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Abstract:    This paper presents a ranked differential evolution (RDE) algorithm for solving the identification problem of non-
linear discrete-time systems based on a Volterra filter model. In the improved method, a scale factor, generated by combining a sine 
function and randomness, effectively keeps a balance between the global search and the local search. Also, the mutation operation 
is modified after ranking all candidate solutions of the population to help avoid the occurrence of premature convergence. Finally, 
two examples including a highly nonlinear discrete-time rational system and a real heat exchanger are used to evaluate the per-
formance of the RDE algorithm and five other approaches. Numerical experiments and comparisons demonstrate that the RDE 
algorithm performs better than the other approaches in most cases.  
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1  Introduction 
 

The Volterra filter model (Chang, 2012) belongs 
to the category of polynomial filters, and can ap-
proximate many real nonlinear systems. One signifi-
cant advantage of the Volterra model is that its output 
is a linear combination of nonlinear functions of the 
input signal and linearly depends on the model coef-
ficient known as the kernel. The Volterra filter model 
can be found in a wide variety of application areas 
including the identification of a parametric loud-
speaker system (Ji and Gan, 2012), nonlinear acoustic 
echo cancellation (Contan et al., 2013), the modeling 
of the oscillation behavior of ultrasound contrast 
agents (Mleczko et al., 2009), and other areas (Ku-
ruoğlu, 2002; Nam and Powers, 2003; Krall et al., 

2008; Tang et al., 2010). Ji and Gan (2012) developed 
a nonlinear system identification model based on an 
adaptive Volterra filter in order to realize the identi-
fication of a parametric loudspeaker system. Unlike a 
conventional loudspeaker, the nonlinear characteristic 
of a parametric loudspeaker system is determined by 
some parameters in nonlinear acoustics, namely the 
initial pressure of the primary waves, observing dis-
tance and angle, ambient temperature, and relative 
humidity. By using a truncated Volterra series up to 
the second-order kernel, the sound pressure level and 
harmonic distortion can be accurately predicted. 
Contan et al. (2013) combined a modified version of 
the normalized least-mean-fourth (NLMF) algorithm 
and an adaptive second-order Volterra structure for 
acoustic echo cancellation, which reaches a com-
promise between convergence rate and steady-state 
error. Furthermore, a convergence rate improvement 
was achieved at the same steady-state error by modify-
ing the step size of the conventional NLMF algorithm 
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based on a new step-size function. Mleczko et al. 
(2009) discussed and evaluated the use of Volterra 
series for modeling the scattering behavior of contrast 
agent microbubbles. For moderate insonification 
pressures, a Volterra series enables an adequate rep-
resentation of the oscillation behavior of ultrasound 
contrast agents. The accuracy of the evaluated model 
was satisfactory for insonification pressures up to  
100 kPa. Cheng and Powers (2001) presented a fifth- 
order Volterra kernel estimation algorithm for a 
bandpass nonlinear system under uniformly inde-
pendent and identically distributed (i.i.d.) rectangular 
M-ary quadrature amplitude modulation (M-QAM) 
input and uniformly i.i.d. M-ary phase shift keying 
(M-PSK) input. The fifth-order Volterra kernel algo-
rithm is able to readily capture the behavior of a 
nonlinear system.  

Besides the Volterra filter model we studied the 
evolutionary algorithm. Chang (2012) proposed an 
improved particle swarm optimization (IPSO) to de-
termine the kernel vector of the Volterra filter model. 
In this paper, we propose a ranked differential evolu-
tion (RDE) algorithm, and test it as an alternative to 
the IPSO. The differential evolution (DE) algorithm, 
derived by Storn and Price (1995), has attracted the 
interest of many researchers, because it has a simple 
algorithm structure and a favorable optimizing per-
formance. In recent years, many improved versions of 
the DE algorithm have been used in a variety of en-
gineering fields, including the task assignment prob-
lem (Zou et al., 2011), optimization of nonlinear chem-
ical processes (Babu and Angira, 2006), and optimal 
synthesis of linear antenna arrays (Li and Yin, 2012).  
 
