
Zou et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):687-696 687

Volterra filter modeling of a nonlinear discrete-time system
based on a ranked differential evolution algorithm*

De-xuan ZOU†1, Li-qun GAO2, Steven LI3

(1School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou 221116, China)
(2School of Information Science and Engineering, Northeastern University, Shenyang 110004, China)

(3Graduate School of Business and Law, RMIT University, GPO Box 2476, Melbourne 3001, Australia)
†E-mail: zoudexuan@163.com

Received Dec. 6, 2013; Revision accepted Jan. 27, 2014; Crosschecked July 16, 2014

Abstract: This paper presents a ranked differential evolution (RDE) algorithm for solving the identification problem of non-
linear discrete-time systems based on a Volterra filter model. In the improved method, a scale factor, generated by combining a sine
function and randomness, effectively keeps a balance between the global search and the local search. Also, the mutation operation
is modified after ranking all candidate solutions of the population to help avoid the occurrence of premature convergence. Finally,
two examples including a highly nonlinear discrete-time rational system and a real heat exchanger are used to evaluate the per-
formance of the RDE algorithm and five other approaches. Numerical experiments and comparisons demonstrate that the RDE
algorithm performs better than the other approaches in most cases.

Key words: Ranked differential evolution, Identification problem, Nonlinear discrete-time systems, Volterra filter model, Premature

convergence
doi:10.1631/jzus.C1300350 Document code: A CLC number: TN713+.7

1 Introduction

The Volterra filter model (Chang, 2012) belongs
to the category of polynomial filters, and can ap-
proximate many real nonlinear systems. One signifi-
cant advantage of the Volterra model is that its output
is a linear combination of nonlinear functions of the
input signal and linearly depends on the model coef-
ficient known as the kernel. The Volterra filter model
can be found in a wide variety of application areas
including the identification of a parametric loud-
speaker system (Ji and Gan, 2012), nonlinear acoustic
echo cancellation (Contan et al., 2013), the modeling
of the oscillation behavior of ultrasound contrast
agents (Mleczko et al., 2009), and other areas (Ku-
ruoğlu, 2002; Nam and Powers, 2003; Krall et al.,

2008; Tang et al., 2010). Ji and Gan (2012) developed
a nonlinear system identification model based on an
adaptive Volterra filter in order to realize the identi-
fication of a parametric loudspeaker system. Unlike a
conventional loudspeaker, the nonlinear characteristic
of a parametric loudspeaker system is determined by
some parameters in nonlinear acoustics, namely the
initial pressure of the primary waves, observing dis-
tance and angle, ambient temperature, and relative
humidity. By using a truncated Volterra series up to
the second-order kernel, the sound pressure level and
harmonic distortion can be accurately predicted.
Contan et al. (2013) combined a modified version of
the normalized least-mean-fourth (NLMF) algorithm
and an adaptive second-order Volterra structure for
acoustic echo cancellation, which reaches a com-
promise between convergence rate and steady-state
error. Furthermore, a convergence rate improvement
was achieved at the same steady-state error by modify-
ing the step size of the conventional NLMF algorithm

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)
ISSN 1869-1951 (Print); ISSN 1869-196X (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

* Project supported by the Science Fundamental Research Project of
Jiangsu Normal University, China (No. 9212812101)
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2014

http://www.zju.edu.cn/jzus/current.php%23c

Zou et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):687-696 688

based on a new step-size function. Mleczko et al.
(2009) discussed and evaluated the use of Volterra
series for modeling the scattering behavior of contrast
agent microbubbles. For moderate insonification
pressures, a Volterra series enables an adequate rep-
resentation of the oscillation behavior of ultrasound
contrast agents. The accuracy of the evaluated model
was satisfactory for insonification pressures up to
100 kPa. Cheng and Powers (2001) presented a fifth-
order Volterra kernel estimation algorithm for a
bandpass nonlinear system under uniformly inde-
pendent and identically distributed (i.i.d.) rectangular
M-ary quadrature amplitude modulation (M-QAM)
input and uniformly i.i.d. M-ary phase shift keying
(M-PSK) input. The fifth-order Volterra kernel algo-
rithm is able to readily capture the behavior of a
nonlinear system.

Besides the Volterra filter model we studied the
evolutionary algorithm. Chang (2012) proposed an
improved particle swarm optimization (IPSO) to de-
termine the kernel vector of the Volterra filter model.
In this paper, we propose a ranked differential evolu-
tion (RDE) algorithm, and test it as an alternative to
the IPSO. The differential evolution (DE) algorithm,
derived by Storn and Price (1995), has attracted the
interest of many researchers, because it has a simple
algorithm structure and a favorable optimizing per-
formance. In recent years, many improved versions of
the DE algorithm have been used in a variety of en-
gineering fields, including the task assignment prob-
lem (Zou et al., 2011), optimization of nonlinear chem-
ical processes (Babu and Angira, 2006), and optimal
synthesis of linear antenna arrays (Li and Yin, 2012).

