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Abstract:    We propose a 3D model feature line extraction method using templates for guidance. The 3D model is first projected 
into a depth map, and a set of candidate feature points are extracted. Then, a conditional random fields (CRF) model is established 
to match the sketch points and the candidate feature points. Using sketch strokes, the candidate feature points can then be con-
nected to obtain the feature lines, and using a CRF-matching model, the 2D image shape similarity features and 3D model geo-
metric features can be effectively integrated. Finally, a relational metric based on shape and topological similarity is proposed to 
evaluate the matching results, and an iterative matching process is applied to obtain the globally optimized model feature lines. 
Experimental results showed that the proposed method can extract sound 3D model feature lines which correspond to the initial 
sketch template. 
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1  Introduction 
 

Line drawing of 3D models is one of the most 
interesting issues in nonphotorealistic rendering 
(NPR) fields (Hertzmann, 2010), and is widely used 
in interactive modeling, model analysis, and other 
applications (Catalano et al., 2011). A key problem in 
line drawings is how to extract feature lines that give 
the shape and structure information needed for 3D 
models, a procedure similar to that implemented by 
artists. There have been many feature line extraction 
methods based mainly on the geometric features of 
3D models, in which different feature lines including 
silhouettes (Hertzmann, 1999), suggestion contours 

(DeCarlo et al., 2003), and ridges and valleys (Inter-
rante et al., 1995) are extracted and then combined to 
depict the shape of 3D models. These methods extract 
feature lines from 3D models automatically, but 
without user guidance, the appearance, number, and 
structure of feature lines may not be consistent with 
user perception and different requirements of various 
applications (Cole et al., 2008). As a result, the ques-
tion of how to combine user guidance with geometric 
features, thereby making the extracted feature lines 
consistent with user perception, remains an important 
issue in line drawing (Hertzmann, 2010). 

Some researchers have attempted to make fea-
ture line extraction somewhat interactive so that user 
guidance information can be introduced. For instance, 
Cole et al. (2008) fitted regression models of feature 
curve locations to a sample set of hand-drawn images; 
a large sample set was needed, however, due to the 
focus on feature curve location statistics. Kalogerakis 
et al. (2012) adopted a model based on artists’ 
hatching methods, which can be used to render a new 
hatched image of an object, but this model can be 
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used only for creating hatching maps. Each of the 
methods above requires a large number of models be 
labeled for study and involves extraction processes 
which are difficult to manipulate. Lum and Ma (2005) 
implemented an interactive feature line extraction 
process using the user’s sketch strokes. However, it 
depends upon existing object-space based feature line 
extraction methods, which are sensitive to the 
thresholds of key parameters and mesh quality. What 
is more, the sketch is used only for labeling, and fea-
tures such as shape, position, and topology are ig-
nored, so the native properties of the sketch cannot be 
reflected. 

Sketching is one of the most intuitive and natu-
rally interactive tools, and has been widely used in 3D 
modeling (Olsen et al., 2009), information retrieval, 
and other fields. One of the most effective methods of 
extracting model feature lines is using sketching, so 
that the line drawings extracted correspond to speci-
fied sketch strokes. Sketching can effectively convey 
position, shape, and topological features according to 
users’ purposes, and can also be combined with model 
geometric features. The key problem of sketch- 
guided extraction is how to find a subset of model 
feature points that best fit the sketch strokes, from 
which the feature points are connected to form con-
tinuous feature lines. The difficulty of matching fea-
ture lines with sketch strokes lies in making the ex-
tracted feature lines not only depict the shape of the 
model surface, but also fit the sketch strokes. 
Matching methods that combine sketch strokes with 
model feature points are usually based on simple 
distance differentials (Mao et al., 2009) or a prob-
abilistic model of specific features (Kraevoy et al., 
2009), but existing methods always follow the  
‘extract-match’ process so that the matching results 
are limited by the feature lines extracted and are also 
sensitive to the thresholds. Furthermore, these con-
ventional methods consider only specific features of 
sketch points and model feature points, and usually 
focus on the correlation between single strokes and 
feature lines instead of global topological features. As 
a result, only simple sketch strokes can be processed, 
and more complex sketches are difficult to match 
(Kraevoy et al., 2009).  