 
2 Volterra filter model and its truncated 
second-order form 
 

The Volterra filter model plays an important role 
in identifying unknown nonlinear systems, and has 
drawn much attention from researchers in recent 
decades. Generally, the discrete form of the Volterra 
filter model of the qth order (Chang, 2012) is stated as 
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where N stands for the system memory size. Eq. (1) 
denotes the Volterra filter model with the infinite 
series. In this paper, we study only the truncated 
second-order Volterra model (Zhang and Zhao, 2010; 
Chang, 2012) as follows: 
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For simplicity, Eq. (2) can be expressed as the fol-
lowing vector form: 
 

y[n]=HXT.                                 (3) 
 
Here H stands for the Volterra kernel vector given by 
 

H=[h0, h[1], …, h[N], h[0, 0], h[0, 1], …,  
h[0, N−1], h[1, 1], …, h[N−1, N−1]],         (4) 

 
and X denotes the Volterra input vector given by 
 

X=[1, x[n], …, x[n−N+1], x2[n], x[n]x[n−1], …,  
x[n]x[n−(N−1)], x2[n−1], …, x2[n−(N−1)]].   (5) 

 
According to Eqs. (4) and (5), H and X have the 

same vector length which can be calculated as follows 
(Zhang and Zhao, 2010): 
 

( 1) ( 1)( 2)1 .
2 2

N N N NL N + + +
= + + =        (6) 

 
To enable the output y[n] to approximate the 

actual system output as much as possible, an RDE 
algorithm is proposed to optimize the variables of the 
kernel vector H under the input vector X. More details 
of the RDE algorithm will be illustrated in Section 3. 
To understand better the working principle of RDE, it is 
necessary first to introduce the original DE algorithm. 
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3  Original differential evolution algorithm 
 

DE (Storn and Price, 1995) is a simple evolu-
tionary algorithm which produces new candidate 
solutions by combining parent individuals and some 
other individuals. A candidate solution replaces its 
parent solution only if it has a better objective func-
tion value or fitness. Generally speaking, DE works as 
follows: 

Step 1: initialization of parameters and population 
Initialize scale factor F, crossover rate CR, 

population size PS, the number of iterations NI, and 
the number of problem variables L. For the jth prob-
lem variable (j=1, 2, …, L), its lower and upper 
bounds are jx  and jx , respectively. Moreover, all the 

candidate solutions in the population are generated 
randomly from a uniform distribution in the range 
[ , ]j jx x . 

Step 2: mutation 
A trial vector 1t

i
+v  is produced by mutating a 

target vector. Usually, the updating equation of the 
trial vector 1t

i
+v  is given by 

 

3 1 2

1 ( ).t t t t
i i i iF+ = + −v x x x                   (7) 

 
Here, t represents the index of the current iteration. F 
(F∈[0, 2]) is a scale factor which affects the differ-
ential variation between two candidate solutions. In 
addition, i1, i2, and i3 are three different integers which 
are randomly chosen from the set {1, 2, …, PS}. 

Step 3: crossover 
The variables of offspring vector 1t

i
+u  are the 

combination of parent vector t
ix  and trial vector 1t

i
+v . 

Thus, they are calculated as follows: 
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where rand() is a randomly generated number from  
[0, 1], jr is a randomly chosen index from [1, L], and 
CR (CR∈[0, 1]) stands for the crossover rate. 

Step 4: selection 
If the fitness of 1t

i
+u  is better than that of t

ix , 

offspring vector 1t
i
+u  is adopted for 1;t

i
+x  otherwise, 

the parent vector t
ix  is chosen for 1t

i
+x . Therefore, 

the selection operation is given by 
 

1 1
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Step 5: check the stopping criterion 
If the number of iterations (NI) is reached, the 

DE procedure is stopped. Otherwise, steps 3 and 4 are 
repeated. 
 
