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Abstract:    We propose a novel clustering algorithm using fast global kernel fuzzy c-means-F (FGKFCM-F), where F refers to 
kernelized feature space. This algorithm proceeds in an incremental way to derive the near-optimal solution by solving all inter- 
mediate problems using kernel-based fuzzy c-means-F (KFCM-F) as a local search procedure. Due to the incremental nature and 
the nonlinear properties inherited from KFCM-F, this algorithm overcomes the two shortcomings of fuzzy c-means (FCM): sen- 
sitivity to initialization and inability to use nonlinear separable data. An accelerating scheme is developed to reduce the compu-
tational complexity without significantly affecting the solution quality. Experiments are carried out to test the proposed algorithm 
on a nonlinear artificial dataset and a real-world dataset of speech signals for consonant/vowel segmentation. Simulation results 
demonstrate the effectiveness of the proposed algorithm in improving clustering performance on both types of datasets.  
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1  Introduction 
 

Clustering (Jain et al., 1999; Xu and Wunsch, 
2005), also known as cluster analysis, has been ad-
dressed in many contexts and disciplines such as data 
mining, document retrieval, image segmentation, and 
pattern classification. The aim of the clustering 
method is to partition unlabeled patterns into a certain 
number of clusters (groups) on the basis of the simi-
larity criterion; i.e., patterns in the same cluster 
should be similar to each other while patterns in dif-
ferent clusters should not. The most popular similarity 
measure is the Euclidean distance (Duda and Hart, 
1973). Two main approaches are taken to clustering: 
crisp clustering (or hard clustering) and fuzzy clus-
tering. A characteristic of the hard clustering method 

is that the boundary between clusters is fully defined, 
which means it either assigns a pattern to one cluster 
or not. In many practical applications, however, cer-
tain input patterns might not just belong to a single 
class but partially belong to other classes. Fuzzy 
clustering is more natural than hard clustering in such 
cases since it allows pattern(s) to belong to multiple 
clusters simultaneously with different degrees of 
membership (Balasko et al., 2005). In fuzzy cluster-
ing, the fuzzy c-means (FCM) algorithm (Bezdek, 
1981) plays an important role in unsupervised data 
analysis. This clustering is achieved by iteratively 
minimizing an objective function that is dependent on 
the distance of the pattern to the cluster prototypes in 
the input space.  

Several applications of fuzzy clustering based 
approaches have shown popularity even up to the 
present time (Tsai and Lin, 2011; Bozkir and Sezer, 
2013; Hu et al., 2013; Nguyen and Wu, 2013; Zhao, 
2013; Gong et al., 2014), but FCM has two well- 
known limitations: (1) sensitivity to initialization and  
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(2) inability to use nonlinear separable data. A simple 
and very common solution to the sensitivity to ini-
tialization is the use of multiple restarts wherein the 
centers of the clusters are randomly placed at different 
initial positions to find a better local minimum. This 
technique, however, depends heavily on the number 
of restarts with a very high computational cost, but 
with no certainty whether the initializations attempted 
are sufficient to obtain a near-optimal minimum. To 
deal with this problem, Wang et al. (2006) proposed 
the global FCM (GFCM) clustering algorithm to 
search for a near-optimal solution in an incremental 
way with no dependency on the initial conditions. 
Recently kernel methods emerged as an important 
tool to convert linear methods to nonlinear methods. 
They were also applied to unsupervised clustering to 
alleviate the second limitation by mapping data points 
from the input space to a potentially higher dimen-
sional feature space through an implicit nonlinear 
transformation, to realize linear separation in the 
kernelized feature space and then to obtain the non-
linear separated clusters when returning to the origi-
nal input space. There are two major variations of 
kernel-based FCM (KFCM) clustering: KFCM-I, 
which involves keeping prototypes in the input space 
(Wu et al., 2003; Zhang and Chen, 2003a; 2003b; 
2004; Shen et al., 2006; Yu et al., 2011), and KFCM-F, 
which implicitly leaves the prototypes in the higher 
dimensional feature space (Li et al., 2001; Girolami, 
2002; Zhang and Chen, 2002; Chiang and Hao, 2003; 
Zhou and Gan, 2004; Kim et al., 2005). Although 
KFCM-F lacks clear and intuitive description of 
prototypes in the original input space, it performs 
better than KFCM-I in terms of analyzing nonlinear 
separable data.  

