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Abstract:    We present an optical/inertial data fusion system for motion tracking of the robot manipulator, which is proved to be 
more robust and accurate than a normal optical tracking system (OTS). By data fusion with an inertial measurement unit (IMU), 
both robustness and accuracy of OTS are improved. The Kalman filter is used in data fusion. The error distribution of OTS pro-
vides an important reference on the estimation of measurement noise using the Kalman filter. With a proper setup of the system 
and an effective method of coordinate frame synchronization, the results of experiments show a significant improvement in terms 
of robustness and position accuracy. 
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1  Introduction 
 

Motion tracking of robot manipulators, which is 
needed for kinematic calibration or real-time motion 
control (Su et al., 2009; Shirinzadeh et al., 2010; Park 
et al., 2012), requires high accuracy and robustness. 
The optical tracking system (OTS) using cameras or 
laser-assisted vision technology is one of the most 
common methods for motion tracking of robot ma-
nipulators. Advantages are high-accuracy position 
and orientation tracking ability, easy setup and good 
adaptability. It is more accurate than encoders using 
multiple links which will cause a cumulative error. 
Furthermore, by using markers, it is easy to set up and 
applicable for many cases. However, it also has some 
shortcomings. First of all, OTS with reflective mark-
ers always suffers from the marker-missing problem 

caused inevitably by disturbance and obstruction 
from other objects and uneven error distribution in the 
workspace due to the distortion of camera’s lens and 
other configurations of OTS (Wiles et al., 2004; 
Aristidou et al., 2008). Thus, it is not robust enough 
for applications of industrial robots. Besides, the use 
of OTS, especially those with high performance, is 
always limited by the high cost. For example, the 
Leica absolute tracker AT901 (Leica Geosystems, 
Switzerland) costs about 100k USD, which is too 
expensive for many applications. Recently some 
low-cost OTSs have been launched in the market. 
They are generally used in applications that do not 
require high accuracy, such as human motion tracking. 
For example, the OTS used in our research costs 
about 10k USD, along with its software. These 
low-cost OTS have relatively low accuracy. Due to 
distortion of the cameras, the tracking accuracy in 
some areas of the workspace of OTS can be dramat-
ically low. In this paper, a method for improving a 
low-cost OTS in terms of accuracy and robustness is 
developed using data fusion with an inertial meas-
urement unit. 
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2  Related work 
 

Inertial measurement units (IMUs) are electronic 
devices that measure velocity, orientation, and grav-
itational forces using a combination of accelerometers 
and gyroscopes, sometimes also magnetometers. 
Owing to low cost, light weight, and quick response, 
IMUs have been widely used for navigation of vehi-
cle/aircraft and human motion detection (Syed et al., 
2008; Dong et al., 2010; Yun et al., 2012). IMU has 
good short-term precision and high sampling rates, 
but it suffers from serious errors in long-term position 
and orientation estimates due to the drift and the al-
gorithm of integration (Zhou and Hu, 2010). It has 
already been used to improve the performance of a 
Global Positioning System (GPS) based navigation 
system in terms of dynamic behavior, synchroniza-
tion, and reliability (Sukkarieh et al., 1999; Zhang et 
al., 2005; Caron et al., 2006). 