2 Volterra filter model and its truncated
second-order form

The Volterra filter model plays an important role
in identifying unknown nonlinear systems, and has
drawn much attention from researchers in recent
decades. Generally, the discrete form of the Volterra
filter model of the qth order (Chang, 2012) is stated as

1

1 2

1

0 1 1 1
0

1 1

2 1 2 1 2
0 0

[] [] []

[,] [] []

N

k

N N

k k

y n h h k x n k

h k k x n k x n k

−

=

− −

= =

= + −

+ − − +

∑

∑∑ 

1 2

1 1 1

1 2
0 0 0 1

[, , ,] []
q

qN N N

q q i
k k k i

h k k k x n k
− − −

= = = =

+ −∑∑ ∑ ∏ 

1

1 1

0 1
1 0 0 1

[, ,] [],
j

jq N N

j j i
j k k i

h h k k x n k
− −

= = = =

= + −∑∑ ∑ ∏ 

(1)

where N stands for the system memory size. Eq. (1)
denotes the Volterra filter model with the infinite
series. In this paper, we study only the truncated
second-order Volterra model (Zhang and Zhao, 2010;
Chang, 2012) as follows:

0
1

[] [] [1]
N

k
y n h h k x n k

=

= + − +∑

1 2 1

1 1

1 2 1 2
0

[,] [] [].
N N

k k k
h k k x n k x n k

− −

= =

+ − −∑ ∑ (2)

For simplicity, Eq. (2) can be expressed as the fol-
lowing vector form:

y[n]=HXT. (3)

Here H stands for the Volterra kernel vector given by

H=[h0, h[1], …, h[N], h[0, 0], h[0, 1], …,
h[0, N−1], h[1, 1], …, h[N−1, N−1]], (4)

and X denotes the Volterra input vector given by

X=[1, x[n], …, x[n−N+1], x2[n], x[n]x[n−1], …,
x[n]x[n−(N−1)], x2[n−1], …, x2[n−(N−1)]]. (5)

According to Eqs. (4) and (5), H and X have the

same vector length which can be calculated as follows
(Zhang and Zhao, 2010):

(1) (1)(2)1 .
2 2

N N N NL N + + +
= + + = (6)

To enable the output y[n] to approximate the

actual system output as much as possible, an RDE
algorithm is proposed to optimize the variables of the
kernel vector H under the input vector X. More details
of the RDE algorithm will be illustrated in Section 3.
To understand better the working principle of RDE, it is
necessary first to introduce the original DE algorithm.

Zou et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):687-696 689

3 Original differential evolution algorithm

DE (Storn and Price, 1995) is a simple evolu-
tionary algorithm which produces new candidate
solutions by combining parent individuals and some
other individuals. A candidate solution replaces its
parent solution only if it has a better objective func-
tion value or fitness. Generally speaking, DE works as
follows:

Step 1: initialization of parameters and population
Initialize scale factor F, crossover rate CR,

population size PS, the number of iterations NI, and
the number of problem variables L. For the jth prob-
lem variable (j=1, 2, …, L), its lower and upper
bounds are jx and jx , respectively. Moreover, all the

candidate solutions in the population are generated
randomly from a uniform distribution in the range
[,]j jx x .

Step 2: mutation
A trial vector 1t

i
+v is produced by mutating a

target vector. Usually, the updating equation of the
trial vector 1t

i
+v is given by

3 1 2

1 ().t t t t
i i i iF+ = + −v x x x (7)

Here, t represents the index of the current iteration. F
(F∈[0, 2]) is a scale factor which affects the differ-
ential variation between two candidate solutions. In
addition, i1, i2, and i3 are three different integers which
are randomly chosen from the set {1, 2, …, PS}.

Step 3: crossover
The variables of offspring vector 1t

i
+u are the

combination of parent vector t
ix and trial vector 1t

i
+v .

Thus, they are calculated as follows:

1
,1

,
,

, if rand() CR or ,

, otherwise,

t
i j rt

i j t
i j

v j j
u

x

+
+

 ≤ == 


 (8)

where rand() is a randomly generated number from
[0, 1], jr is a randomly chosen index from [1, L], and
CR (CR∈[0, 1]) stands for the crossover rate.

Step 4: selection
If the fitness of 1t

i
+u is better than that of t

ix ,

offspring vector 1t
i
+u is adopted for 1;t

i
+x otherwise,

the parent vector t
ix is chosen for 1t

i
+x . Therefore,

the selection operation is given by

1 1
1 , if () (),

, otherwise.

t t t
i i it

i t
i

f f+ +
+

 <= 


u u x
x

x
 (9)

Step 5: check the stopping criterion
If the number of iterations (NI) is reached, the

DE procedure is stopped. Otherwise, steps 3 and 4 are
repeated.