The global kernel fuzzy c-means-F (GKFCM-F) 
clustering algorithm is proposed to optimize the 
clustering performance. The algorithm works in an 
incremental way by solving all intermediate problems 
with 1, 2, …, C clusters using KFCM-F as a local 
search procedure. The near-optimal solution for each 
intermediate case of k-partition can be obtained by 
starting with a deterministic initial state composed of 
the optimal solution to the previous (k−1)-partition 
stage and a single data point, and then selecting the 
best result with the lowest clustering error after per-
forming KFCM-F on each initial state. The best so-
lution with C  clusters can finally be obtained by 

applying the above procedure iteratively. This algo-
rithm integrates the advantages of GFCM and 
KFCM-F, which overcomes both limitations of FCM. 
However, N initializations are attempted during each 
local search, where N is the dataset size. The dataset is 
usually very large, and thus the algorithm will have 
high computational complexity. We propose an ac-
celerating scheme, called fast global KFCM-F 
(FGKFCM-F), to compensate for such a drawback. 
The basic idea for this scheme is that we first choose 
the best set that guarantees the greatest reduction in 
the objective function at each intermediate step, in-
stead of carrying out the KFCM-F algorithm for all 
sets of the initial state formed by selecting different 
data points. Then KFCM-F is executed only once 
from this initialization. The computation complexity 
is now independent of the dataset size and the running 
time of the algorithm is reduced. 
 
 
2  Fuzzy c-means (FCM) 
 

Let X={x1, x2, …, xN} be a finite unlabeled da-
taset composed of N patterns for which every xi=[xi1, 
xi2, …, xid]T∈ .d

  The well-known FCM clustering 
algorithm proposed by Dunn (1973) and Bezdek 
(1981) allows a pattern to belong to more than one 
cluster. Clustering is thus achieved by iteratively 
minimizing an objective function of Eq. (1), which is 
dependent on the distance of the pattern to the cluster 
prototypes in the input space.  
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1 1
( , ) ,

N C
m
ki i k

i k
J µ

= =

= −∑∑μ v x v                (1) 

 

where {v1, …, vk, …, vC} (vk )d∈  denotes the C 
cluster prototypes of dataset X, m is the weighting 
exponent determining the degree of fuzziness of the 
resulting classification (m=2 is often adopted), and μki 
represents the membership coefficient of the ith pat-
tern in the kth cluster, which satisfies the following 
constraint as introduced in fuzzy set theory (Zadeh, 
1965): 
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and {μ1, …, μk, …, μC} (μk=[μk1, μk2, …, μkN]T) real-
izes fuzzy C-clustering of X.  

Subject to the membership constraint, the min-
imization of objective function (1) is performed by 
introducing a Lagrangian function (Filippone et al., 
2008; Liu et al., 2012) for each pattern: 

 
2
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m
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J λ µ λ µ

= = = =
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∑∑ ∑ ∑μ v x v  
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where λ is the Lagrangian multiplier to connect the 
objective function to the constraint. 

Let the partial derivative of ( , , )J λμ v  with re-
spect to μki and vi be equal to zero. We then obtain two 
necessary but not sufficient conditions for J(μ, v) to 
be at its local minima:  
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where i=1, 2, … , N, j=1, 2, …, C, and k=1, 2, …, C. 
The detailed derivation of the two necessary condi-
tions of Eqs. (4) and (5) using the Lagrangian multi-
plier method is shown in the Appendix. 

Starting with initialized cluster prototypes and 
iteratively updating the necessary conditions to 
minimize J(μ, v), the FCM algorithm converges to a 
local minimum of the objective function. Conver-
gence can be detected when the changes in the 
membership function or the prototypes at two suc-
cessive iteration steps satisfy the stopping criterion ε 
(ε=0.00001 is adopted here). A soft partitioning of the 
input space is then obtained. Algorithm 1 summarizes 
the description of the FCM algorithm. 

 
Algorithm 1    FCM clustering 
Input: 

(1) X={x1, …, xi, …, xN}, ,d
i ∈x   the dataset; 

(2) C, 1<C≤N, the number of clusters; 
(3) ε>0, the stopping criterion; 
(4) (0) (0) (0) (0)

1 2( , , , ),C=v v v v  the initials of cluster prototypes; 
(5) m>1, the weighting exponent. 

Output:  
(1) v=(v1, v2, …, vC), the final cluster prototypes; 
(2) μ=(μ1, μ2, …, μC), the final memberships. 

1    s=1; 
2    Update ( ) ( ) ( ) ( )

1 2( , , , )s s s s
C=μ μ μ μ  with v(s−1) using Eq. (4); 

3    Update v(s) with μ(s) using Eq. (5); 
4    Compare v(s) with v(s−1) in a convenient matrix norm ||·||: 

If ( ) ( 1)|| || ,s s ε−− <v v  STOP and OUTPUT;  
Else s=s+1 and return to line 2. 