Multi-sensor management is formally described 
as a system or a process that seeks to manage or co-
ordinate the use of a suite of sensors or measurement 
devices in dynamic, uncertain environments, to im-
prove the performance of data fusion and ultimately 
that of perception (Xiong and Svensson, 2002). It has 
become increasingly popular in industry and scien-
tific research. There are several multi-sensor systems 
that combine OTS and IMU developed for surgical 
navigation (Claasen et al., 2011; Ren et al., 2012; 
Soroush et al., 2012), user tracking in augmented 
reality (Foxlin et al., 2004; Bleser and Stricker, 2009), 
and human motion detection (Tao and Hu, 2008; 
Zhang and Wu, 2011). By data fusion with IMU, the 
improvement of OTS includes three aspects, which 
are accuracy improvement in both position and ori-
entation, sampling rate improvement, and reliability 
improvement by data compensation when markers in 
OTS are missing. Research aimed at some specific 
applications has proved that data fusion methods 
work well for orientation accuracy improvement and 
sampling rate improvement. However, the perfor-
mance of OTS was not evaluated before data fusion in 
previous research, so the uneven error distribution of 
OTS was not considered. Furthermore, those ap-
proaches focused mainly on pose estimation and 
sampling rate improvement, and there are seldom 
descriptions or satisfactory results on position accu-
racy improvement and data compensation in position 
when markers are missing. 

3  Performance evaluation of OTS 
 

The Kalman filter operates recursively on 
streams of noisy input data to produce a statistically 
optimal estimate of the underlying system state. Thus, 
the determination of process noise covariance and 
measurement noise covariance is very important for 
the implementation of the Kalman filter. In our re-
search, the data from OTS is treated as measurement 
of the true state. To obtain a more precise estimation 
of measurement noise covariance, a performance 
evaluation of OTS is needed. As the accuracy of OTS 
varies, the noise covariance of OTS in different areas 
of its workspace should be treated differently. Thus, 
during the performance evaluation, the workspace of 
OTS is divided into several areas and the error of each 
area is evaluated separately. The measurement noise 
covariance of OTS used in the Kalman filter is esti-
mated due to the evaluation result of each area.  

The OTS used in our research consists of six 
cameras, positioned as a circle (Fig. 1). A test case is 
designed to check the error distribution of OTS. A 
300 mm×300 mm steel plate with 25 holes is designed 
for the test (Fig. 2). By placing the plate in different 
locations of the workspace, the position error of each 
area can be calculated by comparison with the real 
position of the markers. In each area, three samples 
are acquired at three different heights, which are 0.7, 
1.0, and 1.3 m. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

One result of the marker position detected by 
OTS is as shown in Fig. 3. After integration of all 
results in different areas of the workspace, we have 
the error distribution of OTS (Fig. 4). As we can see, 
the error in the edge of the workspace is larger than 

Fig. 1  Positioning of the six cameras 
The diameter of the circle is 2.5 m, and the height of each 
camera is 1.8 m. The number in each area indicates the 
number of cameras that can cover the area 
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that in the center. There are mainly two reasons for 
this uneven error distribution. First, the number of 
cameras by which the marker can be detected varies 
with the area in the workspace. As shown in Fig. 1, 
the center is in the visual field of all the six cameras, 
while the edges are covered with fewer cameras, 
which leads to a decrease of accuracy. Second, the 
visual field of each camera may still have some dis-
tortion, although they have already been calibrated. 
Thus, the measurement covariance of OTS using the 
Kalman filter should be treated differently in different 
areas. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
4  System configuration 
 

The measurement system for the proposed 
method consists of an ABB IRB120 robot, an OTS for 
6D tracking, and an IMU. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1  Sensor system 

The OTS used for this study consists of six 
V100:R2 cameras (NaturalPoint, Inc., USA) with its 
software Tracking Tools. Through the three reflective 
markers provided on the tool at the end of the robot, 
OTS is able to calculate both the position and orien-
tation of the tool. The orientation of a tracking object 
is described in the form of quaternion in the tracking 
system. Hence, the pose of the tool calculated by OTS 
in the cameras’ coordinate frame CFots is 

 

(ots) p [ , , , , , , ]x y z wx y z q q q q=ε ,               (1) 
 
where (x, y, z) is the position and qx, qy, qz, qw are the 
quaternions which represent the orientation. 