 
4  A ranked differential evolution algorithm  
 

To perform the system identification accurately, 
in this section we propose an RDE algorithm for op-
timally determining the Volterra kernel vector. More 
specifically, the RDE algorithm makes two im-
provements on DE algorithms as follows: 

1. The modification of the scale factor F. The 
RDE algorithm adjusts the scale factor F by com-
bining a sine function and randomness, and the new 
scale factor can be expressed as follows: 
 

Ft=[1+sin(ω0t)]×rand().                   (10) 
 
Here, t=1, 2, …, NI is the index of the current itera-
tion, and rand() denotes a random number in [0, 1], 
which is helpful to increase the diversity of the pop-
ulation. ω0=2π/T0 is the radian frequency of the sine 
function, and T0 is its corresponding period. Suppose 
NI=150 and T0=NI/10, then scale factor F can be 
described as in Fig. 1.  
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The scale factor Ft is sometimes small, which is 
beneficial for performing a local search, and some-
times large, which is beneficial for performing a 
global search. Moreover, both small and large values 
exist in each fixed iteration interval (T0), which  
ensures that the RDE algorithm has both global  
and local searching capacity in the whole evolution 
process. 

2. The RDE algorithm ranks all the candidate 
solutions of the population according to their objec-
tive function values. The smaller (better) the objective 
function value of a candidate solution, the higher its 
rank. After ranking all the candidate solutions, a 
modified mutation operation is performed, given by 
 

1 ( ).
c a b

t t t t t
i i i iF+ = + −v x x x                 (11) 

 
Here, ic represents the index randomly chosen from 
the set {1, 2, …, PS}, ia represents the index randomly 
chosen from the set {1, 2, …, PS/2}, ib represents the 
index randomly chosen from the set {PS/2+1, …, PS}, 
and ia≠ib≠ic≠i. Obviously, 

a

t
ix  comes from the can-

didate solutions with better objective function values, 
and 

b

t
ix  comes from those with worse values. By 

using this selection mechanism, the searching range 
of difference vector ( )

a b

t t
i i−x x  can be further en-

larged, which can effectively avoid premature con-
vergence of the RDE algorithm. 

Based on the above two modifications, the per-
formance of the RDE algorithm can be improved. Its 
procedure is illustrated in Algorithm 1. 

Adopting the RDE algorithm, a schematic dia-
gram of nonlinear discrete-time systems based on the 
truncated second-order Volterra model is shown in 
Fig. 2, and the notations used in the diagram are listed 
in Table 1. 

 
 
 
 
 
 
 
 
 
 

The Volterra filter model based on the RDE al-
gorithm aims to determine the optimal kernel vector 
H so that the output y[n] approximates the actual  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unknown nonlinear discrete-
time system

Second-order Voterra filter 
model E[e2[n]]

RDE algorithm

r[n]
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Fig. 2  Volterra filter modeling of a nonlinear discrete- 
time system using the RDE algorithm 

Algorithm 1    Ranked differential evolution 
1 Begin 
2 Set PS=50; NI=150; T0=NI/10; 21( , , , );Lx x x=x   

1 2( , , , );Lx x x=x   CR=0.3 
3 Randomly generate a population 
4 For t=1 to NI 
5 Calculate scale factor Ft according to Eq. (10) 
6 Rank the population according to the objective 

function values of all candidate solutions 
7 For i=1 to PS 
8 Randomly generate an integer ia in the range  

[1, PS/2] 
9 Randomly generate an integer ib in the range 

[PS/2+1, PS] 
10 Randomly generate an integer ic in the range  

[1, PS], and ia≠ib≠ic≠i 
11 1 ( )

c a b

t t t t t
i i i iF+ = + −v x x x   

12 Randomly generate an integer jr in the range [1, L] 
13 For j=1 to L 
14 If rand()<CR or j=jr  
15 1 1

, ,
t t
i j i ju v+ +=  

16 Else 
17 1

, ,
t t
i j i ju x+ =  

18 End If 
19 End For 
20 If 1( ) ( )t t

i if f+ <u x  
21 1 1t t

i i
+ +=x u  

22 Else 
23 1t t

i i
+ =x x  

24 End If 
25 End For 
26 End For 
27 End 

 

