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Abstract:    Exoskeleton robots and their control methods have been extensively developed to aid post-stroke rehabilitation. 
Most of the existing methods using linear controllers are designed for position control and are not suitable for human-machine 
interaction (HMI) force control, as the interaction system between the human body and exoskeleton is uncertain and nonlinear. 
We present an approach for HMI force control via model reference adaptive impedance control (MRAIC) to solve this problem 
in case of index finger exoskeleton control. First, a dynamic HMI model, which is based on a position control inner loop, is for-
mulated. Second, the theoretical MRAC framework is implemented in the control system. Then, the adaptive controllers are 
designed according to the Lyapunov stability theory. To verify the performance of the proposed method, we compare it with a 
proportional-integral-derivative (PID) method in the time domain with real experiments and in the frequency domain with simu-
lations. The results illustrate the effectiveness and robustness of the proposed method in solving the nonlinear HMI force control 
problem in hand exoskeleton. 

 
Key words:  Interaction force, Adaptive control, Exoskeleton, Human-machine interaction (HMI), Impedance 
doi:10.1631/jzus.C1300259                      Document code:  A                      CLC number:  TP242.3 

 
 
1  Introduction 

 
Exoskeleton robots have been developed to re-

place traditional therapist-dependent post-stroke re-
habilitation. Current robotic systems can assist 
movement in a number of different modes (Prange et 
al., 2006), including passive assist mode, in which 
the patients relax while the exoskeleton performs 
limb movements, and active assist mode, in which 
the patients attempt to move and the exoskeleton 
supplements the effort (Takahashi et al., 2008). In 
particular, passive assist mode emphasizes that the 
exoskeleton could drive the limb to follow the de-
sired position in the range of motion (ROM). Usually, 

the input reference signal of the control system is a 
position variable. In active assist mode, however, the 
control target is an interaction force. Since the force 
reflects the motion attempts, we can provide the ef-
fort for the movement by controlling the interaction 
force between the human and exoskeleton (Huo et 
al., 2011).  

However, human hand is the most dexterous 
part of the human body, including five fingers and 22 
degrees of freedom (DOFs). Development of hand 
exoskeletons has proceeded slowly in terms of both 
the mechanism and the control method. Most of the 
hand exoskeleton control methods focus on passive 
assist mode, i.e., position control. The simplest 
method is using a commercial motor driver to 
achieve the precise position control of a motor. Ueki 
et al. (2012) presented a novel virtual reality (VR) 
enhanced hand rehabilitation support system con-
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trolled by motor drivers. With this system, they de-
veloped a self-controlled rehabilitation therapy. The 
proportional-integral-derivative (PID) feedback con-
trol has also been widely used in position control. 
Tjahyono et al. (2013) designed a five-fingered hand 
exoskeleton driven by pneumatic artificial muscles 
(PAMs) with novel polypyrrole sensors controlled 
by a PID controller. Azzurra et al. (2012) designed a 
4-DOF index finger exoskeleton (HANDEXOS) for 
post-stroke rehabilitation. They modeled the dynam-
ics of an exoskeleton and employed a PID controller 
for position control. In addition, the force threshold 
was chosen based on the concern for security. To 
control the exoskeleton more precisely, some re-
searchers have incorporated friction compensation 
into the controller. Polotto et al. (2012) formulated 
the model using system identification and modeled 
the friction dynamics using Stribeck’s model, suc-
cessfully implementing a control system using a PID 
feedback controller and friction compensation. 
Schabowsky et al. (2010) presented a hand rehabili-
tation exoskeleton. Compensation algorithms were 
developed to improve the exoskeleton’s back driv-
ability by counteracting gravity, stiction, and kinetic 
friction. 

Thus far, few researchers have implemented 
force control into their hand exoskeletons. Nakaga-
wara et al. (2005) designed a multi-fingered master 
hand using encounter-type force feedback, which 
enables unconstrained motion of the operator’s fin-
ger and natural contact sensation. The torque of joint 
is calculated according to the system dynamic model 
for force control. Wege et al. (2006) deployed two 
closed loops in their control method. The inner loop 
implements position control via a sliding mode con-
trol method, and the outer loop handles force control 
via admittance control. However, they neglected the 
impedance of the human finger itself. Fang et al. 
(2009) designed an exoskeleton that can distinguish 
contact and non-contact modes. When the slave hand 
touches an object, the master exoskeleton finger can 
generate a force that is equal to the force applied on 
the slave finger using a force control scheme. In this 
method, a high-end control hardware system is nec-
essary.  