An MTi (Xsens Technologies B.V., The Neth-
erlands) inertial measurement unit is used in our 
system (Fig. 5). It consists of a 3D MEMS accelera-
tion sensor, a 3D MEMS gyroscope, and a 3D 
earth-magnetic field sensor. The IMU can provide the 
calibrated accelerations in three axes with gravity and 
the rates of turn in its body frame CFimu. With a 
combination of the earth-magnetic field sensor, IMU 
is able to measure its orientation in the world coor-
dinate system with an accuracy of 0.1°. Unfortunately, 
the pose estimated by IMU cannot be trusted in our 
case as the motor of our robot disturbs the magnetic 
field sensor. Thus, only the accelerations and the 
angular velocities are used in our study: 

 

(imu) [ , , , , , ]x y z x y za a a ω ω ω=ε ,               (2) 
 
where ax, ay, az are accelerations along the x-, y-, and 

Fig. 3  Marker position detected by OTS 
The position error of each marker is multiplied by a factor 
of 10. The position error of each marker is not even, and the 
average position error is 0.6339 mm 
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Fig. 4  Error distribution of OTS (● denotes the posi-
tion of each camera) 

Fig. 2  A 300 mm×300 mm steel plate with 25 holes for 
marker placement 
Markers are placed in these holes, whose position errors are 
less than 0.01 mm 
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z-axis, respectively, and ωx, ωy, ωz are angular veloc-
ities along the x-, y-, and z-axis, respectively. 

The IMU’s maximum sampling rate is 512 Hz. 
In our setup, we acquire data with a sampling rate of  
100 Hz, which is the same as in the optical tracking 
system. 
 
 
 
 
 
 
 
 
 
 

 
 
 

4.2  System setup 

The setup of the system is shown in Fig. 6. The 
six cameras of OTS are placed as a circle, and an 
industrial robot IRB120 (ABB) is placed at the center 
of OTS’s workspace for the tests. The introduced 
IMU is equipped at the end effector (EE) of a robot 
along with three reflective markers. The robot allows 
high repeatability movements to verify the proposed 
method for position and orientation estimation. All 
the algorithms are developed using MATLAB, run-
ning in a sampling time less than 10 ms. After the 
setup of the system, we have to calibrate OTS first, 
including defining the coordinate frame of OTS. 
 
 
 
 
 
 
 
 
 
 

 
 

4.3  Synchronization of the coordinate frame 

The data acquired from the introduced meas-
urement sensors is given in different coordinate 
frames, i.e., the coordinate frame of OTS CFots and 

the coordinate frame of IMU CFimu. The former is 
treated as the world’s coordinate frame CFots. Alt-
hough IMU can detect its own orientation in the world 
coordinate system, in our case it is disturbed greatly 
by the motor of the robot. Hence, another synchro-
nization of coordinate frames from CFimu to CFots is 
needed to combine the data using the fusion algorithm. 
This step is extremely important because it has a great 
influence on gravity compensation, which may lead to 
bad quality of data fusion with a small deviation. 

The homogeneous transformation matrix of the 
three markers otsRm and the acceleration vector of 
IMU with respect to their own coordinate frames are 
provided directly by the two sensor systems. To 
combine these two coordinate frames, we have to find 
the homogeneous transformation matrix between the 
markers and the IMU mRimu. It is a fixed homogene-
ous transformation matrix as the markers and the IMU 
are fixed on one frame. One method is just matching 
the axis of the two coordinate frames by estimation. 
However, a better method is calculating the exact 
homogeneous transformation matrix mRimu. After it is 
calculated, we can transfer the data of IMU into 
cameras’ coordinate system CFots in real time using 
the homogeneous transformation matrix otsRimu: 

 
ots ots m

imu m imu=R R R .                      (3) 
 
A synchronization method using the direction of 

gravity is proposed. First of all, when placing the 
ground plane to set the coordinate frame of OTS, we 
can use the two bubble levels on the plane, whose 
resolution is 30′, to ensure that the y-axis of the 
world’s coordinate frame CFimu matches the vertical 
direction (Fig. 7). The IMU can also detect the ver-
tical direction using the accelerometer. Thus, we can 
check the acceleration vector in the world’s coordi-
nate frame CFots in some specific conditions. We can 
calculate the exact homogeneous transformation ma-
trix mRimu using the following equation: 

 
ots m

ots m imu imu= R Racc acc .                 (4) 
 