 
 

3  Global fuzzy c-means (GFCM) 
 
Although FCM clustering is a well-known 

method, it is sensitive to the initial position of the 
cluster prototypes and easy to revert to a local mini-
mum or a saddle point when iterating. A simple and 
very popular solution is the use of multiple restarts, 
wherein the prototypes are randomly placed at dif-
ferent initial positions so that a better local minimum 
can be found. This technique, however, depends 
heavily on the number of restarts with a very high 
computational cost with no certainty if the initializa-
tions attempted are sufficient to obtain a near-optimal 
minimum. To deal with this problem, Wang et al. 
(2006) proposed the GFCM based on the assumption 
that the optimal clustering solution to the k-clustering 
problem can be obtained through N local searches 
starting from an initial state with the k−1 prototypes 
placed at the optimal positions for the (k−1)-  
clustering problem, and the remaining kth prototype is 
then placed at a data point xi (1≤i≤N) (Likas et al., 
2003; Bagirov, 2008). 

The proposed technique proceeds in an incre-
mental way to solve the C-clustering problem by 
solving all intermediate problems with 1, 2, …, C 
clusters using FCM as a local search procedure. More 
specifically, the optimal position v*(1) corresponds to 
the centroid of dataset X of fuzzy 1-partition. For the 
fuzzy 2-partition problem, the first initial cluster 
prototype is placed at the optimal position for fuzzy 
1-partition while the second initial cluster prototype is 
placed at a data point xi (1≤i≤N). We then perform the 
FCM algorithm for each initial state {v*(1), xi} and 
select the best solution for this case, expressed as 

* *
1 2{ ,(1) (2)}.v v  In general, let * *

1 2( 1) ( 1), ...{ ,,k k− −v v  

1
* ( 1)}k k− −v  denote the optimal solution to fuzzy 

(k−1)-partition. We then perform the FCM algorithm 
with k clusters from each initial state *

1 1 ,({ )k −v  
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1
* *
2 ( 1), ..., ( 1), }.k ik k−− −v v x  The best result obtained 

from the N runs is considered as the optimal solution 
* * *
1 2( ) ( ), ...{ , ( )}, kk k kv v v  for the fuzzy k-partition 

problem. By proceeding in the above manner, the best 
solution with C clusters could be finally obtained by 
solving all intermediate problems.  

The main advantage of the GFCM algorithm is 
that the solution with C clusters is built determinis-
tically, so there is no dependency on the initial con-
ditions and near-optimal solutions could be obtained. 
The algorithm is briefly summarized in Algorithm 2, 
where FCM refers to the FCM algorithm described in 
Section 2. 

 
Algorithm 2    GFCM clustering 
Input: 

(1) X={x1, …, xi, …, xN}, ,d
i ∈x   the dataset; 

(2) C, 1<C≤N, the number of clusters; 
(3) ε>0, the stopping criterion; 
(4) m>1, the weighting exponent. 

Output:  
(1) v=(v1, v2, …, vC), the final cluster prototypes; 
(2) μ=(μ1, μ2, …, μC), the final memberships. 

1    
1

1(1) ;N
iiN

∗
=

= ∑v x   

2    for k=2 to C do 
3         for i=1 to N do 
4           set the initial state 

(0)
1 2 1( ) ( ( 1), ( 1), , ( 1), );k ik k k k∗ ∗ ∗

−= − − −v v v v x  
5           [v*(k), μ(k)]←FCM(X, k, ε, m, v(0)(k)); 
6         end 
7    end 
8    v←v*(C), u←u(C).  
 

A comparison of FCM and GFCM is conducted 
on the 2D artificial dataset (C=5). Fig. 1a shows the 
clustering result using FCM. The performance of 
FCM heavily depends on the initialization. Even in 
the dataset with five well separated clusters, FCM 
sometimes fails to find the correct structure due to the 
convergence to a local optimum. Fig. 1b shows the 
clustering result using GFCM for the same dataset. 
Without need for initialization, the data points are 
correctly grouped into five clusters. Fig. 2 illustrates 
the optimal cluster prototypes obtained at each in-
termediate step. Using the optimal results from the 
previous stage for initialization provides a determin-
istic way to find a new cluster prototype. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4  Kernel-based fuzzy c-means (KFCM) 
 

The kernel method was first proposed by Mercer 
(1909). The essence of kernel-based methods is to 
transform the original input space d

  into a higher 
dimensional feature space F through arbitrary non-
linear mapping Φ such that  
 

: ( ).d FΦ Φ→ →x x                  (6) 
 

The feature space could possibly be of infinite 
dimensionality. The rationale for higher dimensions is 
that the nonlinear separable data in the original space 
may be linearly separated in the feature space (Cover, 
1965). The kernel method takes advantage of the fact 
that the dot products in the feature space can be ex-
pressed by a Mercer kernel K given by 
 

T( , ) ( ) ( ) ( ) ( ),i j i j i jK Φ Φ Φ Φ= =x x x x x x     (7) 

 
with K(xi, xj)=K(xj, xi). By employing a specific 
Mercer kernel, the Euclidean distance in the feature  

