
 

2 2
4

4
VSI [( ) ( ) ],k ij j ij j ij j ij j i

i

X P R Q X Q R P V
V

     (2) 

 
where Rij and Xij denote the resistance and reactance 
of branch k, respectively, and Pj and Qj indicate the 
total active and reactive power injected to the re-
ceiving bus j of branch k, respectively. 

Note that VSIk≤1.0 and the branch whose VSI 
value close to 1.0 is more likely to experience voltage 
collapse. Thus, the second objective-function can be 
represented by  

 

braVSI 1 2min max{VSI ,VSI ,...,VSI }.Nf =      (3) 

2.2  Constraints 

DG units in the DS must be installed with oper-
ating conditions being kept within given limits. The 
multi-objective functions (1) and (3) are minimized 
subject to technical and operational constraints to 
meet the electrical requirements for the DS. These 
constraints include: 

Power balance constraints: the power balance 
constraints with DG, which are equality constraints 

Fig. 1  Radial distribution system model with DG located 
at bus i 
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and include two nonlinear recursive power flow 
equations, can be formulated as follows: 

 
bus

bus

DG L
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L
1
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Herein Nbus indicates the total number of buses in the 
DS; Pi, PDGi, and PLi denote the active power, active 
power of installed DG, and active power load at bus i, 
respectively; Qi, QDGi, and QLi represent reactive 
power, reactive power of installed DG, and reactive 
power load at bus i, respectively; Bk represents the 
susceptance of branch k. 

Voltage operational tolerance constraints: they 
include the lower and upper voltage magnitudes. For 
bus i, the voltage limits can be expressed as 

 

min max .i i iV V V                        (5) 

 
Feeder transmission capacity constraints: power 

flow through any distribution feeder must comply 
with the thermal capacity of the line, that is, 

 

max .k kS S                            (6) 

 
The total capacity of DG integrated into the DS 

should be within a given penetration level, which can 
be expressed by  

 
bus

DG load
2

,
N

i

i

P P 


                      (7) 

 
where Pload indicates the total active power load of the 
DS, and η[0, 1] denotes the penetration rate. 

Constraints on the sizing of DG installed at each 
bus: the capacity of DG can be represented by its 
active power and capacity of the DG installed at each 
bus should not be larger than the allowed maximum: 

 

DG DGmax ,iP P                       (8) 

 
where PDGmax indicates the allowed maximum active 
power of DG to be allocated at bus i. 

2.3  Variables 

From Eqs. (1)–(8), it can be seen that the state 
variables include the voltage, active power, and reac-
tive power at each bus, all of which can be obtained 
by power flow computation, and that the decision 
variables include both the capacities and locations of 
the DGs to be installed at the candidate buses, which 
can be denoted as [PDG2, PDG3, …, PDGNbus]

T. If PDGi=0 
(i=2, 3, …, Nbus), it means that there is no DG unit to 
be accommodated at bus i.  

For the determination of optimal capacity of the 
DG with a settled location, the decision variable is 
one dimension, while for optimal location of the DG 
with a given capacity, the decision variable is the 
location. Let x and y denote the position of the particle 
and the optimal location, respectively, in which x is a 
real number in [0, 1]. Candidate locations range from 
bus n1 to bus n2. Then, the mapping relation must be 
conducted. y is expressed as y=round((n2−n1)x)+n1, 
where round(·) is an operator to round the number in 
the parentheses to the nearest integer. The optimal 
decision variable(s) can be determined by the 
EMOPSO algorithm introduced in Section 3. 

3  Enhanced multi-objective particle swarm 
optimization algorithm 

PSO is a population-based global optimization 
technique. It has been successfully employed to deal 
with various problems relating to a power system and 
has been proven to be a powerful optimizer. Each 
particle flies through the problem space and it is re-
garded as a potential solution to the problem. Particle 
i (i=1, 2, …, N) is associated with its velocity vi=[vi1, 
vi2, …, viD]T and position xi=[xi1, xi2, …, xiD]T, where 
D stands for the dimensionality of the solution space. 
PSO is initialized with a population of particles with 
random positions and velocities in the problem space. 
During the evolutionary process, the best position 
achieved so far by particle i is recorded as pi=[pi1, 
pi2, …, piD]T, whose corresponding fitness value is 
called the particle’s best, denoted as pbest. Moreover, 
the best position found by any particle is recorded as 
pg=[pg1, pg2, …, pgD]T, and its fitness value is called 
the global best, denoted as gbest. In each iteration, the 
velocity and position of particle i on dimension d (d=1, 
2, …, D) are updated according to Eqs. (9) and (10), 
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respectively: 
 

1 1 2 2( 1) ( ) ( ( )) ( ( )),id id id id gd idv t wv t c r p x t c r p x t     

      (9) 
( 1) ( ) ( 1),id id idx t x t v t                   (10) 

 
where t denotes the current iteration, w indicates the 
inertia weight, c1 and c2 represent positive accelera-
tion coefficients, and r1 and r2 are random numbers 
with a uniform distribution in [0, 1]. 