As shown in Fig. 7, when the IMU’s three axes 
are adjusted to match the vertical direction, we can 
write the acceleration matrix accots in CFots directly: 

 

[ ]Tots 0 0g=acc ,                     (5) 

Fig. 5  Xsens MTi inertial measurement unit 

Fig. 6  System setup with OTS, a robot, and IMU 
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where g represents the acceleration due to gravity. At 
the same time, we can check the acceleration matrix 
accimu in the coordinate frame of IMU CFimu in the 
following three conditions: 
 

 

[ ]Timu Up( ) 0 0x g=acc ,                   (6) 

[ ]Timu Up( ) 0 0y g=acc ,                   (7) 

[ ]Timu Up( ) 0 0z g=acc ,                  (8) 
 
where (accimu)xUp, (accimu)yUp, and (accimu)zUp are the 
acceleration matrices measured by IMU in each  
condition. 

Assume the homogeneous transformation matrix 
is 

11 12 13
m

imu 21 22 23

31 32 33

r r r
r r r
r r r

 
 =  
  

R .                     (9) 

 
We can calculate the homogeneous transformation 
matrix mRimu that maps the orientation of IMU CFimu 
to the orientation of markers CFm by the following 
three equations: 
 

ots m
ots m Up imu imu Up=( ) ( )x xR Racc acc ,        (10) 

ots m
ots m Up imu imu Up=( ) ( )y yR Racc acc ,        (11) 

ots m
ots m Up imu imu Up=( ) ( )z zR Racc acc ,          (12)

 
 
where (otsRm)xUp, (otsRm)yUp, and (otsRm)zUp are pro-
vided by OTS in each condition. 
 
 
5  Modeling 

5.1  State models 

To track the tool at the EE of the robot, both the 
position and orientation have to be estimated using 
the Kalman filter. The acceleration data imu′′x  pro-
vided by IMU contains gravitational acceleration g. 
Before it is used for estimation, a compensation for 
gravitation term g should be achieved: 

 
ots

p imu imu( ) ( ) ( ) ,t t t g′′ ′′= −x R x               (13)
 

 
where xp″ is the acceleration vector of EE after grav-
ity compensation, and otsRimu is the transform orien-
tation matrix between IMU and OTS. 

The angular velocities imu′x  provided by IMU 
also need to be converted into the coordinate frame of 
OTS: 

ots
o imu imu( ) ( ) ( )t t t′ ′=x R x ,               (14) 

 
where xo′ is the angular velocity vector in the coor-
dinate of OTS. 

As a result, both object acceleration and orien-
tation matrix should be considered for position esti-
mation. Thus, a separate determination of the position 
and the orientation state space model is required. The 
classical differential equation for translation with 
acceleration and rotation with a constant angular 
velocity is 

ini 2
p p p p / 2t t′ ′′= + +x x x x ,               (15) 

ini
o o ot′= +x x x .                        (16) 

 
Thus, the state space vectors separated with position 
and orientation of the model are created as follows: 
 

p

p

p

( )
( )
( )

t
t
t

 
 ′ 
 ′′ 

x
x
x

,                            (17) 

o

o

( )
( )
t
t

 
 ′ 

x
x

.                            (18) 

Fig. 7  Coordinate frames of OTS and IMU 
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According to the classical differential equation 
for translation with acceleration and constant angular 
velocity, the discretized transition equations of the 
state space models concerning the position and ori-
entation are 

 
2

p p

p p

p p

( ) 1 / 2 ( 1)
( ) 0 1 ( 1)
( ) 0 0 1 ( 1)

k T T k
k T k
k k

    ∆ ∆ −
    ′ ′= ∆ −    
    ′′ ′′ −    

x x
x x
x x

,     (19) 

o o

o o

( ) ( 1)1
( ) ( 1)0 1
k kT
k k

−∆    
=    ′ ′ −    

x x
x x

,            (20) 

 
where ΔT is the sampling time of the discretization. 