Fig. 1  Clustering results for a 2D artificial dataset 
(a) FCM with random initialization; (b) GFCM without 
initialization. *: random initial position of the cluster 
prototypes; ×: final cluster prototypes 

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8
(a)

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8
(b)

X

Y
Y



Zang et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2014 15(7):551-563 555 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

space could be computed without explicit knowledge 
of Φ: 
 

2|| ( ) ( ) ||

[ ( ) ( )][ ( ) ( )]

( ) ( ) ( ) ( ) 2 ( ) ( )

( , ) ( , ) 2 ( , ).

i j

i j i j

i i j j i j

i i j j i jK K K

Φ Φ

Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ

−

= − −

= + −

= + −

x x
x x x x

x x x x x x
x x x x x x

   (8) 

 
Two major forms of KFCM clustering are used. 

The first form, KFCM-I (I represents the input space), 
comes with prototypes constructed in the input space. 
In the second form, KFCM-F (F refers to the feature 
space), the prototypes are retained in the feature space 
and thus the prototypes must be approximated in the 
input space by computing an inverse map from the 
feature space to the input space.  

4.1  KFCM-I algorithm 

KFCM-I minimizes the following objective 
function subject to the same membership constraint as 
FCM given in Eq. (2): 

 
2

1 1
( , ) ( ) ( ) .

N C
m
ki i k

i k
JΦ µ Φ Φ

= =

= −∑∑μ v x v         (9) 

 
The advantage of the KFCM-I clustering algo-

rithm is that the prototypes reside in the input space 
and are mapped to the feature space implicitly. Thus, 
we could apply the distance kernel trick to obtain 

 
2|| ( ) ( ) || ( , ) ( , ) 2 ( , ).i k i k k k i kK K KΦ Φ− = + −x v x v v v x v

    (10) 
 

Among the different kinds of kernel functions, 
the Gaussian radial basis function (GRBF) kernel 
(Muller et al., 2001) 

 
2 2( , ) exp( || || / )K σ= − −x y x y            (11) 

 
(σ as the adjustable parameter) is used almost exclu-
sively since K(x, x)=1 and the derivative of ( , )mJΦ μ v  
with respect to vk allows a kernel trick shown as  
 

2

( , ) 2( ) ( , ).i k i k
i k

k

K K
σ

∂ −
=

∂
x v x v x v
v

        (12) 
Fig. 2  Optimal cluster prototypes obtained at each 
intermediate step in GFCM 
(a) K=1; (b) K=2; (c) K=3; (d) K=4; (e) K=5 
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Thus, the objective (9) is simplified to  
 

1 1
( , ) 2 [1 ( , )].

N C
m
ki i k

i k
J KΦ µ

= =

= −∑∑μ v x v         (13) 

 
In a similar way to the standard FCM algorithm, 

using the Lagrangian multiplier method and then 
zeroing the first derivatives with respect to μki and vk 
yield the update functions for memberships and 
cluster prototypes as follows: 

 
1

1
1

1
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mC
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Kμ
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−
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1 1
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N N
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The algorithm for KFCM-I is detailed as follows: 
 
Algorithm 3    KFCM-I clustering 
Input: 

(1) X={x1, …, xi, …, xN}, ,d
i ∈x   the dataset; 

(2) C, 1<C≤N, the number of clusters; 
(3) ε>0, the stopping criterion; 
(4) (0) (0) (0) (0)

1 2( , , , ),C=v v v v  the initials of cluster prototypes; 
(5) m>1, the weighting exponent; 
(6) σ, the GRBF kernel parameter. 

Output:  
(1) v=(v1, v2, …, vC), the final cluster prototypes; 
(2) μ=(μ1, μ2, …, μC), the final memberships. 

1    s=1; 
2    Update ( ) ( ) ( ) ( )

1 2( , , , )s s s s
C=μ μ μ μ  with v(s−1) using Eq. (14); 

3    Update v(s) with μ(s) using Eq. (15); 
4    Compare v(s) with v(s−1) in a convenient matrix norm ||·||: 

If ||v(s)−v(s−1)||<ε, STOP and OUTPUT; 
Else s=s+1 and return to line 2. 

4.2  KFCM-F algorithm 

KFCM-F clustering is done by mapping each 
pattern using the nonlinear transformation Φ and then 
computing the prototypes in the feature space, de-
noted as .k