3.1  Special techniques introduced to MOPSO 

To improve the performance of PSO for MOPs, 
special techniques have been introduced and an 
EMOPSO algorithm has been proposed. The inertia 
weight controls the convergence behavior and pro-
vides a balance between global exploration and local 
exploitation of the PSO algorithm. Instead of a con-
stant or linearly changing one, a dynamic inertia 
weight (Chen et al., 2009) is used that can adjust 
dynamically according to  

 

0 3 0( ) (1 ),w t w r w                    (11) 
 

where r3 is a random number with uniform distribu-
tion in [0, 1], and w0[0, 0.5] is a constant. Eq. (11) is 
used to keep a dynamic balance between global and 
local search. 

Ratnaweera et al. (2004) advocated that c1 
changing from 2.5 to 0.5 and c2 changing from 0.5 to 
2.5 during the search process can provide an im-
proved optimal solution for most of the benchmarks. 
Thus, to enhance the global exploration capability, a 
time-decreasing c1 expressed by Eq. (12) and a 
time-increasing c2 formulated by Eq. (13) have been 
integrated into the EMOPSO algorithm: 

 

1 2.5 / ,tc t M                        (12) 

2 0.5 / ,tc t M                        (13) 

 
where Mt indicates the maximum number of iterations. 

The acceleration coefficients c1 and c2 control 
the amount of ‘tension’ of PSO to guide each particle 
towards pi and pg, respectively. As Eqs. (12) and (13) 
show, at the beginning c1 is set to be a larger value and 
c2 a smaller one, and they are gradually decreasing 
and increasing with each iteration, respectively. Such 

a mechanism not only provides a high diversity dur-
ing the early stage of the evolutionary process for 
global exploration of the search space, but also allows 
for more accuracy in the optimum solution via local 
exploitation in the last stage. 

How to maximize the distribution of identified 
non-dominated solutions is another issue that should 
be addressed for MOPSO. Conventionally, the 
non-dominated crowding distance sorting (NCDS) 
technique was commonly used to maintain a good 
spread of Pareto-optimal solutions. This method 
computes the CD of each non-dominated solution in 
the set ND identified at the current iteration and then 
selects the solutions with the larger CDs as the current 
final Pareto-optimal solutions. The main disadvan-
tage of such a method is that the selected solution 
does not have a uniform distribution. To avoid this 
disadvantage, an improved NCDS (INCDS) tech-
nique is presented and integrated to select the parti-
cles for the next iteration. Set Temp=ND and INCDS 
can be described as follows. Firstly, compute the CD 
of each solution in Temp. Secondly, sort the 
non-dominated solutions based on their CDs and 
delete the solution with the least CD from Temp. 
Thirdly, check the number of solutions left in Temp. 
If it is smaller than the required number, go to the first 
step; else, output the solutions in Temp as the current 
final Pareto-optimal solutions. The scheme for the 
selection of particles for the next iteration integrated 
with INCDS can be illustrated in Fig. 2, where D, Pnew, 
and NND represent the dominated solutions at the 
current iteration, the population for the next iteration, 
and the number of solutions in ND, respectively. 

Selecting leader particle(s) is a key component 
for MOO. There are a variety of equally good non- 
dominated solutions, and just one or more can be 
assigned as pg to update each individual’s position. 
Traditionally, NCDS was used to evaluate the non- 
dominated solutions and one was selected as each 
particle’s leader. Unlike the conventional way, a dy-
namic weighted aggregating approach is used to 
evaluate non-dominated solutions and assign each 
particle with a different leader to update its position. 
Although the aggregating function (Chen et al., 2009) 
is defective in producing the Pareto-optimal set, it can 
be applied to the non-dominated solutions produced 
and guide the selection of the personal and global best. 
For each particle, randomly generate a set of weights 
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and use Eq. (14) to evaluate each non-dominated 
solution: 

 

1 1

fit 1 ,   ,    (0,1),
M M

i i i i i i
i i

w f w U  
 

      (14) 

 
where M is the number of objectives and fi is the ith 
objective. Then sort the non-dominated solutions 
based on their fit values and select the solution with 
the largest fit value as this particle’s pg. The apparent 
advantage of such an approach is that all the 
non-dominated solutions have the same opportunity 
to be selected as leader, which promotes the diversity 
of the swarm and strengthens the global exploration. 