4 A ranked differential evolution algorithm

To perform the system identification accurately,
in this section we propose an RDE algorithm for op-
timally determining the Volterra kernel vector. More
specifically, the RDE algorithm makes two im-
provements on DE algorithms as follows:

1. The modification of the scale factor F. The
RDE algorithm adjusts the scale factor F by com-
bining a sine function and randomness, and the new
scale factor can be expressed as follows:

Ft=[1+sin(ω0t)]×rand(). (10)

Here, t=1, 2, …, NI is the index of the current itera-
tion, and rand() denotes a random number in [0, 1],
which is helpful to increase the diversity of the pop-
ulation. ω0=2π/T0 is the radian frequency of the sine
function, and T0 is its corresponding period. Suppose
NI=150 and T0=NI/10, then scale factor F can be
described as in Fig. 1.

0 50 100 150
0

0.5

1.0

1.5

2.0

Index of iteration

S
ca

le
 fa

ct
or

 F
t

Fig. 1 Scale factor during 150 iterations

Zou et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):687-696 690

The scale factor Ft is sometimes small, which is
beneficial for performing a local search, and some-
times large, which is beneficial for performing a
global search. Moreover, both small and large values
exist in each fixed iteration interval (T0), which
ensures that the RDE algorithm has both global
and local searching capacity in the whole evolution
process.

2. The RDE algorithm ranks all the candidate
solutions of the population according to their objec-
tive function values. The smaller (better) the objective
function value of a candidate solution, the higher its
rank. After ranking all the candidate solutions, a
modified mutation operation is performed, given by

1 ().
c a b

t t t t t
i i i iF+ = + −v x x x (11)

Here, ic represents the index randomly chosen from
the set {1, 2, …, PS}, ia represents the index randomly
chosen from the set {1, 2, …, PS/2}, ib represents the
index randomly chosen from the set {PS/2+1, …, PS},
and ia≠ib≠ic≠i. Obviously,

a

t
ix comes from the can-

didate solutions with better objective function values,
and

b

t
ix comes from those with worse values. By

using this selection mechanism, the searching range
of difference vector ()

a b

t t
i i−x x can be further en-

larged, which can effectively avoid premature con-
vergence of the RDE algorithm.

Based on the above two modifications, the per-
formance of the RDE algorithm can be improved. Its
procedure is illustrated in Algorithm 1.

Adopting the RDE algorithm, a schematic dia-
gram of nonlinear discrete-time systems based on the
truncated second-order Volterra model is shown in
Fig. 2, and the notations used in the diagram are listed
in Table 1.

The Volterra filter model based on the RDE al-
gorithm aims to determine the optimal kernel vector
H so that the output y[n] approximates the actual

Unknown nonlinear discrete-
time system

Second-order Voterra filter
model E[e2[n]]

RDE algorithm

r[n]

d[n]
e[n]

y[n]

ŷ[n]

x[n]

Fig. 2 Volterra filter modeling of a nonlinear discrete-
time system using the RDE algorithm

Algorithm 1 Ranked differential evolution
1 Begin
2 Set PS=50; NI=150; T0=NI/10; 21(, , ,);Lx x x=x 

1 2(, , ,);Lx x x=x  CR=0.3
3 Randomly generate a population
4 For t=1 to NI
5 Calculate scale factor Ft according to Eq. (10)
6 Rank the population according to the objective

function values of all candidate solutions
7 For i=1 to PS
8 Randomly generate an integer ia in the range

[1, PS/2]
9 Randomly generate an integer ib in the range

[PS/2+1, PS]
10 Randomly generate an integer ic in the range

[1, PS], and ia≠ib≠ic≠i
11 1 ()

c a b

t t t t t
i i i iF+ = + −v x x x

12 Randomly generate an integer jr in the range [1, L]
13 For j=1 to L
14 If rand()<CR or j=jr
15 1 1

, ,
t t
i j i ju v+ +=

16 Else
17 1

, ,
t t
i j i ju x+ =

18 End If
19 End For
20 If 1() ()t t

i if f+ <u x
21 1 1t t

i i
+ +=x u

22 Else
23 1t t

i i
+ =x x

24 End If
25 End For
26 End For
27 End

Table 1 Notations used in Volterra filter modeling of a
nonlinear discrete-time system

Notation Meaning
x[n] Digital input signal
y[n] Output signal of the second-order

Volterra filter model (Eq. (2))
d[n] Output of the unknown nonlinear

discrete-time system
r[n] Measurement noise
ŷ[n] Sum of d[n] and r[n]
e[n] Error signal between ŷ[n] and y[n]

Zou et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):687-696 691

system output ŷ[n] as much as possible. In other
words, the difference between y[n] and ŷ[n] should be
minimized. Therefore, it is necessary to find an ob-
jective function to achieve the modeling requirement.
In this paper, the objective function (Chang, 2012) is

[]
1 1

22 2

0 0

1 1 ˆ[[]] [] [] [] .
T T

n n
E e n e n y n y n

T T

− −

− −

= = −∑ ∑ (12)

Here, E[e2[n]] is defined as the mean square error
(MSE), and T denotes the sampling number. By uti-
lizing the RDE algorithm to minimize the MSE, we
can find the optimal kernel vector of the second-order
Volterra model.