As the exoskeletons appear to be dexterous ro-
bot hands, the control methods used in hand exo-
skeletons could be imitated, especially the methods 
for impedance control, which controls not only the 

position and force but also an interaction between the 
exoskeleton and human body (Hogan, 1985). This 
method has been applied in an upper-limb exoskele-
ton (Kiguchi and Hayashi, 2012). 

However, the aforementioned control methods 
consider the human-machine interaction system as a 
linear time-invariant (LTI) system. As shown in  
Fig. 1, the exoskeleton robots are nonlinear systems, 
and the exoskeletons contact human soft tissues as-
sociated with a rigid body using an interaction sys-
tem. Since the performance of this soft tissue cannot 
be described in a formula, the parameters of the in-
teraction system are uncertain.  

 
 
 
 
 
 
 
 
 
 
 
One of the methods to solve this nonlinear prob-

lem is making the controller adaptive to state vari-
ables. In addition, the mechanical performance of 
soft tissue varies in different postures, while we want 
the system to achieve the desired performance, i.e., a 
reference model. Obviously, linear controllers cannot 
be used in this situation. Instead, model reference 
adaptive control (MRAC) is an effective means, and 
has been widely used in robot control (Nicosia and 
Tomei, 1984; Kamnik et al., 1998; Kamal et al., 
2010). 

As addressed above, impedance control is effec-
tive for interaction force control and MRAC is effec-
tive for nonlinear systems. So, we combine these two 
methods and propose a model reference adaptive 
impedance control (MRAIC) method, applied to an 
index finger exoskeleton system.  
 

 
2  Model reference adaptive impedance con-
trol method 
 

The MRAIC method is implemented into the 
hand exoskeleton as shown in Fig. 2. Here, the plant, 
i.e., the control object, is the dynamics of the human-

Finger 
exoskeleton

Soft tissue

Bone

Interaction 
system

Fig. 1  A human-machine interaction sketch 
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machine interaction (HMI) system represented by 
equation P P P P . e A e B u  It is modeled according to 

the impedance of a finger. KBC(s) and KFC(s) repre-
sent an adaptive feedback controller and feedforward 
controller, respectively. They are derived via the 
Lyapunov stability theory (Pang and Chui, 2009). 
Equation m m m m r e A e B y  is the reference model 

for the system. Besides, yr is the input of the control 
system, u is the input of the exoskeleton, and e is the 
error between the reference model and plant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The proposed method is implemented through 

the following steps: 
1. Model the HMI and calculate the state  

variables;  
2. Update the adaptive controllers using the 

state variables;  
3. Calculate the input value of the exoskeleton. 

2.1  Plant modeling 

As shown in Fig. 3, we assume the interaction 
system is a mass-spring-damper system. The interac-
tion force varies as the exoskeleton moves to differ-
ent positions. In other words, the mechanical imped-
ance between the displacement and force varies (Se-
raji and Colbaugh, 1997). Thus, position control is 
the inner loop, and impedance control is the outer 
loop. We will focus on designing the controller for 
the outer loop. The position control is achieved by 
motor drivers. 

In Fig. 3, XH represents the critical contact posi-
tion with the finger. When the exoskeleton moves to 
position X, there is a corresponding force F due to 
the deformation of soft tissues. In addition, XR corre-
sponds to the desired interaction force FR. 

 
 
 
 
 
 
 
 
 
 
 
 
 

The finger mechanical impedance, which in 
general represents the relationship between motion 
and force, can be written as follows: 

 

H
H 2

H H H

( ) 1
( ) ,

( )
 

 
X s

G s
F s M s B s K        (1) 

 

where XH=XE−X denotes the deformation of the hu-
man finger. MH, BH, and KH represent the mass, 
damping, and stiffness, respectively. Based on the 
discussion in Section 1, these three parameters are 
time-variant. Table 1 shows their nominal values and 
percentages of perturbation relative to the nominal 
values (Bi et al., 2013).  
 