Φv  The objective function is 
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where k
Φv  represents a linear sum of all Φ(xi) as  

follows: 
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Using the expression for the prototypes in Eq. (17), 
the distance in Eq. (16) could be reformulated as  
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Substituting Eq. (18) into Eq. (16) generates an ob-
jective function without vΦ: 
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Similar to KFCM-I using the Lagrangian multiplier 
method and partial derivative with respect to μki, us-
ing the process to the GRBF kernel gives the update 
function for memberships as 
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The steps for KFCM-F are described in Algo-
rithm 4, while the performances of KFCM-I and 
KFCM-F for a nonlinear separable ball-ring dataset 
(C=2) are shown in Figs. 3a and 3b, respectively. 
Since the prototypes in KFCM-F are retained in the 
feature space, they lack intuitive descriptions with 
symbols in the input space. Fig. 3 shows that 
KFCM-F perfectly classifies the dataset into two 
clusters of the ball and the ring, but KFCM-I cannot 
detect the nonlinear data correctly, although proto-
types can be visualized in the input space. 
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Algorithm 4    KFCM-F clustering 
Input: 

(1) X={x1, …, xi, …, xN}, ,d
i ∈x   the dataset; 

(2) C, 1<C≤N, the number of clusters; 
(3) ε>0, the stopping criterion; 
(4) (0) (0) (0) (0)

1 2( , , , ),C=μ μ μ μ  the initials of memberships; 
(5) m>1, the weighting exponent; 
(6) σ, the GRBF kernel parameter. 

Output:  
μ=(μ1, μ2, …, μC), the final memberships.   

1    s=1;   
2    Update ( ) ( ) ( ) ( )

1 2( , , , )s s s s
C=μ μ μ μ

 with μ(s−1) using Eq. (20); 

3    Compute ( ) ( ) ( 1)
,max | |:s s s

i k ki kiE µ µ −= −  

If E(s)<ε, STOP and OUTPUT; 
Else s=s+1 and return to line 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5  Novel global kernel-based fuzzy c-means-F 
(GKFCM-F) 
 

From the previous sections, we find that GFCM 
and KFCM are improved by starting at different 
points. To enhance the performance, we propose a 
novel clustering method by embedding the kernel- 

based algorithm into GFCM to resolve the two limi-
tations of FCM, namely sensitivity to initialization 
and inability to use nonlinear separable data. 
KFCM-F is considered to be integrated with GFCM 
to form GKFCM-F since KFCM-F performs better 
than KFCM-I, as observed in Section 4. However, 
there is some difficulty in realizing GKFCM-F be-
cause of the disadvantage that the prototypes lack 
intuitive descriptions in the input space. To solve this 
problem, we find the approximate prototypes ṽk in the 
input space by minimizing 
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2
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1
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=
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∑

∑
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

  

   (21) 

 

By substituting the expression for k
Φv  in Eq. (17) into 

Eq. (21), we obtain 
 

1 1

1 1

( , ) 2 ( , )

( , ) .

C N
m

k k k ki i k
k i

N N
m m
kl kr l r

l r
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
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

+ 


∑ ∑

∑∑
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x x

  

        (22) 

 

Since K(xl, xr) is independent of ,kv  ( , )l r

k

K∂
∂
x x
v

=0. 

Given the GRBF kernel, K(ṽk, ṽk)=1, and then 
( , )

0.k k

k

K∂
=

∂
v v
v
 



 Solving 0
k

∂
=

∂
V
v

 yields  

 

2
1

2( )
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N
m i k
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i
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−
=∑ x vx v


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which leads to 
 

1 1
( , ) ( , ).

N N
m m

k ki i k i ki i k
i i

K Kµ µ
= =

= ∑ ∑v x v x x v       (23) 

 
Based on the approximate prototypes ,kv  we could 
establish an approximate objective function as 
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        (24) 

Fig. 3  Clustering results for the ball-ring dataset using  
KFCM-I (a) and KFCM-F(b) 
*: random initial position of the cluster prototypes; ×: final 
cluster prototypes 
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For the problem starting with one cluster (k=1), 
all the memberships μ1i(1)=1. To locate the optimal 
approximate prototype *(1),v  it should be noted that 
the centroid of X in the input space does not corre-
spond to the centroid of Φ(X) in the feature space due 
to the nonlinear transformation. Thus, we first place 
the initial (1)v  at the data point, which minimizes  
Eq. (24) since it guarantees the most reduction in 

( , ).JΦ μ v  Then the final *(1)v  around could be rap-
idly found by iterative updating using Eq. (23). For 
the subsequent 2-clustering problem, we set the initial 
state ( )1 2(2), (2)v v   corresponding to *( (1), )nv x  
(1≤n≤N). With respect to the nth data point, the 
memberships at the current stage are initialized as 

 

( )

( )

2

2

1

( ) ( )
( ) .
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i hn
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i h
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k
k

k
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Φ Φ

−

−

=

−
=

−∑

x v

x v


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          (25) 

 

The optimal memberships (2)hiµ∗  are selected 
from the N runs of local searches using KFCM-F. 
Based on (2),hiµ∗  the optimal approximate prototypes 

* *
1 2{ (2), (2)},v v   are obtained using Eq. (22). To gen-

eralize, the initial state for each intermediate step 
would be  

 