5 Experimental results and analysis

To test the applicability of the RDE algorithm for
nonlinear system identification based on the Volterra
filter model, two examples were chosen: a highly
nonlinear discrete-time rational system and a real heat
exchanger.

5.1 Example 1

The first example was a highly nonlinear
discrete-time rational system (Chang, 2012). Its
mathematical model is stated as follows:

2

2 2

0.3 [1] 0.8 [1] 0.6 [2][] .
1 [1] [1]

d n x n d nd n
x n d n

− + − + −
=

+ − + −
 (13)

Two kinds of input signals were used. The first

(Example 1a) was a random sequence uniformly
generated from [−1, 1], which can be expressed as
x[n]~U(−1, 1), and the second (Example 1b) was a
cosine signal x[n]=0.8cos(nπ/9). In addition, the
measurement noise r[n] was assumed to be a Gauss-
ian noise of N(0, 0.001).

In this experiment, the RDE algorithm was used
for solving Example 1a with x[n]~U(−1, 1) and N=5.
The parameters of the algorithm were set as follows:
CR=0.3, PS=50, NI=150, the period of sine function
T0=NI/10, and sampling number T=100. Based on the
above parameter settings, the estimated output y[n]
was obtained (Fig. 3).

In Fig. 3, a comparison between the actual output
ŷ[n] and the Volterra model output y[n] is plotted with
respect to the sampling number n. It is clear that the
estimated output y[n] was very close to the actual
output ŷ[n]. Moreover, the final objective function
value, i.e., mean square error (MSE), obtained using
the RDE algorithm was equal to −44.136 dB. To ver-
ify the effectiveness of the RDE algorithm for
Volterra filter modeling with a large memory size N,
we increased N to 8. In Example 1a with x[n]~U(−1, 1)
and N=8, we also used the RDE algorithm to realize
nonlinear system identification, and the parameters of
the algorithm were set as follows: CR=0.3, PS=80,
NI=200, the period of sine function T0=NI/10, and
sampling number T=100. Based on these parameter
settings, the estimated output y[n] was as shown in
Fig. 4.

The estimated output y[n] was very close to the
actual output ŷ[n] (Fig. 4). The MSE obtained using
the RDE algorithm was −48.9 dB.

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Sampling number

O
ut

pu
t

Actual output
Estimated output

Fig. 4 Comparison of actual system output and
Volterra model output for Example 1a (N=8)

0 20 40 60 80 100
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Sampling number

O
ut

pu
t

Actual output
Estimated output

Fig. 3 Comparison of actual system output and Volterra
model output for Example 1a (N=5)

Zou et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):687-696 692

To testify further the performance of Volterra
filter modeling based on RDE, another testing input
signal x[n]=0.8cos(nπ/9) (Example 1b) was adopted.
In Example 1b with N=5 and N=8, the parameter
settings of the RDE algorithm were the same as those
for Example 1a. Figs. 5 and 6 depict the experimental
results when N=5 and N=8, respectively. Two satis-
fying MSEs, −54.789 dB for N=5 and −54.849 for N=8,
were obtained after performing the RDE algorithm.

5.2 Example 2

The second example was a real heat exchanger.
Its mathematical model (Sumar et al., 2010; Chang,
2012) is given by

2[] [] 1.3228 []w n x n x n= −
3 40.7671 [] 2.1755 [],x n x n+ − (14)

1 2

1 2

6.5306 5.5652[] [],
1 1.608 0.6385

z zd n w n
z z

− −

− −

− +
=

− +
 (15)

where x[n] is the process input denoting the flow rate
and is constrained by the range [0, 1], w[n] represents
the static nonlinearity, and d[n] represents the process
output temperature. For convenience, Eqs. (14) and
(15) can be further rewritten as the following differ-
ence equation:

[] 1.608 [1] 0.6385 [2]d n d n d n= − − −
6.5306 [1] 5.5652 [2].w n w n− − + − (16)

Two kinds of input signals were used. The first

(Example 2a) was randomly generated in the range
[0.1, 0.9], which can be expressed as x[n]~U(0.1, 0.9),
and the second (Example 2b) was a sine signal x[n]=
0.4sin(nπ/6)+0.5. The measurement noise r[n]=0.

In this experiment, the memory size of the
Volterra filter model was set as N=8. To satisfy the
physical input requirement, the system input x[n] was
randomly generated in the range [0.1, 0.9] and the
testing input was then set to x[n]=0.4sin(nπ/6)+0.5.
The parameters of the RDE algorithm for Example 2
were the same as those of Example 1. From per-
forming the RDE algorithm, the Volterra model out-
put for the modeling input is shown in Fig. 7 and for
the testing input is shown in Fig. 8. Obviously, the
experimental results are acceptable, and the Volterra
model output y[n] was close to the actual output ŷ[n]
in each case.