Table 1  Notations used in Volterra filter modeling of a 
nonlinear discrete-time system 

Notation Meaning 
x[n] Digital input signal 
y[n] Output signal of the second-order 

Volterra filter model (Eq. (2)) 
d[n] Output of the unknown nonlinear  

discrete-time system 
r[n] Measurement noise 
ŷ[n] Sum of d[n] and r[n] 
e[n] Error signal between ŷ[n] and y[n] 
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system output ŷ[n] as much as possible. In other 
words, the difference between y[n] and ŷ[n] should be 
minimized. Therefore, it is necessary to find an ob-
jective function to achieve the modeling requirement. 
In this paper, the objective function (Chang, 2012) is  

 

[ ]
1 1

22 2

0 0

1 1 ˆ[ [ ]] [ ] [ ] [ ] .
T T

n n
E e n e n y n y n

T T

− −

− −

= = −∑ ∑    (12) 

 
Here, E[e2[n]] is defined as the mean square error 
(MSE), and T denotes the sampling number. By uti-
lizing the RDE algorithm to minimize the MSE, we 
can find the optimal kernel vector of the second-order 
Volterra model. 
 
 
5  Experimental results and analysis 
 

To test the applicability of the RDE algorithm for 
nonlinear system identification based on the Volterra 
filter model, two examples were chosen: a highly 
nonlinear discrete-time rational system and a real heat 
exchanger. 

5.1  Example 1 

The first example was a highly nonlinear  
discrete-time rational system (Chang, 2012). Its 
mathematical model is stated as follows: 
 

2

2 2

0.3 [ 1] 0.8 [ 1] 0.6 [ 2][ ] .
1 [ 1] [ 1]

d n x n d nd n
x n d n

− + − + −
=

+ − + −
   (13) 

 
Two kinds of input signals were used. The first 

(Example 1a) was a random sequence uniformly 
generated from [−1, 1], which can be expressed as 
x[n]~U(−1, 1), and the second (Example 1b) was a 
cosine signal x[n]=0.8cos(nπ/9). In addition, the 
measurement noise r[n] was assumed to be a Gauss-
ian noise of N(0, 0.001).  

In this experiment, the RDE algorithm was used 
for solving Example 1a with x[n]~U(−1, 1) and N=5. 
The parameters of the algorithm were set as follows: 
CR=0.3, PS=50, NI=150, the period of sine function 
T0=NI/10, and sampling number T=100. Based on the 
above parameter settings, the estimated output y[n] 
was obtained (Fig. 3). 

 

In Fig. 3, a comparison between the actual output 
ŷ[n] and the Volterra model output y[n] is plotted with 
respect to the sampling number n. It is clear that the 
estimated output y[n] was very close to the actual 
output ŷ[n]. Moreover, the final objective function 
value, i.e., mean square error (MSE), obtained using 
the RDE algorithm was equal to −44.136 dB. To ver-
ify the effectiveness of the RDE algorithm for 
Volterra filter modeling with a large memory size N, 
we increased N to 8. In Example 1a with x[n]~U(−1, 1) 
and N=8, we also used the RDE algorithm to realize 
nonlinear system identification, and the parameters of 
the algorithm were set as follows: CR=0.3, PS=80, 
NI=200, the period of sine function T0=NI/10, and 
sampling number T=100. Based on these parameter 
settings, the estimated output y[n] was as shown in 
Fig. 4. 