* * *
1 2 1{ ( 1), ( 1), , ( 1), },k ik k k−− − −v v v x  

  
 

where * * *
1 2 1{ ( 1), ( 1), , ( 1)}kk k k−− − −v v v  

  denotes the 
optimal solution for the previous (k−1)-partition 
problem. By selecting each data point xn to form dif-
ferent initial states, the corresponding initial mem-
berships ( )n

hi kµ  are also determined using Eq. (25). 
The KFCMF algorithm is then performed on each set 
of the initials and the best updating result is selected 
as ( ).hi kµ∗  Then, substituting ( )hi kµ∗  into Eq. (23) and 

updating from the initial state, * *
1 2{ ( 1), ( 1),k k− −v v   

*
1, ( 1), }k lk− −v x

  (l indicates the corresponding initial 

state for deriving ( ))hi kµ∗  yields the optimal ap-

proximate prototypes * * *
1 2{ ( ), ( ), , ( )}kk k kv v v  

  for the 
current k-partition problem. The best solution for 
C-clustering could be obtained through the above 
procedure.  

The proposed GKFCM-F algorithm is summa-
rized in Algorithm 5, where KFCM-F refers to the 
KFCM-F algorithm.  
 
Algorithm 5    GKFCM-F clustering 
Input: 

(1) X={x1, …, xi, …, xN}, ,d
i ∈x   the dataset; 

(2) C, 1<C≤N, the number of clusters; 
(3) ε>0, the stopping criterion; 
(4) (0) (0) (0) (0)

1 2( , , , ),C=μ μ μ μ  the initials of memberships; 
(5) m>1, the weighting exponent; 
(6) σ, the GRBF kernel parameter. 

Output:  
(1) 1 2( , , , ),C=v v v v   

  the final cluster prototypes; 
(2) 1 2( , , , ),C=μ μ μ μ  the final memberships. 

1    Compute (1)∗v  using Eq. (23) with initial position (1)v  
placed at the data point which minimizes Eq. (24); 

2    for k=2 to C do 
3         for n=1 to N do 
4           Set the initial state 

( )
( )

(0)
1 2 1

1 2 1

( ) ( ), ( ), , ( ), ( )

( 1), ( 1), , ( 1), ;

n
k k

k n

k k k k k

k k k
−

∗ ∗ ∗
−

=

= − − −

v v v v v

v v v x

    


  


 

5           Set initial memberships (0) ( )n kμ  with respect to 
(0) ( )n kv  using Eq. (25);  

6          ( )2 (0)( ) KFCM-F , , , , , ( ) ;n nk X k m kε σ←μ μ  

7         end 
8        ( )

1
arg min ( )n

n N
l J kΦ

≤ ≤
= μ  using Eq. (19); 

9        ( ) ( );lk k∗ ←μ μ  

10      (0) (0)( ) ( );lk k←v v   
11       s=1;  
12       Update ( ) ( )s kv  with ( 1) ( )s k−v  using Eq. (23); 
13       If ( ) ( 1)|| ( ) ( ) ||s sk k ε−− <v v   
14          STOP and ( )( ) ( );sk k∗ ←v v   
15       Else s=s+1 and return to line 12; 
16    end 
17    ( ), ( ).C C∗ ∗← ←v v μ μ   
 
 
6 Accelerating scheme: fast global kernel- 
based fuzzy c-means-F (FGKFCM-F) 

 
In Section 5, we propose GKFCM-F to over-

come the shortcomings of FCM. In each intermediate 
process for k-partition, O(N) executions of KFCM-F 
are required; thus, the total computation complexity is 
O(CN). Consider that if the dataset X has a large  
size of N, the computation cost will be very high.  
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To address this problem, we propose an accelerating 
scheme named FGKFCM-F.  

The basic idea is that at each intermediate step, 
instead of carrying out the KFCM-F algorithm for 
each set of initial memberships, we first choose the 
best set that minimizes objective function (19). Then 
KFCM-F is executed only once from this initialization. 
In this way, the computation complexity will be re-
duced to O(C).  

The proposed FGKFCM-F is summarized in 
Algorithm 6. To provide a proper and adaptive pa-
rameter σ of the GRBF kernel for different datasets, 
we use the sample variance to estimate σ2 (Yang and 
Tsai, 2008) with 
 

22

1 1
/ , / .

N N

i i
i i

N Nσ
= =

= − =∑ ∑x x x x          (26) 

 
 
7  Simulations  
 

To investigate the effectiveness of the proposed 
algorithm, the first experiment is conducted on the 
same artificial dataset as that used in Section 4. Fig. 4 
shows that FGKFCM-F successfully groups these 
patterns into the ball cluster and the ring cluster with 
final prototypes located in the input space. Fig. 5 
visualizes the optimal approximate cluster prototypes 
for each intermediate case. From the results, we could 
observe that the proposed algorithm uses the ad-
vantages of both GFCM and KFCM to realize 
near-optimal classification. There is no dependency 
on the random initial values since the optimal solution 
obtained in each previous stage provides determinis-
tic initialization for the next stage. The poor local 
minima could be avoided and thus the near-optimal 
solution is fixed by searching in such an incremental 
way. Moreover, the inability to accommodate non-
linear separable data is solved with the help of kernel 
methods. 