Finally, the mutation strategy is applied to the 
EMOPSO algorithm to avoid premature convergence. 

3.2  Algorithm procedure 

In light of the above introduced special tech-
niques, the procedure of the proposed EMOPSO al-
gorithm can be summarized as follows: 

Step 1: Initialization. Set the population size N 
and iteration number Mt, initialize the population P 
via initializing the position xi and velocity vi of par-
ticle i (i=1, 2, …, N). Moreover, set pi=xi and Vdmax=k 
xdmax, 0.1≤k≤1.0, where xdmax indicates the upper 
bound of the decision variable on the dth dimension. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 2: Evaluation. Compute the fitness of each 
particle, and update pi and pg. 

Step 3: Generate P’s offspring Pnew with velocity 
vinew and position xinew based on the current position xi 
(i=1, 2, …, N), and compute the objective-function 
values of the newly generated particles. Then, com-
bine P and Pnew and store them in R. 

Step 4: Distinguish the non-dominated solutions 
and dominated ones from R based on non-domination, 
and store them in matrices ND and D, respectively. 

Step 5: Select particles for the next iteration 
according to the scheme illustrated in Fig. 2. 

Step 6: Mutating. If all |vi(t)|<0.2Vmax, carry out 
the Gaussian mutation operator; else, go to step 7.  

Step 7: Return to step 2 until the maximum it-
eration Mt is met. 

Step 8: Output the current non-dominated solu-
tions as the final Pareto-optimal solutions. 

3.3  Performance of the EMOPSO Algorithm 

To illustrate the effectiveness of the EMOPSO 
algorithm, four commonly recognized benchmark 
functions (ZDT1–ZDT4) and two metrics, namely the 
generational distance GD and the spread Δ (Deb et al., 
2002), are used here. Let Q and P* denote an obtained 
and a known Pareto-optimal set, respectively. GD and 
Δ are defined as follows: 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 2  Scheme for selection of the particles for next iteration integrated with improved non-dominated 
crowding distance sorting (INCDS) 

NND=N

Eliminate NND−N 
particles from Temp

according to the 
INCDS strategy

Pnew=Temp

Identify non-dominated solutions of the 
first non-dominated front from Dtemp and 

store them in NDtemp

NNDtemp=Ntemp

Pnew=Temp
Dtemp=D

Ntemp=N−NND

Ne=NNDtemp−Ntemp

Compute the minimum ED between each particle in 
NDtemp and all particles in Pnew

Eliminate the particle with the least 
minimum ED from NDtemp

Ne=Ne−1

N

Pnew=Pnew+NDtemp

Y

Read ND and  D. Set 
Temp=ND and Pnew=[]

N

Output individuals in Pnew as the 
particles for the next iteration

Y

NND>N

Y

Ne=0
N

Y
Dtemp=Dtemp−NDtemp

Ntemp=Ntemp−NNDtemp

N

NNDtemp>Ntemp
N

Y
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GD and Δ evaluate the closeness of Q from P* 
and the distribution of the Pareto-optimal solutions 
along the Pareto front, respectively. Considering a 
two-objective problem (M=2), Di denotes the Eu-
clidean distance between the solution iQ and the 

nearest member of P*. di and d  represent the distance 
between consecutive solutions in Q and the average of 
all di’s, respectively. dm

e indicates the distance be-
tween the extreme solutions of Q and the nearest 
member of P* in the mth objective space.  

A set of |P*|=500 true Pareto-optimal solutions of 
a uniform distribution is used to calculate GD. The 
performance metrics averaged over 10 iterations are 
compared with those of NSGA-II (Deb et al., 2002), 
NSPSO (Li, 2003), MOPSO (Coello et al., 2004), and 
LH-MOPSO (Jia et al., 2012), as summarized in Ta-
ble 1. Fig. 3 shows the Pareto-optimal solutions 
identified by the EMOPSO algorithm. From Table 1 
and Fig. 3, it can be seen that the EMOPSO algorithm 
performs very well as far as convergence and 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

diversity are concerned. It can identify a set of diverse 
Pareto-optimal solutions, which are close to the real 
Pareto front and capture the whole spectrum of the 
true Pareto front. 