5.3 Comparison of five approaches for identifying
nonlinear discrete-time systems

The RDE algorithm in this paper was compared
with five other approaches for solving the above
problems with different input signals and system
memory sizes. The five other approaches were: par-
ticle swarm optimization (PSO) algorithm (Kennedy
and Eberhart, 1995; Shi and Eberhart, 1999), im-
proved particle swarm optimization (IPSO) (Chang,
2012), differential evolution (DE) (Storn and Price,
1995), improved differential evolution (IDE) algo-
rithm (Zou et al., 2011), and the differential evolution
algorithm based on self-adapting control parameters
(SADE) (Brest et al., 2006). The parameters of all six
approaches are listed in Table 2. The population size
PS was set as 50 for the system memory size N=5 and
as 80 for N=8. The number of iterations NI was set as
150 for the system memory size N=5 and as 200 for
N=8. We conducted additional experiments with some

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Sampling number

O
ut

pu
t

Actual output
Estimated output

Fig. 6 Comparison of actual system output and
Volterra model output for Example 1b (N=8)

0 20 40 60 80 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Sampling number

O
ut

pu
t

Actual output
Estimated output

Fig. 5 Comparison of actual system output and
Volterra model output for Example 1b (N=5)

Zou et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):687-696 693

combinations with PS and NI using larger values:
(PS=100, NI=250), (PS=120, NI=300), (PS=150,
NI=350), and (PS=200, NI=400), and did not notice
any significant differences in the results. We also
conducted additional experiments with some combi-
nations with PS and NI using smaller values: (PS=20,
NI=50), (PS=30, NI=60), and (PS=40, NI=80). Alt-
hough these parameter settings can save calculation
time, they cannot guarantee calculation accuracy.
Therefore, as the peak occurred at (PS=50, NI=150)
for N=5 and at (PS=80, NI=200) for N=8, those val-
ues were used in this study. In addition, the sampling

number was set as T=100 for the Volterra filter model.
Matlab 7.0 was used to perform the above design
steps in the environment of Intel Core i5-2410M
CPU@2.30 GHz. Twenty independent runs were
carried out for each problem, and the optimization
results over 20 runs on each problem are reported in
Table 3.

The RDE algorithm showed overwhelming su-
periority over the other five approaches. The optimi-
zation results (Best, Worst, Mean, and Std) obtained
using the RDE algorithm were better than those ob-
tained by the other five approaches for Example 1a
(N=5, 8), Example 2a (N=8), and Example 2b (N=8).
In Example 1b (N=5), the ‘Best’ and ‘Mean’ results of
the RDE algorithm were better than those of the other
five approaches, and the “Worst” and ‘Std’ results
of the DE algorithms were better than those of the
other five approaches. In Example 1b (N=8), IPSO
achieved the optimal solution, but was worse than the
RDE algorithm according to the three criteria ‘Worst’,
‘Mean’, and ‘Std’. The average computation times
(ACTs) of the PSO, DE, IDE, SADE, and RDE algo-
rithms were similar, but the ACT of IPSO was almost
twice as long as any of the other five algorithms.

To determine whether the results produced by
the RDE algorithm were statistically different from
those produced by the other five approaches, Wil-
coxon rank-sum tests (Wilcoxon, 1945; Derrac et al.,
2011) were conducted at the 5% significance level.
The results are shown in Table 4. A P-value smaller
than 0.05 suggests that the performance of the two
approaches was statistically different with 95% cer-
tainty, whereas a P-value larger than 0.05 indicates no
statistical difference.

In this experiment, the term ‘Mean’ was the
primary criterion to define the best approach, and the
term ‘Std’ ranked second. The results show that the
RDE algorithm performed better than the other five
approaches in solving all six problems. For Example 1b

Table 2 The parameter settings of six approaches

Approach Parameters
Particle swarm optimization (PSO) (Kennedy and Eberhart, 1995; Shi and Eberhart, 1999) ωmin=0.4, ωmax=0.9, c1=c2=2
Improved particle swarm optimization (IPSO) (Chang, 2012) ω=0.8, c1=c2=c3=1, S=5
Differential evolution (DE) (Storn and Price, 1995) F=0.6, CR=0.3
Improved differential evolution (IDE) (Zou et al., 2011) CRmin=0.1, CRmax=0.9
Differential evolution algorithm based on self-adapting control parameters (SADE)

(Brest et al., 2006)
Fl=0.1, Fu=0.9, τ1=τ2=0.1

Ranked differential evolution (RDE) CR=0.3, T0=NI/10

0 20 40 60 80 100
-2

0

2

4

6

8

10

12

14

Sampling number

O
ut

pu
t

Actual output
Estimated output

Fig. 7 Comparison of actual system output and Volterra
model output for Example 2a (N=8)