While acknowledging the problems listed above, 
this paper proposes a 3D model feature line extraction 
method guided by the user’s sketch. This method has 

two main advantages: (1) A conditional random fields 
(CRF) matching model with multiple features be-
tween stroke points and candidate feature points is 
established, and the user template is effectively 
combined with model feature line extraction; (2) A 
metric based on topological similarity is proposed to 
evaluate the rationality of extracted feature lines, and 
an iterative optimization process is applied to obtain 
globally optimized model feature lines. 

 
 

2  Related studies 
 

Conventional feature line extraction methods 
can be divided into object space methods and image 
space methods. Object space methods extract feature 
points by computing curvatures and other differential 
properties of the model surfaces. Hertzmann (1999) 
extracted model contours with normal vectors be-
tween each vertex of the model surface, and then 
computed the cross product of normal vectors and 
view vectors to select contour points. DeCarlo et al. 
(2003) proposed suggestive contours as the extension 
of contours. Interrante et al. (1995) proposed a 
method to detect ridges and valleys via local curva-
ture extremes of 3D surfaces. Judd et al. (2007) de-
fined view-dependent curvature as the variation of the 
surface normal with respect to a viewing screen plane, 
and apparent ridges as the loci of points that maxi-
mize a view-dependent curvature. These existing 
methods directly extract feature lines of various types 
based on geometric features. The resultant extracted 
line drawings are significantly influenced both by the 
thresholds used, and by the mesh quality; if the mesh 
quality is poor, a mesh preprocessing is usually 
needed. Image space methods, on the other hand, 
extract feature lines from projected images of 3D 
models and do not depend on object space estimations 
of differential attributes. Saito and Takahashi (1990) 
extracted contours, creases, and other feature lines 
using image processing operations, while Lee et al. 
(2007) demonstrated near interactive animations of 
line drawings using GPU-based image processing 
operations. Image space methods are appealing in that 
they are generally simple to implement and that they 
show how level-of-detail abstraction occurs auto-
matically in image space computation. However, 
there are some drawbacks: accuracy is limited by 
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pixel resolution (often resulting in jagged or irregular 
lines), stylization options are limited (e.g., curves 
cannot be textured), speed is limited by hardware 
image-processing performance, and a careful setting 
of user-defined thresholds is required (Kalogerakis et 
al., 2009). Some researchers have attempted to use 
guidance in model feature line extraction. Lum and 
Ma (2005) proposed an interactive feature line ex-
traction process using user’s sketch strokes, and used 
neural networks and support vector machines to learn 
a classifier for displaying feature curves. This method 
is sensitive to key parameters’ thresholds and mesh 
quality; the sketch is used only for labeling and other 
features of sketch such as shape and position are 
abandoned. Cole et al. (2008) learned regression 
models of feature curve locations from a sample set of 
hand-drawn images, but only the probabilities of 
feature curve locations are computed and a large 
sample set is needed. Kalogerakis et al. (2012) es-
tablished a mapping between model features and 
hatching style, and new hatching maps from different 
views can be rendered according to this style. But this 
procedure can be used only for rendering a hatching 
map. All these methods require a large number of 
sample models be labeled, which makes the extrac-
tion process more difficult to manipulate. 

Some researchers have studied the problem of 
matching between sketch strokes and model feature 
lines. Mao et al. (2009) used simple distance differ-
ences to match strokes and model feature points, but 
their method cannot be applied to complex sketches. 
Kraevoy et al. (2009) constructed a hidden Markov 
model (HMM) using stroke points and model feature 
points, to match the strokes and contours based on 
shape similarity, but the HMM model allows only 
local shape features to evolve. 

Furthermore, existing matching methods always 
divide the process into two steps: feature line extrac-
tion and stroke lines matching. Feature lines are ex-
tracted using conventional line drawing methods, 
 

 
 
 
 
 
 
 

and thus the matching results are greatly constrained; 
at the same time, only local shape differences are 
considered, and a lack of global shape and topology 
features makes complex sketches difficult to deal 
with. 

Conditional random fields (CRF), first pro-
posed for sequence data analysis by Lafferty et al. 
(2001), has been widely used in natural language 
processing and image registration in recent years. 
Ramos et al. (2007) proposed a CRF-matching 
model based on CRFs in robotics laser scan match-
ing, to establish pixel mapping between two differ-
ent images. Arbitrary features were used to delineate 
various properties of the data, and these features can 
be taken from labeled data to combine the local and 
spatial properties of the data in a theoretically sound 
manner. This, in contrast to generative models such 
as HMM and Markov random fields, provides sub-
stantial flexibility in using high-dimensional feature 
vectors. 
 