The estimated output y[n] was very close to the 
actual output ŷ[n] (Fig. 4). The MSE obtained using 
the RDE algorithm was −48.9 dB. 
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Fig. 4  Comparison of actual system output and 
Volterra model output for Example 1a (N=8) 
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To testify further the performance of Volterra 
filter modeling based on RDE, another testing input 
signal x[n]=0.8cos(nπ/9) (Example 1b) was adopted. 
In Example 1b with N=5 and N=8, the parameter 
settings of the RDE algorithm were the same as those 
for Example 1a. Figs. 5 and 6 depict the experimental 
results when N=5 and N=8, respectively. Two satis-
fying MSEs, −54.789 dB for N=5 and −54.849 for N=8, 
were obtained after performing the RDE algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2  Example 2 

The second example was a real heat exchanger. 
Its mathematical model (Sumar et al., 2010; Chang, 
2012) is given by 
 

2[ ] [ ] 1.3228 [ ]w n x n x n= −  
3 40.7671 [ ] 2.1755 [ ],x n x n+ −             (14) 

1 2

1 2

6.5306 5.5652[ ] [ ],
1 1.608 0.6385

z zd n w n
z z

− −

− −

− +
=

− +
       (15) 

where x[n] is the process input denoting the flow rate 
and is constrained by the range [0, 1], w[n] represents 
the static nonlinearity, and d[n] represents the process 
output temperature. For convenience, Eqs. (14) and 
(15) can be further rewritten as the following differ-
ence equation: 
 

[ ] 1.608 [ 1] 0.6385 [ 2]d n d n d n= − − −  
6.5306 [ 1] 5.5652 [ 2].w n w n− − + −      (16) 

 
Two kinds of input signals were used. The first 

(Example 2a) was randomly generated in the range 
[0.1, 0.9], which can be expressed as x[n]~U(0.1, 0.9), 
and the second (Example 2b) was a sine signal x[n]= 
0.4sin(nπ/6)+0.5. The measurement noise r[n]=0. 

In this experiment, the memory size of the 
Volterra filter model was set as N=8. To satisfy the 
physical input requirement, the system input x[n] was 
randomly generated in the range [0.1, 0.9] and the 
testing input was then set to x[n]=0.4sin(nπ/6)+0.5. 
The parameters of the RDE algorithm for Example 2 
were the same as those of Example 1. From per-
forming the RDE algorithm, the Volterra model out-
put for the modeling input is shown in Fig. 7 and for 
the testing input is shown in Fig. 8. Obviously, the 
experimental results are acceptable, and the Volterra 
model output y[n] was close to the actual output ŷ[n] 
in each case. 

5.3  Comparison of five approaches for identifying 
nonlinear discrete-time systems 

The RDE algorithm in this paper was compared 
with five other approaches for solving the above 
problems with different input signals and system 
memory sizes. The five other approaches were: par-
ticle swarm optimization (PSO) algorithm (Kennedy 
and Eberhart, 1995; Shi and Eberhart, 1999), im-
proved particle swarm optimization (IPSO) (Chang, 
2012), differential evolution (DE) (Storn and Price, 
1995), improved differential evolution (IDE) algo-
rithm (Zou et al., 2011), and the differential evolution 
algorithm based on self-adapting control parameters 
(SADE) (Brest et al., 2006). The parameters of all six 
approaches are listed in Table 2. The population size 
PS was set as 50 for the system memory size N=5 and 
as 80 for N=8. The number of iterations NI was set as 
150 for the system memory size N=5 and as 200 for 
N=8. We conducted additional experiments with some 
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combinations with PS and NI using larger values: 
(PS=100, NI=250), (PS=120, NI=300), (PS=150, 
NI=350), and (PS=200, NI=400), and did not notice 
any significant differences in the results. We also 
conducted additional experiments with some combi-
nations with PS and NI using smaller values: (PS=20, 
NI=50), (PS=30, NI=60), and (PS=40, NI=80). Alt-
hough these parameter settings can save calculation 
time, they cannot guarantee calculation accuracy. 
Therefore, as the peak occurred at (PS=50, NI=150) 
for N=5 and at (PS=80, NI=200) for N=8, those val-
ues were used in this study. In addition, the sampling  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

number was set as T=100 for the Volterra filter model. 
Matlab 7.0 was used to perform the above design 
steps in the environment of Intel Core i5-2410M 
CPU@2.30 GHz. Twenty independent runs were 
carried out for each problem, and the optimization 
results over 20 runs on each problem are reported in 
Table 3. 