0 20 40 60 80 100
-5

0

5

10

15

20

Sampling number

O
ut

pu
t

Actual output
Estimated output

Fig. 8 Comparison of actual system output and
Volterra model output for Example 2b (N=8)

Zou et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):687-696 694

Table 3 Comparison of results for PSO, IPSO, DE, IDE, SADE, and RDE algorithms applied to six problems
Problem PS NI Algorithm ACT (s) Best (dB) Worst (dB) Mean (dB) Std (dB)

Example 1a (N=5) 50 150

PSO 1.7916 −42.6590 −15.5670 −25.9630 −26.3320
IPSO 3.4897 −43.2500 −34.1800 −38.0310 −44.5380
DE 1.7125 −44.1290 −44.1210 −44.1250 −115.9600
IDE 1.7157 −44.1340 −44.1270 −44.1300 −116.7600
SADE 1.7423 −44.1340 −43.7190 −44.0980 −83.5150
RDE 1.7281 −44.1360 −44.1350 −44.1350 −139.0500

Example 1a (N=8) 80 200

PSO 6.2010 −40.0160 −6.3917 −14.7800 −19.0170
IPSO 12.3145 −45.2590 −32.1300 −35.2460 −42.1260
DE 6.0910 −47.8220 −46.5430 −47.3670 −75.5250
IDE 6.0593 −48.2320 −47.5850 −47.8600 −81.6940
SADE 6.0846 −48.7810 −45.9320 −47.7500 −68.1050
RDE 6.1001 −48.9000 −48.6240 −48.8070 −89.7550

Example 1b (N=5) 50 150

PSO 2.9186 −54.3010 −16.3100 −31.9040 −26.3050
IPSO 5.7728 −54.3010 −37.3390 −50.1510 −52.0300
DE 2.8454 −54.6740 −53.9080 −54.2790 −87.7270
IDE 2.8339 −54.6820 −53.7790 −54.3530 −85.9460
SADE 2.8475 −54.6620 −53.2450 −54.3210 −82.2410
RDE 2.8490 −54.7890 −53.5320 −54.5110 −83.0720

Example 1b (N=8) 80 200

PSO 10.9023 −54.3370 −32.5260 −46.4280 −44.9610
IPSO 21.7446 −54.8860 −49.8960 −52.8670 −69.3360
DE 10.8377 −54.7300 −54.4610 −54.6010 −95.3990
IDE 10.7828 −54.8270 −54.5950 −54.7230 −96.2800
SADE 10.7593 −54.8400 −54.4800 −54.7110 −93.7530
RDE 10.8645 −54.8490 −54.6640 −54.7560 −100.2900

Example 2a (N=8) 80 200

PSO 7.6237 13.2810 14.2760 13.7040 −15.9570
IPSO 15.5188 12.8670 14.6830 13.5110 −12.2280
DE 7.8295 12.8090 13.0220 12.9140 −30.4490
IDE 7.9206 12.7390 13.0260 12.8690 −28.9630
SADE 7.7898 12.6230 12.8880 12.7350 −27.9690
RDE 7.9615 12.6100 12.7160 12.6500 −38.8710

Example 2b (N=8) 80 200

PSO 12.0401 1.3429 10.5120 5.7152 −5.1475
IPSO 23.9678 1.4398 5.7457 3.3947 −13.3590
DE 11.9376 1.2283 1.9472 1.6248 −30.6170
IDE 11.9065 0.9999 1.9701 1.5263 −28.8860
SADE 11.9308 0.5966 1.6658 1.0861 −28.3250
RDE 11.9023 0.4155 0.8089 0.6556 −37.4780

Act: average computation time; Std: standard deviation of 20 runs. Bold font signifies the best result among the six approaches

Table 4 P-values from Wilcoxon rank-sum tests of performance results for six problems

Problem P-value
 PSO IPSO DE IDE SADE RDE

Example 1a (N=5) 6.7956×10−8 6.6909×10−8 6.7956×10−8 6.7956×10−8 6.7956×10−8 NA
Example 1a (N=8) 6.7956×10−8 6.7765×10−8 6.7956×10−8 6.7956×10−8 3.4156×10−7 NA
Example 1b (N=5) 1.9177×10−7 1.6571×10−7 2.7451×10−4 3.0566×10−3 7.1135×10−3 NA
Example 1b (N=8) 6.7956×10−8 1.2009×10−6 5.2269×10−7 1.9883×10−1 2.8530×10−1 NA
Example 2a (N=8) 6.7956×10−8 6.7956×10−8 6.7956×10−8 6.7956×10−8 2.4706×10−4 NA
Example 2b (N=8) 6.7956×10−8 6.7956×10−8 6.7956×10−8 6.7956×10−8 6.6737×10−6 NA
NA: not available (always applies to the best approach)