 
 

4  Simulation results and analysis 

 
The encouraging results demonstrated in the 

previous section reveal that the EMOPSO algorithm 
enables to distinguish a variety of Pareto-optimal 
solutions, and gives more information on the trade- 
offs and correlations between the objectives. The 
comparison indicates it is competitive considering the 
convergence and distribution of Pareto-optimal solu-
tions. Having established its effectiveness, EMOPSO 
is applied to the optimal placement of DG units and 
its feasibility is verified by the placement of the DG 
units in the IEEE 33-bus system (Baran and Wu, 1989) 
shown in Fig. 4. The system studied is a radial feeder 
system, which has an initial real power loss of 201.53 
kW and the VSI is 0.0996. Three scenarios, including 
determination of the optimal location with a given 
capacity, optimal capacity with a settled location, and 
optimal capacities and locations of DG units, are 
simulated. Simulation results are also compared with 
those of other representative methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Mean values of the convergence and diversity 

GD  Δ 
Algorithm 

ZDT1 ZDT2 ZDT3 ZDT4 ZDT1 ZDT2 ZDT3 ZDT4 

NSGA-II 8.94e-4 8.24e-4 4.34e-2 2.92e-2 0.463 0.435 0.576 0.655 

NSPSO 7.53e-4 8.05e-4 3.41e-3 7.82e-4 0.767 0.758 0.869 0.768 

MOPSO 1.33e-3 0.89e-3 4.18e-3 7.374 0.681 0.639 0.832 0.962 

LH-MOPSO 2.10e-3 2.70e-3 5.90e-3 4.81e-1 0.409 0.380 0.561 0.409 

EMOPSO 9.75e-5 8.71e-5 6.01e-4 4.48e-4 0.714 0.682 0.844 0.618 

Fig. 3  Pareto-optimal solutions of ZDT1 (a), ZDT2 (b), ZDT3 (c), and ZDT4 (d) in the objective space

(a) (c) (d) (b) 
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4.1  Scenario I: determination of the optimal loca-
tion with a given capacity 

As the first case study, the EMOPSO algorithm 
is applied to determine the optimal location of DG 
units with a given capacity of 1 MW. The candidate 
locations range from buses 2 to 33. Fig. 5 demon-
strates the Pareto-optimal solutions and the corre-
sponding objective-function values. Clearly, the 
power loss is reduced and the VSI is improved after 
installing the DG units. It also indicates that the two 
objectives cannot be optimal at the same bus and the 
VSI decreases with increasing power loss. To illus-
trate the effect of integrating DG units at different 
buses on the voltage of each bus, five Pareto-optimal 
solutions are selected and the corresponding voltage 
magnitudes are illustrated in Fig. 6. The installation of 
DG units has a positive effect on the promotion of the 
voltage. On the other hand, the effect changes with 
the location of the installed DG units and the voltage 
magnitude of the bus, where DG units are installed 
and those of its nearby buses are greatly prompted. 

 
 
 
 
 
 
 
 
 
 

 
 
 

 

 
 
 

4.2  Scenario II: determination of the optimal ca-
pacity with a settled location 

The variable of scenario I is the location of the 

DG units with a given capacity, while for scenario II, 
the DG units are supposed to be located at bus 12. 
EMOPSO is used to determine the optimal capacity. 
The variable is continuous during the iterations, and 
for objective-value computation it is approximated to 
be an integral multiple of 50 kW. The maximum ca-
pacity is equal to Pload. The optimal solutions and the 
corresponding objective-values are shown in Fig. 7. 
The voltage magnitudes with different capacities are 
shown in Fig. 8. As shown in Fig. 7, the total power 
loss of the studied system becomes less and the VSI 
becomes better after installing DG units with optimal 
capacity. Similar to Fig. 5, Fig. 7 clearly indicates that 
the considered objectives conflict with each other. Be-
sides, bus 12, where the DG units are located, has a 
higher level of voltage magnitude after installing DG 
units, and a larger capacity implies a better promotion 
(Fig. 8). 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 5  Pareto-optimal solutions of scenario I in the ob-
jective space (optimal location of DG with a given ca-
pacity of 1 MW) 

Fig. 6  Voltage magnitude of each bus with 1 MW DG 
units being installed at different buses 

Fig. 7  Pareto-optimal solutions of scenario II in the 
objective space (optimal capacity of DG with a given 
location at bus 12) 