 
3  Conditional random fields based feature 
line extraction 
 

Our proposed method allows users to extract 
model feature lines with a template. The main process 
of this method, as shown in Fig. 1, is composed of 
three steps. First, as a preprocessing, the given 3D 
model is projected onto a depth map, and a Canny 
edge detection process is applied to obtain the edge 
points, allowing a subset of edge points to be ex-
tracted as candidate feature points to follow the sketch 
strokes. Second, several feature functions are defined 
to establish a CRF model using the sketch and model 
feature points, including two types of feature func-
tions, shape similarity feature functions and gradient 
feature functions. The marginal probability distribu-
tions of hidden states can be evaluated with belief 
propagation (BP), and then a Viterbi decoding is  
 

 
 
 
 
 
 
 Fig. 1  The main process of our proposed conditional random fields (CRF) based feature line extraction 
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applied to obtain the sequential candidate feature 
points as feature lines. Based on shape and topology 
similarity, we define a rationality metric of feature 
lines, according to which the candidate area can be 
migrated to better fit the model. An iterative matching 
is then applied to progressively approximate the 
globally optimized feature lines. 

3.1  Preprocessing 

The feature points of 3D models usually convey 
the salient features on model surfaces, and are poten-
tial points for the composition of feature lines. There 
are mainly two kinds of conventional feature line 
extraction methods, object space methods and image 
space methods. Object space methods extract feature 
points by computing the differential properties of 
model surfaces, and usually have a higher computa-
tional complexity than image space methods. Fur-
thermore, there are various geometric features that 
correspond with the different kinds of feature lines, 
including silhouettes, highlights, suggestive contours, 
valleys and ridges, making the extraction procedure 
more complicated. In image space methods, 3D 
models are projected into 2D images to extract feature 
points by using image processing algorithms, which 
greatly reduces the computational complexity, while a 
single threshold is required to make parameter ad-
justment more facile. In our proposed method, the 3D 
model is projected into a depth map from a specified 
angle of view, and a Canny edge detection algorithm 
(Canny, 1986) is applied to obtain the edge points of 
the depth map (Fig. 2). 

 
 
 
 
 
 
 
 
 
 
 
The edge points extracted using the Canny edge 

detection algorithm are too many to directly construct 
a CRF model because the search space for a CRF 
model would be vast. Therefore, a filter is used based 
on the sketch strokes, and certain subsets of edge 

points are selected to construct several CRF models 
corresponding to the individual strokes. The convex 
rectangle of each stroke is computed and the inner 
edge points are selected as the candidate feature 
points. The search space is greatly reduced by ap-
plying such filters, but the matching results of CRF 
models will also depend on the positions of the 
strokes: if one stroke is further away from an actual 
feature line, matching processes may lead to a sub-
standard result. 

3.2  CRF-based matching 

Extracting model feature lines with a template 
is in fact based on finding an optimized subset that 
best depicts the shape of the model surfaces and also 
fits the sketch strokes. There are several algorithms 
to match the sketch strokes and the model feature 
lines using simple relative distance (Mao et al., 2009) 
or construct an HMM model based on local shape 
differences between stroke points and feature points 
(Kraevoy et al., 2009), but only local shape features 
are considered in existing methods, and a lack of 
global shape and topological features means that 
these methods can handle only simple sketches or 
single strokes. Furthermore, these methods depend 
on conventional line drawing methods, and interac-
tive information cannot be fully introduced. CRF 
modeling, however, is an extremely flexible tech-
nique for integrating different features in the same 
probabilistic framework, allowing features to be 
defined so as to capture different types of informa-
tion (Ramos et al., 2007). In the proposed method, 
we construct a CRF matching model to extract the 
optimized model feature lines by combining the user 
template with the model geometric features. 