Zou et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):687-696 695

(N=8), the P-values obtained using the IDE and the
SADE algorithms were larger than 0.05, suggesting
that their optimization results were comparable to
those of the RDE algorithm for that example. There-
fore, the results from Table 4 verify that the RDE
algorithm is the best among the six approaches, and
that its results were statistically different from those of
the other five approaches for all problems except

Example 1b (N=8).
Fig. 9 displays the MSEs (in logarithmic scale)

of the desired and estimated signals obtained by the
six algorithms for six problems. Clearly, both the PSO
and IPSO algorithms have larger convergence rates
than the other four approaches at the beginning of the
optimization process. However, the two PSO algorithms
become trapped early in the local optimal solutions,

Fig. 9 The MSEs obtained by using six approaches for solving six problems
(a) Example 1a (N=5); (b) Example 1a (N=8); (c) Example 1b (N=5); (d) Example 1b (N=8); (e) Example 2a (N=8); (f)
Example 2b (N=8)

0 50 100 150
-50

-40

-30

-20

-10

0

10

Index of iteration

M
SE

 o
f t

he
 d

es
ire

d
an

d
es

tim
at

ed
 s

ig
na

ls
 (d

B)

PSO
IPSO
DE
IDE
SADE
RDE

(a)

0 50 100 150 200
-60

-50

-40

-30

-20

-10

0

10

Index of iteration

M
S

E
 o

f t
he

 d
es

ire
d

an
d

es
tim

at
ed

 s
ig

na
ls

 (d
B

)

PSO
IPSO
DE

IDE
SADE
RDE

(b)

0 50 100 150
-60

-50

-40

-30

-20

-10

0

10

20

Index of iteration

M
S

E
 o

f t
he

 d
es

ire
d

an
d

es
tim

at
ed

 s
ig

na
ls

 (d
B

)

PSO
IPSO
DE
IDE
SADE
RDE

(c)

0 50 100 150 200
-60

-50

-40

-30

-20

-10

0

10

20

30

Index of iteration

M
S

E
 o

f t
he

 d
es

ire
d

an
d

es
tim

at
ed

 s
ig

na
ls

 (d
B

)

PSO
IPSO
DE
IDE
SADE
RDE

(d)

0 50 100 150 200
8

9

10

11

12

13

14

15

Index of iteration

M
S

E
 o

f t
he

 d
es

ire
d

an
d

es
tim

at
ed

 s
ig

na
ls

 (d
B

)

PSO
IPSO
DE
IDE
SADE
RDE

(e)

0 50 100 150 200
0

5

10

15

20

25

30

Index of iteration

M
S

E
 o

f t
he

 d
es

ire
d

an
d

es
tim

at
ed

 s
ig

na
ls

 (d
B

)

PSO
IPSO
DE
IDE
SADE
RDE

(f)

Zou et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2014 15(8):687-696 696

which can be considered as premature convergence.
In contrast, the four DE algorithms converge gradu-
ally to the global optimal solutions. Furthermore, the
RDE algorithm exhibits better convergence than the
other three DE algorithms. In Example 1a (N=8),
Example 2a (N=8), and Example 2b (N=8), the RDE
algorithm reached the lowest levels. With respect to
the other three problems, the four DE algorithms
converged to comparable levels. In fact, the RDE
algorithm was still superior to the other three DE
algorithms in solving these three problems (Table 3).

6 Conclusions

In this paper, we propose a ranked differential
evolution (RDE) algorithm for identifying nonlinear
discrete-time systems based on a truncated second-
order Volterra model. The kernels of the Volterra
model are optimized by the RDE algorithm so that the
Volterra filter output is very close to the actual system
output. In addition, we investigated the effects of
different memory sizes on modeling performance.
Experimental results indicate that the RDE algorithm
performs well for nonlinear system identification
based on the truncated second-order Volterra model.
Moreover, in most cases it can find better objective
function values (or minimum mean square errors)
than the other five evolutionary algorithms tested.

References
Babu, B.V., Angira, R., 2006. Modified differential evolution

(MDE) for optimization of non-linear chemical processes.
Comput. Chem. Eng., 30(6-7):989-1002. [doi:10.1016/
j.compchemeng.2005.12.020]

Brest, J., Greiner, S., Boskovic, B., et al., 2006. Self-adapting
control parameters in differential evolution: a compara-
tive study on numerical benchmark problems. IEEE Trans.
Evol. Comput., 10(6):646-657. [doi:10.1109/TEVC.2006.
872133]

Chang, W.D., 2012. Volterra filter modeling of nonlinear
discrete-time system using improved particle swarm op-
timization. Dig. Signal Process., 22(6):1056-1062. [doi:
10.1016/j.dsp.2012.07.005]

Cheng, C.H., Powers, E.J., 2001. Optimal Volterra kernel
estimation algorithms for a nonlinear communication
system for PSK and QAM inputs. IEEE Trans. Signal
Process., 49(1):147-163. [doi:10.1109/78.890357]

Contan, C., Kirei, B.S., Topa, M.D., 2013. Modified NLMF
adaptation of Volterra filters used for nonlinear acoustic
echo cancellation. Signal Process., 93(5):1152-1161.