The RDE algorithm showed overwhelming su-
periority over the other five approaches. The optimi-
zation results (Best, Worst, Mean, and Std) obtained 
using the RDE algorithm were better than those ob-
tained by the other five approaches for Example 1a 
(N=5, 8), Example 2a (N=8), and Example 2b (N=8). 
In Example 1b (N=5), the ‘Best’ and ‘Mean’ results of 
the RDE algorithm were better than those of the other 
five approaches, and the “Worst” and ‘Std’ results  
of the DE algorithms were better than those of the 
other five approaches. In Example 1b (N=8), IPSO 
achieved the optimal solution, but was worse than the 
RDE algorithm according to the three criteria ‘Worst’, 
‘Mean’, and ‘Std’. The average computation times 
(ACTs) of the PSO, DE, IDE, SADE, and RDE algo-
rithms were similar, but the ACT of IPSO was almost 
twice as long as any of the other five algorithms. 

To determine whether the results produced by 
the RDE algorithm were statistically different from 
those produced by the other five approaches, Wil-
coxon rank-sum tests (Wilcoxon, 1945; Derrac et al., 
2011) were conducted at the 5% significance level. 
The results are shown in Table 4. A P-value smaller 
than 0.05 suggests that the performance of the two 
approaches was statistically different with 95% cer-
tainty, whereas a P-value larger than 0.05 indicates no 
statistical difference. 

In this experiment, the term ‘Mean’ was the 
primary criterion to define the best approach, and the 
term ‘Std’ ranked second. The results show that the 
RDE algorithm performed better than the other five 
approaches in solving all six problems. For Example 1b  
 
 
 
 
 
 
 
 
 

Table 2  The parameter settings of six approaches 

Approach Parameters 
Particle swarm optimization (PSO) (Kennedy and Eberhart, 1995; Shi and Eberhart, 1999) ωmin=0.4, ωmax=0.9, c1=c2=2 
Improved particle swarm optimization (IPSO) (Chang, 2012) ω=0.8, c1=c2=c3=1, S=5 
Differential evolution (DE) (Storn and Price, 1995) F=0.6, CR=0.3 
Improved differential evolution (IDE) (Zou et al., 2011) CRmin=0.1, CRmax=0.9 
Differential evolution algorithm based on self-adapting control parameters (SADE)  

(Brest et al., 2006) 
Fl=0.1, Fu=0.9, τ1=τ2=0.1 

Ranked differential evolution (RDE) CR=0.3, T0=NI/10 
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Fig. 7  Comparison of actual system output and Volterra 
model output for Example 2a (N=8) 
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Fig. 8  Comparison of actual system output and 
Volterra model output for Example 2b (N=8) 
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Table 3  Comparison of results for PSO, IPSO, DE, IDE, SADE, and RDE algorithms applied to six problems 
Problem PS NI Algorithm ACT (s) Best (dB) Worst (dB) Mean (dB) Std (dB) 

Example 1a (N=5) 50 150 

PSO 1.7916 −42.6590 −15.5670 −25.9630 −26.3320 
IPSO 3.4897 −43.2500 −34.1800 −38.0310 −44.5380 
DE 1.7125 −44.1290 −44.1210 −44.1250 −115.9600 
IDE 1.7157 −44.1340 −44.1270 −44.1300 −116.7600 
SADE 1.7423 −44.1340 −43.7190 −44.0980 −83.5150 
RDE 1.7281 −44.1360 −44.1350 −44.1350 −139.0500 