 
 
 
 
 
 

As shown in Fig. 4, the actual impedance is not 
ideal. Both overshoot and stable final values are per-
turbative. To improve the performance, we define 
linear time-invariant (LTI) impedance as the target, 
which is over-damped. The step responses are com-
pared in Fig. 4. 

In a similar manner, the target impedance can 
be derived as follows: 

 

T
T 2

F T T T

( ) 1
( ) ,

( )
 

 
X s

G s
E s M s B s K         (2)

 

 

where XT=XR−X represents the difference between 
the reference position and actual position, and 
EF=FR−F denotes the difference between the refer-

Table 1  Parameters of the finger impedance 

Parameter Nominal value Upper band Lower band

Mass (kg) 0.064 4.7% −3.6% 

Damping (N·s/m) 5.190 1.9% −1.1% 

Stiffness (N/m) 448.3 4.9% −8.7% 

 




m m m m r e A e B y

P P P P e A e B u

Fig. 2  Control diagram of our proposed model reference 
adaptive impedance control method 

Fig. 3  Exoskeleton and human interaction 
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ence force and actual force. MT, BT, and KT represent 
the mass, damping, and stiffness, respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Using Eqs. (1) and (2), we can obtain 
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    (3) 

 
According to the final-value theorem, as time goes to 
infinity, s goes to zero. 
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According to Eq. (4), the static error value is affected 
by the stiffness of the human finger, the stiffness of 
the target impedance, and the input variables. We 
can define XR as follows to eliminate the static error: 

 

R R H
H

1
.X F X

K
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(5) 

 

To obtain the error dynamics, we can expand Eq. (3): 
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To produce a constant contact force, the reference 
position XR is specified to ‘penetrate’ into the object 
by a constant amount, i.e., R R 0  X X  and 

H H 0  X X . Hence, Eq. (6) becomes 
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Change Eq. (7) into the differential form via Laplace 
inverse transform: 
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(8) 

 
As this method is based on the position control inner 
loop, we transform the input of the error dynamics 
into an equivalent position: 
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where XU represents the equivalent position: 
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So we obtain the state space equation: 
 

P P P P , e A e B u                     (11) 
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2.2  Controller design 

From Eq. (7), we draw the bode plot for the 
plant (Fig. 5). Obviously, the error dynamics is sta-
ble, but the cutting frequency is approximately 100 
Hz, larger than the human movement potential. A too 
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Fig. 4  The step response of human-machine interaction
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fast response may have an impact on patients. How-
ever, patients cannot bear violent movements caused 
by the impact, especially in the early stage of reha-
bilitation. Eq. (8) describes the impedance of HMI, 
not including the mechanism or the control system’s 
inherent characteristics. Considering the response 
performance of the system and comfort of the patient, 
the cutting frequency is preferred to be approxi-
mately 10 Hz for the reference model (Fig. 5), such 
that the exoskeleton can respond to the control sys-
tem in time and drive the patient’s finger gently. 

 
 

 
 

 

 

 

 

 

 

 
 
 
 
 

 
 
Similar to Eq. (10), we transform the input of 

the error dynamics into an equivalent position: 
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Herein ω represents the cut-off frequency of the  
reference model and ξ represents the damping  
coefficient. 

The input control command is defined as  
follows: 

FC r BC P , u K y K e                     (14) 

 
where KFC and KBC are the feedforward controller 
and feedback controller, respectively. Both of them 
are adapted to the state variables of the system. 

Substituting Eq. (14) into Eq. (11), we obtain 
 

P P P BC P P FC r( ) .  e A B K e B K y
     

   (15) 

 
Thus, we have the state error equation of the system: 
 

m m P P BC P m P FC r= ( ) ( ) .    e A e A A B K e B B K y  

 (16) 

Assume that the adjustable system matches the refer-
ence model when KBC(t)=KB0 and KFC(t)=KF0. As a 
result, we obtain 

 

P P B0 m P F0 m, = . A B K A B K B           (17) 

 
Substituting Eq. (17) into Eq. (16) to eliminate AP 
and BP yields  
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The Lyapunov stability theory is used to design the 
controller. We define the Lyapunov function as  
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where P, PB, and PF are symmetric positive matrixes. 
Taking the derivative of the Lyapunov function with 
respect to time yields  
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According to the Lyapunov theorem of stability, we 
obtain  
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Fig. 5  Open loop system bode plot: (a) magnitude-
frequency response; (b) phase-frequency response 
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To ensure a negative definite ,V  we obtain 
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           (22) 

 
Since PB, PF, and KF0 are artificially constructed, 
Eq. (22) could be rewritten following the adaptive 
control law: 
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            (23) 

 
where R1 and R2 are the coefficients of the feedback 
controller and feedforward controller, respectively. 
 