 
Algorithm 6    FGKFCM-F clustering 
Input: 

(1) X={x1, …, xi, …, xN}, ,d
i ∈x   the dataset;  

(2) C, 1<C≤N, the number of clusters;  
(3) ε>0, the stopping criterion;  
(4) (0) (0) (0) (0)

1 2( , , , ),C=μ μ μ μ  the initials of memberships;  
(5) m>1, the weighting exponent;  
(6) σ, the GRBF kernel parameter.  

Output:  
(1) 1 2( , , , ),C=v v v v   

  the final cluster prototypes;  

(2) 1 2( , , , ),C=μ μ μ μ  the final memberships.  

1    Compute (1)∗v  using Eq. (23) with initial position (1)v  
placed at the data point that minimizes Eq. (24);  

2    for k=2 to C do 
3       for n=1 to N do 
4          Set the initial state 

  
( )0

1 2 1

1 2 1

( ) ( ( ), ( ), , ( ), ( ))

( ( 1), ( 1), , ( 1), );

n
k k

k n

k k k k k

k k k
−

∗ ∗ ∗
−

=

= − − −

v v v v v

v v v x

    


  


 

5          Set initial memberships (0) ( )n kμ  with respect to  
(0) ( )n kv  using Eq. (25); 

6          ( )2 (0)( ) KFCM-F , , , , , ( ) ;n nk X k m kε σ←μ μ  

7       end 
8       

1
arg min ( ( ))n

n N
l J kΦ

≤ ≤
= μ  using Eq. (19); 

9       ( ) ( )lk k∗ ←μ μ ; 

10     (0) (0)( ) ( )lk k←v v  ; 
11      s=1;  
12      Update ( ) ( )s kv  with ( 1) ( )s k−v  using Eq. (23); 

13      If ( ) ( 1)|| ( ) ( ) ||s sk k ε−− <v v   

14         STOP and ( )( ) ( );sk k∗ ←v v   
15      Else s=s+1 and return to line 12; 
16    end 
17   ( ), ( ).C C∗ ∗← ←v v μ μ   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

While GKFCM-F derives the same results as 
those shown in Fig. 4, more time is required to com-
plete the clustering since it needs to execute N runs of 
the local search using KFCM-F at each intermediate 
step. A comparison of the computation complexity for 
GKFCM-F and FGKFCM-F is shown in Fig. 6, where 
each algorithm is executed 10 times. It is fairly  

Fig. 4  Clustering results for the ball-ring dataset using 
FGKFCM-F 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4
-3
-2
-1
0

1
2
3
4
5

X

Y



Zang et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2014 15(7):551-563 560 

obvious that the running time of FGKFCM-F is much 
less than that of GKFCM-F, which demonstrates the 
effectiveness of the acceleration scheme in lowering 
the computational cost.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Another experiment is then conducted using  

real-world data speech signal. We expect to realize 
the segmentation of consonant/vowel (C/V) sounds 
through the proposed clustering algorithm. The 
speech dataset is composed of the utterance of 100 

speakers from the TIMIT database. We select a total 
of 1000 words and divide them into two groups: 
monosyllable words and polysyllable words. For the 
first group, we subdivide them into three categories: 
C+VC+, VC+, and C+V, where C indicates a consonant, 
V indicates a vowel, and + denotes one or more con-
secutive consonants. Each syllable in the English 
language generally contains only one vowel. The 
polysyllable words, with various combinations of 
syllables, are simply categorized into one group. The 
reference segmenting points are manually marked 
according to the associated transcription files. The 
speech signal of each word is divided into frames of 
8 ms (at a sampling frequency of 16 000 Hz) by a 
Hamming window with a shift of 4 ms. For each 
frame, a 256-point discrete Fourier transform (DFT) 
is computed, and the mel-frequency cepstral coeffi-
cients (MFCC) (Picone, 1993; Jamaati and Marvi, 
2008) are extracted to compose the speech parametric 
vector (pattern). When the stopping criterion is 
reached, each MFCC pattern will be assigned to a 
specified cluster according to the maximum mem-
bership value. Thus, a sequential string of a cluster 
label will be obtained and the instant with a change in 
the cluster label value is hypothesized as the seg-
mentation point of a consonant and vowel.  