[doi:10.1016/j.sigpro.2012.11.017]
Derrac, J., García, S., Molina, D., et al., 2011. A practical

tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm in-
telligence algorithms. Swarm Evol. Comput., 1(1):3-18.
[doi:10.1016/j.swevo.2011.02.002]

Ji, W., Gan, W.S., 2012. Identification of a parametric loud-
speaker system using an adaptive Volterra filter. Appl.
Acoust., 73(12):1251-1262. [doi:10.1016/j.apacoust.2012.
03.007]

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization.
Proc. IEEE Int. Conf. on Neural Networks, p.1942-1948.
[doi:10.1109/ICNN.1995.488968]

Krall, C., Witrisal, K., Leus, G., et al., 2008. Minimum
mean-square error equalization for second-order Volterra
systems. IEEE Trans. Signal Process., 56(10):4729-4737.
[doi:10.1109/TSP.2008.928167]

Kuruoğlu, E.E., 2002. Nonlinear least lp-norm filters for non-
linear autoregressive α-stable processes. Dig. Signal
Process., 12(1):119-142. [doi:10.1006/dspr.2001.0416]

Li, X., Yin, M., 2012. Optimal synthesis of linear antenna array
with composite differential evolution algorithm. Sci. Iran.,
19(6):1780-1787. [doi:10.1016/j.scient.2012.03.010]

Mleczko, M., Postema, M., Schmitz, G., 2009. Discussion of
the application of finite Volterra series for the modeling of
the oscillation behavior of ultrasound contrast agents.
Appl. Acoust., 70(10):1363-1369. [doi:10.1016/j.apacoust.
2008.09.012]

Nam, S.W., Powers, E.J., 2003. Volterra series representation
of time-frequency distributions. IEEE Trans. Signal Pro-
cess., 51(6):1532-1537. [doi:10.1109/TSP.2003.811241]

Shi, Y.H., Eberhart, R.C., 1999. Empirical study of particle
swarm optimization. Proc. Congress on Evolutionary
Computation, p.1945-1950. [doi:10.1109/CEC.1999.
785511]

Storn, R., Price, K., 1995. Differential Evolution—a Simple
and Efficient Adaptive Scheme for Global Optimization
over Continuous Spaces. International Computer Science
Institute, Berkeley, USA.

Sumar, R.R., Coelho, A.A.R., Coelho, L.D.S., 2010. Compu-
tational intelligence approach to PID controller design
using the universal model. Inform. Sci., 180(20):3980-
3991. [doi:10.1016/j.ins.2010.06.026]

Tang, H., Liao, Y.H., Cao, J.Y., et al., 2010. Fault diagnosis
approach based on Volterra models. Mech. Syst. Signal
Process., 24(4):1099-1113. [doi:10.1016/j.ymssp.2009.
09.001]

Wilcoxon, F., 1945. Individual comparisons by ranking
methods. Biometr. Bull., 1(6):80-83.

Zhang, J.S., Zhao, H.Q., 2010. A novel adaptive bilinear filter
based on pipelined architecture. Dig. Signal Process.,
20(1):23-38. [doi:10.1016/j.dsp.2009.06.006]

Zou, D.X., Liu, H.K., Gao, L.Q., et al., 2011. An improved
differential evolution algorithm for the task assignment
problem. Eng. Appl. Artif. Intell., 24(4):616-624. [doi:10.
1016/j.engappai.2010.12.002]

http://www.sciencedirect.com/science/article/pii/S0098135406000147
http://www.sciencedirect.com/science/article/pii/S0098135406000147
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4016057
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4016057
http://www.sciencedirect.com/science/article/pii/S1051200412001583
http://www.sciencedirect.com/science/article/pii/S1051200412001583
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=890357
http://www.sciencedirect.com/science/article/pii/S0165168412004124
http://www.sciencedirect.com/science/article/pii/S2210650211000034
http://www.sciencedirect.com/science/article/pii/S0003682X1200062X
http://www.sciencedirect.com/science/article/pii/S0003682X1200062X
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=488968
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4558047
http://www.sciencedirect.com/science/article/pii/S1051200401904166
http://www.sciencedirect.com/science/article/pii/S1026309812001058
http://www.sciencedirect.com/science/article/pii/S0003682X0800220X
http://www.sciencedirect.com/science/article/pii/S0003682X0800220X
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1200142
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=785511
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=785511
http://www.sciencedirect.com/science/article/pii/S0020025510002872
http://www.sciencedirect.com/science/article/pii/S0888327009002611
http://www.sciencedirect.com/science/article/pii/S0888327009002611
http://www.sciencedirect.com/science/article/pii/S1051200409001171
http://www.sciencedirect.com/science/article/pii/S0952197611000108
http://www.sciencedirect.com/science/article/pii/S0952197611000108