 
3  Simulations and experiments 
 

This section illustrates the performance of our 
designed controllers via numerical simulations in 
MATLAB and experiments using our index finger 
exoskeleton. As shown in Fig. 6, the simulation in-
volves the extension posture. The exoskeleton could 
move to the desired position precisely via the inner 
loop of the control system. When the exoskeleton 
makes a small displacement, the soft tissue at the 
dorsal side of the finger shows mechanical imped-
ance. The force between the exoskeleton and the fin-
ger can be measured by a force sensor. 

 
 
 
 
 
 
 
 
 
 
The parameters of finger impedance, including 

nominal values of the second order system and their 
perturbation range, are estimated via system identifi-
cation. For the simulations here, we use the parame-
ters under extension posture (Table 2). 

The experiments are also set under extension 
posture (Fig. 7). The exoskeleton has two active 
DOFs at the metacarpophalangeal (MP) joint and 

proximal interphalangeal (PIP) joint, respectively, 
and one coupling DOF at the distal interphalangeal 
(DIP) joint. Two Maxon DC motors rotate screws, 
driving the multi-linkages to make the joints of the 
exoskeleton rotate. The lower computer (DSP) sends 
commands to motor drivers via the controller area 
network (CAN) bus, and collects haptic data using 
acquisition circuits. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.1  Time domain simulations and experiments 

Simulations and experiments in the time do-
main intuitively illustrate the performance of the 
MRAIC method. To make the results more convinci-
ble, a PID controller is implemented for comparison. 
We perform two groups of tests, square wave track-
ing and sinusoidal tracking. 

Square wave tracking makes the system switch 
between dynamic and static. Fig. 8 shows the refer-
ence input, simulation using MRAIC in Matlab, an 
experiment using MRAIC, and an experiment using 
PID. Both the simulation and experiment of MRAIC 
can get stabilized, while the PID method cannot. As 
mentioned above, the interaction system is time-
variant and nonlinear, and thus a PID controller is 
not suitable. The indexes are listed in Table 3. The 
MRAIC method outperforms PID in terms of stabili-
zation and speed. The MRAIC simulation and ex-
periment are similar except for the maximum over-
shoot. Since the command cannot be executed im-
mediately, the exoskeleton moves on for a small dis-

Fig. 7  Index exoskeleton system 

Table 2  Human-machine interaction impedance 

Impedance 
Mass 
(kg) 

Damping 
(N·s/m) 

Stiffness 
(N/m) 

Actual 0.064   5.19 448.3 
Target 0.050 10.00 448.3 

Fig. 6  Simulation diagram 
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placement, which leads to a higher overshoot. In 
other words, time delay in the control system results 
in this difference. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Sinusoidal tracking is aimed to verify the con-

tinuous dynamic performance. In Fig. 9, both the 
MRAIC simulation and experiment can follow the 
reference signal better than the PID experiment in 
terms of the maximum error and root mean square 
error (Table 4). Additionally, the phase errors of 
MRAIC are smaller than those of PID. 

Comparison of the MRAIC and PID controllers 
in the two groups of tests shows that MRAIC has 
stronger robustness even when the system suffers 
from saltus and the parameters are perturbative. 

3.2  Frequency domain simulations 

To further analyze the performance of the sys-
tem, we conduct some frequency response simula-
tions. In each simulation we change only one pa-
rameter to observe the influence on the system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

The perturbation range is set larger than the 
range measured to evaluate the performance of the 
system as much as possible. Each value increases 
from 10% nominal to 200% nominal. Figs. 10‒12 
show the frequency responses. The shadows mark 
out the variation ranges, all of which are concen-
trated in the low frequency stages. As shown in Sec-
tion 2.2, a fast frequency response may have an im-
pact on patients. The cutting frequency of the refer-
ence model is set at 10 Hz. Thus, in all frequency 
simulations, the frequency response above 10 Hz 
decays greatly. The change caused by finger mass is 
below 5 Hz, and its gain increases with increasing 
mass. The difference of peak gain (PG) is approxi-
mately 25 dB. Although the variations of both damp-
ing and stiffness do not change the PG, they influ-
ence the different frequency bounds. The former is 
less than 0.06 Hz and the latter less than 1 Hz. The 
human-machine system usually works in a limited 
low frequency bound (from 10−1 to 101); therefore, 
mass and stiffness influence the system significantly. 