5.2  Measurement models 

According to the data provided by IMU and OTS, 
the equations for the position and orientation meas-
urement models are 

 

p
p p

p
p p

p

( ) 1 0 0 0
( ) ( 1)

( ) 1 / 0 1 / 0 ,
( ) ( 1)

( ) 0 1 0 0

k
k k

k T T
k k

k

     
−        ′ = ∆ − ∆        ′′ ′′ −        ′′     

x
x x

x
x x

x
               (21) 

o o

o o

( ) ( )1 0
,

( ) ( )0 1
k k
k k

    
=    ′ ′    

x x
x x

                (22) 

 
where position xp(k) and orientation xo(k) are meas-
ured by OTS, acceleration xp″(k) and angular velocity 
xp′(k) by IMU. Although xp′(k) can be estimated using 
the Kalman filter in the state model, the integration of 
acceleration will cause a great cumulative error. Thus, 
the measurement value of xp′(k) is also provided in the 
measurement model using the measurement value of 
the position, and the measurement noise covariance of 
velocity is estimated using the measurement noise 
covariance of the position. 
 
 
6  Kalman filter 
 

Kalman filters are widely used in sensor fusion 
applications. By data fusion with an IMU using a 
Kalman filter, we are expecting to improve the per-
formance of the low-price OTS. 

6.1  Implementation 

Based on state models and measurement models, 

the following linear time-invariant stochastic differ-
ence equations, which represent the estimation and 
the measurement, are used to implement the Kalman 
filter: 

 

( ) ( ) ( 1) ( )x k T x k kΦ ω= − + ,                (23) 
( ) ( ) ( )y k Cx k kυ= + ,                     (24) 

 
where Φ(T) is the state transition model, and C is the 
observation model. ω(k) and υ(k) account for process 
and measurement noises, respectively. They are as-
sumed to be drawn from a zero mean multivariate 
normal distribution with covariances Q(k) and R(k). 

6.2  Estimation of noise covariance 

It is often difficult to implement a Kalman filter 
in practical applications due to the inability in ob-
taining a good estimate of the noise covariance matrix. 
In our case, we have to estimate the noise covariance 
of OTS (σots) and of IMU (σimu), which describe the 
significance of the measured values of OTS and IMU, 
respectively. As described in Section 3, the meas-
urement accuracy of the OTS varies with the different 
locations in the workspace. Therefore, σots is treated 
differently in different areas according to the error 
distribution gained in Section 3: 

 

ots ( , , ) ( , , )x y z k x y zσ ε= ⋅ ,                (25) 
 
where k is the scale factor and ε(x, y, z) is the meas-
urement error in a specific area. In contrast, σimu is 
treated as a constant due to IMU performance. 

6.3  Compensation 

As described in Section 1, OTS suffers from the 
marker-missing problem inevitably caused by dis-
turbance and obstruction from other objects in the 
workspace. In these cases, OTS may lose its tracking 
ability or suffer from a severe error. To improve its 
robustness, compensation is needed when these 
problems occur. The IMU, which provides continu-
ous reliable data, can make a good compensation to 
OTS.  

During the marker-missing period, the data from 
OTS cannot be trusted. The noise covariance of OTS 
is set to infinity so that the Kalman filter takes only 
the estimated value in the optimization: 

 

otsσ →∞ .                            (26) 
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We add an ON/OFF value to the Kalman filter. 
When marker-missing is detected, the Kalman filter 
will run under the compensation model in which the 
noise covariance of OTS is set to infinity. 