Fig. 4  Single-line diagram of the IEEE 33-bus system
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4.3 Scenario III: determination of the optimal 
capacities and locations of DG units 

From scenarios I and II, it can be seen that the 
power loss and VSI of the system in the presence of 
DG depend on the capacities and locations of the DG 
units. Therefore, the optimal locations and capacities 
of the DG units should be determined simultaneously. 
The variables in scenario III include the capacities 
and locations of the DG units. Fig. 9 illustrates the 
VSI values against the power loss values according to 
the identified Pareto solutions, where η=0.50. Each is 
a possible solution for the placement of the DG units, 
but each has a different power loss and VSI. Some 
solutions have low power loss, but high VSI, and vice 
versa. Fig. 9 clearly indicates that VSI decreases with 
an increase in the power loss; that is to say, the ob-
jective function of power loss conflicts with that of 
VSI.  

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

Another advantage of proper locations and ca-
pacities of the DG units is the improvement in the 
voltage profile. Different solutions, even with the 
same total capacity, have different effects on the bus 
voltage. Five solutions shown in Fig. 9 are chosen 
from the Pareto-optimal solutions and their exact 
information is illustrated in Fig. 10a. Fig. 10b shows 
the corresponding voltage magnitudes. As shown in 
Fig. 10, the voltage magnitude of the bus where DG 
units are installed and those of its nearby buses, gain 
significant promotion, and the larger capacity has the 
better promotion (buses 21 and 33).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.4  Comparison and discussion 

An inspection of the results presented about the 
three scenarios shows the advantages of optimizing 
the capacities and locations of the DG units simulta-
neously. To validate the completeness of the proposed 
method, Table 2 gives the simulation results obtained 
using the methods proposed by Kumar and Selvan 
(2009), Abu-Mouti and El-Hawary (2011), Moradi 
and Abedini (2012), and Mistry and Roy (2014). Note 
that Kumar and Selvan (2009) aimed to minimize the 
network power loss and maximize the voltage regu-
lation in a given radial distribution network. Moradi 
and Abedini (2012) also proposed a multi-objective 
optimization model to minimize the total power loss, 
and improve the voltage regulation and voltage sta-
bility. Both studies converted MOO formulation into 
a single one via a set of weighting factors. The ob-
jectives of the other three studies are minimization of 
the total system power loss. 

Fig. 8  Voltage magnitudes with different capacities of 
DG installed at bus 12 

Fig. 9  Pareto-optimal solutions of scenario III in the 
objective space 

Fig. 10  Effects of installed DG on the bus voltage under 
the same capacity and different installation informa-
tion: (a) installation information; (b) corresponding 
voltage magnitudes 
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Firstly, the proposed method can result in better 
benefits of installing DG with less total capacity. The 
aim of the optimal placement is to find the optimal 
locations and capacities of DG units to obtain more 
benefits. Kumar and Selvan (2009) proposed to place 
DG units with a total capacity of 3.00 MW at buses 14, 
18, and 33, and Moradi and Abedini (2012) proposed 
to install DG units with a total capacity of 2.988 MW 
at buses 11, 16, and 32. Such placements reduced 
power loss by 27.78% and 50.97%, and improved 
VSI by 6.67% and 29.44%, respectively. With a total 
capacity of 1.85 MW, the presented method can pro-
vide diverse solutions, whose corresponding reduc-
tion of power loss ranges from 52.30% to 56.47% and 
improvement of VSI ranges from 44.41% to 49.51%. 
Thus, applying the EMOPSO algorithm to optimally 
place DG units is rather effective. 

Secondly, placing DG at multiple locations with 
a small capacity is more advantageous. As can be seen 
from Fig. 7 and Table 2, when DG units with a total 
capacity of 2.00 MW are installed at bus 12, the 
power loss is reduced by 31.45%, and the VSI is im-
proved by 42.65%. Abu-Mouti and El-Hawary (2011) 
placed DG units with a capacity of 3.38 MW at bus 6, 
which reduces the power loss by 44.83%. If DG units 
with a total capacity of 1.85 MW are placed at buses 
12, 13, 15, 17, 18, 20–22, 28–31, the system power 
loss and VSI are improved by 52.30% and 49.51%, 
respectively. Figs. 6, 8, and 10b illustrate the voltage 
profile without and with integration of the DG. As can 
be seen, integrating DG units with a larger capacity at 
one location significantly promotes the voltage at a 
certain area of the network, while placing DG units at 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
multiple locations with a smaller capacity makes the 
voltage more uniform. Correspondingly, the effects 
on reduction of power loss and improvement of VSI 
are considerable. Hence, from the planning point of 
view, compared with placing DG units at a bus, op-
timally placing DG units disperse can result in more 
benefits. 