After analyzing the influence of human finger 
impedance, we explore how the parameters in the 
controller influence the system. In the adaptive con-
troller, the symmetric positive matrixes R1, R2, and P 
are set manually. We define them as unit matrixes 

Table 4  Indexes in sinusoidal wave tracking 

Method EM (N) EP (°) RMS 

Simulation 0.16   4.05 0.0885 

MRAIC 0.18   5.69 0.0871 

PID 0.29 11.16 0.1288 

EM: maximum error; EP: phase error; RMS: root mean square 
error 

Fig. 9  Comparison of sinusoidal tracking  
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Table 3  Indexes in square wave tracking 

No. Method ES (N) TP (s) TS (s) AM (%)

Simulation 0.09 0.94 2.05 8 

MRAIC 0.16 1.21 2.85 64 1 

PID – 2.06 – 56 

Simulation 0.10 0.95 2.24 8 

MRAIC 0.11 1.10 2.74 66 2 

PID – 1.72 – 46 

ES: steady error; TP: peak time; TS: setting time; AM: maximum 
overshoot 

F
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ce
 (

N
)

Fig. 8  Comparison of square wave tracking 
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multiplied by a coefficient. Figs. 13–15 correspond 
to the three matrixes. Similar to the simulations 
above, the changes are concentrated in the low fre-
quency bound. For the variation of R1, it is between 
0.02 Hz and 3 Hz. For the variation of R2, it is below 
0.015 Hz. The upper bound of the variation of P is 5 
Hz. In addition, the differences of peak gain are  
approximately 32 dB and 52 dB for R1 and P,  
respectively. 

The shadow areas show the perturbations 
caused by different variables. According to the influ-
encing range of each factor, we can determine which 
factor to use in a specific bound. The shadow areas 
are similar for these two groups of frequency response. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The shadow in Fig. 11 is smaller than that in Fig. 14. 
The shadow in Fig. 15 almost contains those in both 
Figs. 10 and 12. Thus, we could attempt to make the 
R2 in the feedforward controller adaptive to the per-
turbed damping in finger impedance and make the P 
in both controllers adaptive to deal with the uncer-
tainties of mass and stiffness in finger impedance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

4  Conclusions 
 
We present a model reference adaptive imped-

ance control (MRAIC) method for an index finger 
exoskeleton, including modeling HMI dynamics, 

1 0.02 Hz  2 3 Hz 

Fig. 13  Influence of R1 in the feedback controller 

2 5 Hz 

Fig. 10  Influence of finger mass 

2 0.06 Hz 

Fig. 11  Influence of finger damping 

2 1 Hz 

Fig. 12  Influence of finger stiffness 

2 0.15 Hz 

Fig. 14  Influence of R2 in the feedforward controller

Fig. 15  Influence of P 

2 5 Hz 
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reference model designs, and controller designs sup-
ported by the Lyapunov theory. 

Based on the comparison in simulations and ex-
periments using the MRAIC method, the modeling is 
basically consistent with the real situation, when ig-
noring the time delay in the control system. Besides, 
the comparison of experiments using MRAIC and 
PID indicates that the MRAIC scheme performs bet-
ter in terms of stabilization and speed. In other words, 
MRAIC is effective for the nonlinear HMI problem 
in hand exoskeleton control, where PID or other lin-
ear methods could not work well. The frequency 
simulation reflects the influence of different parame-
ters on the control system. The system performance 
is optimal in the bound between 0.1 and 5 Hz, which 
is the frequency range of human body movement.  

Future work will involve improvements in two 
aspects: solving the time delay of the system, which 
is an unstable factor; optimizing the parameters R1, 
R2, and P according to the state variables instead of 
tuning empirically. 
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