 
 

7  Experimental results 
 

Several experiments were performed to verify 
the proposed method, including drawing a line and a 
circle with part of OTS data missing, drawing a line 
and a circle with different speeds using the robot, and 
finally performing an overall test in the whole 
workspace of OTS with a dynamic noise covariance 
due to error distribution. To simplify the data pro-
cessing, all the experiments were performed in the 
horizontal plane. 

7.1  Compensation 

By covering the markers in part of the trajectory 
when the robot is drawing a line or circle, we want to 
see the compensation performance. 

Fig. 8 shows the result of compensation when 
drawing a line with a velocity of 500 mm/s. The 
compensation is still acceptable with about 400 mm 
of OTS data missing. However, compensation of a 
line is not very typical. Thus, we also performed the 
experiment of compensating a circle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 shows the result of compensation when 
drawing a circle with a velocity of 2000 mm/s. In such 
a case, IMU can compensate a distance up to 500 mm. 

7.2  Accuracy improvement 

The robot shown in Section 4 was used to draw a 
line and a circle at 500, 1000, and 1500 mm/s, re-
spectively. The performance of the proposed method 

was evaluated by comparing the tracking results of 
OTS and data fusion. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figs. 10a and 11a show the direction and di-
mension of the acceleration of each position as a 
vector. With the proposed coordinate frame synchro-
nization method, the acceleration provided by IMU 
did not show a large error in either direction or di-
mension, which is a prerequisite to the good result of 
data fusion. Figs. 10b and 11b show the results from 
OTS and data fusion. These results were evaluated by 
data fitting. Tables 1 and 2 show the root mean square 
error (RMSE) for the line and the circle by OTS and 
data fusion with different velocities. The performance 
of OTS was improved using data fusion with an IMU. 
In the case of drawing a line, an obvious improvement 
was achieved. 

As OTS has an obvious error when drawing a 
line, a further test was implemented to evaluate the 
performance of the proposed approach. Several points 
in the line gained by OTS deviated obviously from the 
normal direction, while the acceleration data from 
IMU remained normal (Fig. 12). The deviation was 
corrected by data fusion. 

Fig. 8  Compensation of a line 

(a) 

(b) 

Fig. 9  Compensation of a circle with the compensation 
distance of 300 mm (a) or 500 mm (b) 
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7.3  Accuracy improvement in different areas 

Based on the error distribution gained in Section 
3, the sensors’ data of these lines was processed using 
the Kalman filter with corresponding measurement 
covariances in different areas. 

Fig. 13 shows the total position accuracy im-
provement of the whole workspace. Fig. 13a shows 
the error distribution before data fusion. After data 
fusion, the position error of each area was reduced. 
Fig. 13b shows the reduced error of different areas, 
indicating that the accuracy improvements are more 
obvious in the areas with larger noise covariances. 

Table 1  Accuracy comparison when drawing a line 

Velocity 
(mm/s) 

RMSE (mm) 
OTS Data fusion 

500 0.36 0.24 
1000 0.40 0.25 

 

Table 2  Accuracy comparison when drawing a circle 

Velocity 
(mm/s) 

RMSE (mm) 
OTS Data fusion 

500 0.27 0.26 
1000 0.28 0.23 
1500 0.36 0.34 

 

Fig. 10  Results of drawing a line 
(a) Position and acceleration; (b) Results before and after data fusion 

 

(a) (b) 

Fig. 11  Results of drawing a circle 
(a) Position and acceleration; (b) Results before and after data fusion 

(a) (b) 

Fig. 12  Data from OTS manually modified to deviate 
from the normal direction 
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8  Conclusions 
 

A robust optical-inertial data fusion system was 
proposed for motion tracking of the robot manipulator. 
Based on the evaluation of error distribution of OTS, 
a Kalman filter with a dynamic covariance was de-
veloped for data fusion. The capability of the devel-
oped approach was proved by several experiments, 
and the performance of OTS was improved in terms 
of accuracy and reliability. 
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