Example 1a (N=8) 80 200 

PSO 6.2010 −40.0160 −6.3917 −14.7800 −19.0170 
IPSO 12.3145 −45.2590 −32.1300 −35.2460 −42.1260 
DE 6.0910 −47.8220 −46.5430 −47.3670 −75.5250 
IDE 6.0593 −48.2320 −47.5850 −47.8600 −81.6940 
SADE 6.0846 −48.7810 −45.9320 −47.7500 −68.1050 
RDE 6.1001 −48.9000 −48.6240 −48.8070 −89.7550 

Example 1b (N=5) 50 150 

PSO 2.9186 −54.3010 −16.3100 −31.9040 −26.3050 
IPSO 5.7728 −54.3010 −37.3390 −50.1510 −52.0300 
DE 2.8454 −54.6740 −53.9080 −54.2790 −87.7270 
IDE 2.8339 −54.6820 −53.7790 −54.3530 −85.9460 
SADE 2.8475 −54.6620 −53.2450 −54.3210 −82.2410 
RDE 2.8490 −54.7890 −53.5320 −54.5110 −83.0720 

Example 1b (N=8) 80 200 

PSO 10.9023 −54.3370 −32.5260 −46.4280 −44.9610 
IPSO 21.7446 −54.8860 −49.8960 −52.8670 −69.3360 
DE 10.8377 −54.7300 −54.4610 −54.6010 −95.3990 
IDE 10.7828 −54.8270 −54.5950 −54.7230 −96.2800 
SADE 10.7593 −54.8400 −54.4800 −54.7110 −93.7530 
RDE 10.8645 −54.8490 −54.6640 −54.7560 −100.2900 

Example 2a (N=8) 80 200 

PSO 7.6237  13.2810 14.2760 13.7040 −15.9570 
IPSO 15.5188 12.8670 14.6830 13.5110 −12.2280 
DE 7.8295  12.8090 13.0220 12.9140 −30.4490 
IDE 7.9206  12.7390 13.0260  12.8690 −28.9630 
SADE 7.7898  12.6230 12.8880 12.7350 −27.9690 
RDE 7.9615  12.6100 12.7160 12.6500 −38.8710 

Example 2b (N=8) 80 200 

PSO 12.0401 1.3429 10.5120 5.7152 −5.1475 
IPSO 23.9678 1.4398 5.7457 3.3947 −13.3590 
DE 11.9376 1.2283 1.9472 1.6248 −30.6170 
IDE 11.9065 0.9999 1.9701 1.5263 −28.8860 
SADE 11.9308 0.5966 1.6658 1.0861 −28.3250 
RDE 11.9023 0.4155 0.8089 0.6556 −37.4780 

Act: average computation time; Std: standard deviation of 20 runs. Bold font signifies the best result among the six approaches 
 

Table 4  P-values from Wilcoxon rank-sum tests of performance results for six problems 

Problem  P-value 
 PSO IPSO DE IDE SADE RDE 

Example 1a (N=5)  6.7956×10−8 6.6909×10−8 6.7956×10−8 6.7956×10−8 6.7956×10−8 NA 
Example 1a (N=8)  6.7956×10−8 6.7765×10−8 6.7956×10−8 6.7956×10−8 3.4156×10−7 NA 
Example 1b (N=5)  1.9177×10−7 1.6571×10−7 2.7451×10−4 3.0566×10−3 7.1135×10−3 NA 
Example 1b (N=8)  6.7956×10−8 1.2009×10−6 5.2269×10−7 1.9883×10−1 2.8530×10−1 NA 
Example 2a (N=8)  6.7956×10−8 6.7956×10−8 6.7956×10−8 6.7956×10−8 2.4706×10−4 NA 
Example 2b (N=8)  6.7956×10−8 6.7956×10−8 6.7956×10−8 6.7956×10−8 6.6737×10−6 NA 
NA: not available (always applies to the best approach) 
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(N=8), the P-values obtained using the IDE and the 
SADE algorithms were larger than 0.05, suggesting 
that their optimization results were comparable to 
those of the RDE algorithm for that example. There-
fore, the results from Table 4 verify that the RDE 
algorithm is the best among the six approaches, and 
that its results were statistically different from those of 
the other five approaches for all problems except  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 1b (N=8). 
Fig. 9 displays the MSEs (in logarithmic scale) 