Firstly, we consider a monosyllable word, ‘that’, 
for illumination. The syllable structure of this word is 
CVC; hence, there are two places at which it can be 
divided into consonant and vowel parts. The seg-
mentation results obtained via FGKFCM-F are shown 
in Fig. 7. The small matching error indicates the good 
performance of the proposed algorithm. For the entire 
speech dataset, the statistics are given in Table 1. It 
could be observed that for words with a simple syl-
lable structure, the consonant and vowel are parti-
tioned successfully with a rate of over 90%, even at a 
long time resolution of 20 ms. With increasing com-
plexity of the word structure, the detection rate de-
creases by a certain degree. This is mainly because 
there may be different types of consonants around 
each vowel in complicated words, and some highly 
confusing voiced consonants, such as semivowels and 
liquids, have characteristics similar to vowels; ac-
cordingly, the boundary between them may be missed 
or located in a larger deviation.  

Fig. 6  Comparison of computer processing time between 
GKFCM-F and FGKFCM-F 
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Fig. 5  Optimal approximate cluster prototypes (×) 
obtained at each intermediate step in FGKFCM-F 
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Previously, it was demonstrated that GFCM 
needs no initialization and KFCM-F could handle 
nonlinear data. Both of them are improved versions of 
FCM. An experiment is then carried out to investigate 
the superiority of FGKFCM-F over GFCM and 
KFCM-F. For the same dataset, a comparison of the 
average DETR_T between FGKFCM-F, GFCM, and 
KFCM-F is shown in Fig. 8. As an extension to 
GFCM and KFCM-F, FGKFCM-F realizes higher 
accuracy in C/V segmentation at each time resolution. 
This demonstrates that the proposed algorithm com-
bines the advantages of GFCM and KFCM-F to es-
tablish a method capable of overcoming the two lim-
itations previously mentioned. This higher perfor-
mance in C/V segmentation and lower DETR_T of 

the FGKFCM-F is slightly tempered with its poor 
performance in dealing with polysyllable words. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
8  Conclusions 
 

While fuzzy c-means (FCM) is a simple and ef-
ficient algorithm for clustering, it has several 
well-known shortcomings: sensitivity to initialization 
and inability to use nonlinear separable data. In this 
paper, we develop fast global kernel fuzzy c-means-F 
(FGKFCM-F) by reformulating a global fuzzy 
c-means (GFCM) embedded with a kernel-based 
fuzzy c-means-F (KFCM-F), which is effective in 
overcoming these shortcomings. This is an incre-
mental approach to solving the C-clustering problem 
by solving all intermediate problems with 1, 2, …, C 
clusters using KFCM-F as a local search procedure. 
This algorithm integrates the advantages of KFCM-F 
and GFCM to realize a near-optimal solution for 
nonlinearly separable data. Moreover, by using an 
accelerated scheme to choose the best set of initial 
memberships, KFCM-F is executed only once at each 
stage, which lowers the computation complexity and 
improves the convergence speed. Experimental re-
sults show that FGKFCM-F is superior to other 
methods for both the artificial and real-world datasets 
of speech signal.  

Further research could be focused on exploring 
more generalized kernels to provide flexibility in 
various data structures and robustness to complex 
datasets and developing a semi-supervised clustering 
algorithm to optimize the kernel parameters and 
performance. We might also consider a better method 

Table 1  Consonant/vowel (C/V) segmentation results for 
1000 words using FGKFCM-F 

Word  
category 

Number of 
reference 

points 

DETR_T (%) 

10 ms 20 ms 30 ms 40 ms 

Monosyllable* 
C+VC+ 800 43.75 66.75 76.63 84.00 
VC+ 200 75.00 90.50 95.50 98.50 
C+V 200 51.00 93.50 98.00 99.50 

Polysyllable 500 38.60 56.6 65.80 72.00 
* C indicates a consonant, V indicates a vowel, and + denotes one or 
more consecutive consonants. DETR_T refers to the detection rate of 
segmentation points within the specified time resolution of T 
 

Fig. 8  Average DETR_T of GFCM, KFCM-F, and 
FGKFCM-F 

Fig. 7  Consonant/vowel segmentation results for the 
word ‘that’ using FGKFCM-F (matching error: 3.9 ms; 
6.8 ms) 
Dashed lines correspond to the reference segmenting points 
and solid lines correspond to the hypothesized location for 
segmentation 
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of feature extraction to enhance the difference be-
tween the two categories of phonemes, especially 
vowels and confusable consonants, to improve the 
performance in dealing with polysyllable words so 
that application could then be extended to continuous 
speech.  
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Appendix: Derivation of Eqs. (4) and (5) 
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Substituting the expression for 1/( 1)( / ) m

i mλ −−  into 
Eq. (A2), we could obtain the update function for 
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From Eq. (A1), we can find only  
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is dependent on vk; thus, taking the first derivative of 

( , , )J λ∂ μ v  with respect to vk and setting it to zero, we 
can obtain the update function for cluster prototypes:  
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