Thirdly, the MOO algorithm provides a set of 
Pareto-optimal solutions for the decision maker to 
choose with preference, while the way converting the 
MOO formulations into a single one yields only one 
solution which is affected by the weighting factors 
dramatically. Kumar and Selvan (2009) and Moradi 
and Abedini (2012) set a larger weighting factor to the 
power loss. The resulting effect is that the power loss 
is reduced more than the other objective(s) being 
improved. Hence, such a trade-off solution is affected 
by the subjective weights, and in many cases, it is 
difficult to set appropriate weights to different objec-
tives due to the lack of knowledge or information of 
the inner relations. The proposed MOO is non- 
subjective when identifying the Pareto-optimal solu-
tions, because a set of weights reflecting the decision 
maker’s preference for certain objectives is not nec-
essary. After the Pareto-optimal solutions are found, a 
user can use a high-level qualitative method to make a 
decision. It is evident that how to use the specific 
problem preference information is the greatest dif-
ference between the MOO method and the method 
that converts the MOO formulations into a single one 
using weights. Consequently, MOO can provide the 
designer with alternative options, being methodical, 
practical, and less subjective (Deb, 2001). 

Table 2  Comparison of results obtained by different methods 

Method Location (Capacity, in MW) L (%) V (%) 

Kumar and Selvan (2009) 14 (1.00), 18 (0.25), 33 (1.75) 27.78 6.67 
Abu-Mouti and El-Hawary 

(2011) 
6 (3.38) 44.83 – 

Moradi and Abedini (2012) 11 (0.925), 16 (0.863), 32 (1.2) 50.97 29.44 
Mistry and Roy (2014) 5 (0.8362), 10 (0.3122), 14 (0.1977), 15 (0.2123), 20 (0.2788),  

23 (0.9544), 30 (0.6882) 
68.76 – 

Proposed-S1 in Fig. 10 12 (0.05), 13 (0.15), 15 (0.1), 17 (0.05), 18 (0.15), 20 (0.15), 21 (0.45),  
22 (0.10), 24 (0.15), 25 (0.05), 28 (0.05), 29 (0.25), 30 (0.10), 31 (0.05) 

52.30 49.51 

Proposed-S5 in Fig. 10 6 (0.05), 7 (0.10), 8 (0.05), 9 (0.05), 10 (0.05), 12 (0.20), 13 (0.05),  
14 (0.10), 15 (0.05), 16 (0.05), 17 (0.10), 18 (0.10), 20 (0.15), 22 (0.05), 
24 (0.10), 28 (0.05), 29 (0.15), 30 (0.1), 31 (0.10), 32 (0.05), 33 (0.10) 

56.47 44.41 

L denotes the ratio of the total system power loss being reduced to that in case of no installed DG units; V indicates the ratio of the VSI value 
of the system being improved to that in case of no installed DG units 
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5  Conclusions 
 

In this paper, an EMOPSO algorithm was pre-
sented and employed to determine the optimal 
placement of DG units. The study mainly aims to 
determine the optimal capacities and locations of the 
integrated DG units for reducing the total power loss 
and VSI of the DS. To deal with such a non-linear 
problem with incompatible objectives, the EMOPSO 
algorithm adopts dynamic inertia weights and accel-
eration coefficients, dynamic aggregating functions, 
and the mutation operator for improving convergence. 
The introduction of the INCDS technique and its 
application to selection of particles for the next itera-
tion ensures the uniform distribution of the Pareto- 
optimal solutions in the objective space. Application 
to four well-known benchmark functions shows that 
the proposed EMOPSO algorithm can identify a set of 
Pareto-optimal solutions that converge to the true 
Pareto front with high accuracy while keeping a good 
distribution. The EMOPSO algorithm has also been 
successfully tested on the IEEE 33-bus system and 
compared with the other optimization methods. The 
corresponding results have demonstrated that the 
EMOPSO algorithm is a feasible and effective way to 
solve the MOO of placing DG units in the DS. The 
numerical simulations also showed that installing DG 
can effectively reduce the power loss and improve the 
VSI if they disperse at various buses rather than locate 
at a stationary bus. 

Future research includes using the proposed 
method in practical applications considering multiple 
DGs and adopting a high-level qualitative method  
to help make a decision from the Pareto-optimal  
solutions. 
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