of the desired and estimated signals obtained by the 
six algorithms for six problems. Clearly, both the PSO 
and IPSO algorithms have larger convergence rates 
than the other four approaches at the beginning of the 
optimization process. However, the two PSO algorithms 
become trapped early in the local optimal solutions,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9  The MSEs obtained by using six approaches for solving six problems 
(a) Example 1a (N=5); (b) Example 1a (N=8); (c) Example 1b (N=5); (d) Example 1b (N=8); (e) Example 2a (N=8); (f) 
Example 2b (N=8) 

0 50 100 150
-50

-40

-30

-20

-10

0

10

Index of iteration

M
SE

 o
f t

he
 d

es
ire

d 
an

d 
es

tim
at

ed
 s

ig
na

ls
 (d

B)

 

 
PSO
IPSO
DE
IDE
SADE
RDE

(a) 

0 50 100 150 200
-60

-50

-40

-30

-20

-10

0

10

Index of iteration

M
S

E
 o

f t
he

 d
es

ire
d 

an
d 

es
tim

at
ed

 s
ig

na
ls

 (d
B

)

 

 
PSO
IPSO
DE

IDE
SADE
RDE

(b) 

0 50 100 150
-60

-50

-40

-30

-20

-10

0

10

20

Index of iteration

M
S

E
 o

f t
he

 d
es

ire
d 

an
d 

es
tim

at
ed

 s
ig

na
ls

 (d
B

)

 

 
PSO
IPSO
DE
IDE
SADE
RDE

(c) 

0 50 100 150 200
-60

-50

-40

-30

-20

-10

0

10

20

30

Index of iteration

M
S

E
 o

f t
he

 d
es

ire
d 

an
d 

es
tim

at
ed

 s
ig

na
ls

 (d
B

)

 

 
PSO
IPSO
DE
IDE
SADE
RDE

(d) 

0 50 100 150 200
8

9

10

11

12

13

14

15

Index of iteration

M
S

E
 o

f t
he

 d
es

ire
d 

an
d 

es
tim

at
ed

 s
ig

na
ls

 (d
B

)

 

 
PSO
IPSO
DE
IDE
SADE
RDE

(e) 

0 50 100 150 200
0

5

10

15

20

25

30

Index of iteration

M
S

E
 o

f t
he

 d
es

ire
d 

an
d 

es
tim

at
ed

 s
ig

na
ls

 (d
B

)

 

 
PSO
IPSO
DE
IDE
SADE
RDE

(f) 



Zou et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2014 15(8):687-696 696 

which can be considered as premature convergence. 
In contrast, the four DE algorithms converge gradu-
ally to the global optimal solutions. Furthermore, the 
RDE algorithm exhibits better convergence than the 
other three DE algorithms. In Example 1a (N=8), 
Example 2a (N=8), and Example 2b (N=8), the RDE 
algorithm reached the lowest levels. With respect to 
the other three problems, the four DE algorithms 
converged to comparable levels. In fact, the RDE 
algorithm was still superior to the other three DE 
algorithms in solving these three problems (Table 3). 
 
 
6  Conclusions 
 

In this paper, we propose a ranked differential 
evolution (RDE) algorithm for identifying nonlinear 
discrete-time systems based on a truncated second- 
order Volterra model. The kernels of the Volterra 
model are optimized by the RDE algorithm so that the 
Volterra filter output is very close to the actual system 
output. In addition, we investigated the effects of 
different memory sizes on modeling performance. 
Experimental results indicate that the RDE algorithm 
performs well for nonlinear system identification 
based on the truncated second-order Volterra model. 
Moreover, in most cases it can find better objective 
function values (or minimum mean square errors) 
than the other five evolutionary algorithms tested. 
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