3.2.1  CRF-matching model 

A CRF model is an undirected graphical model 
developed for labeling sequence data (Lafferty et al., 
2001). CRFs directly model p(y|x), the conditional 
distribution over the hidden variables y given obser-
vations x. To establish correlations between sketch 
sample points (denoted by A) and candidate feature 
points (denoted by B), CRF-matching creates a 
graphical model based on sketch points and feature 
points. Each hidden variable yi has a multinomial 
distribution, and each state j in yi corresponds to the 
probability that feature i in A is matched to feature j in 

(a) (b) (c)

Fig. 2  Extraction of candidate feature points 
(a) Model; (b) Depth map; (c) Edge points 
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B (Fig. 3a). The nodes yi are connected by undirected 
edges which are in accordance with the connectivity 
structure of corresponding sketch points (Fig. 3b), 
and the conditional distribution p(y|x) is defined by 
the hidden states y. The graph structure in our method 
can be a chain with extra links to represent long-term 
dependencies, which are used to ensure global con-
sistence. The CRF conditional distribution can be 
factorized into a product of clique potentials, which 
are functions that map variable configurations to non- 
negative numbers. Intuitively, a potential captures the 
compatibility among the variables in the clique: the 
larger the potential value, the more likely the con-
figuration. Local potentials can represent shape or 
geometric features. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Inferences in CRF can estimate the marginal dis-

tribution of each hidden variable yi, and can be solved 
using the BP algorithm, which works by sending local 
messages through the graph structure of the model 
(Murphy et al., 1999). Each node sends messages to its 
neighbors based on messages it receives and the clique 
potentials, which are defined via the observations and 
the neighborhood relation in the CRF. The most likely 
configuration of all hidden variables y can then be 
estimated using the Viterbi algorithm. 

3.2.2  Feature function computation 

CRF-matching can introduce arbitrary local po-
tential to describe shape and geometric properties. 
Since the matching in the proposed method focuses 

on searching for feature point sequences that corre-
spond with sketch sample points, the features should 
describe shape differences between sketch strokes 
and feature lines, and also the combination possibility 
of feature points based on image gradients. 
Definition 1 (Shape similarity features)    Shape 
similarity features are used to describe the shape and 
position differences between sketch sample points 
and candidate feature points. The local potentials are 
described as follows: 
Definition 2 (2D point distance)    The 2D point dis-
tance measures the Euclidian distance between sketch 
sample points and candidate feature point (Fig. 4a). 
Using ai to denote the sketch sample point i and bj the 
candidate feature point j, and 

iax  and 
jbx  their 2D 

positions, the 2D point distance is defined as 
 

2

d ( , , , ) .
i jA B a bf i j  x x x x               (1) 

 
Definition 3 (Local angle difference)    The local 
angle difference measures the local shape differ-
ences between individual sketch sample points and 
candidate feature points (Figs. 4b and 4c). Various 
features can depict local shape differences. In the 
proposed method, the angles between individual 
curve points are computed, and the differences be-
tween the angles of sketch points and depth map edge 
points are used to describe the local shape differences: 
 

 2

s ( , , , , ) ,
ik jkA B a bf i j k   x x            (2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Conditional random fields (CRF) matching model 
structure 
(a) Candidate feature point set; (b) CRF chain 
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Fig. 4  Shape similarity features 
(a) 2D point distance; (b) Local angle difference (k=1);
(c) Local angle difference (k=2); (d) Local continuity (k=2) 
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where 
ika  denotes the angle between segments 

1 i k ia av  and 2 i i ka a v , 
jkb  denotes the angle 

between segments 3 j k jb bv  and 4 j j kb b v , and 

k indicates the index offset to the adjacent point. 
Definition 4 (Local continuity)    Local continuity 
measures the continuous difference between points in 
sketches and depth maps (Fig. 4d), defined as 
 

2

c 2
( , , , , ) 1.i i k

j j k

a a

A B

b b

f i j k 




 



x x
x x

x x
         (3) 

 

Definition 5 (Image space features)    Image space 
features are used to describe the possibility of con-
necting candidate feature points to feature lines, de-
fined by the image gradient of the depth map which is 
computed using the Canny edge detection algorithm. 
Definition 6 (Canny gradient)    The Canny gradient 
measures the possibility of labeling candidate feature 
points as actual feature points. Image edge detection 
studies show that the pixel with a higher gradient has 
a higher possibility of becoming an actual edge point, 
and in a similar way a candidate feature point with a 
higher gradient is more likely to be an actual feature 
point. The Canny gradient is defined as 
 

g max( , ) / ,
jB bf j g gx                     (4) 

 

where 
jbg  is the gradient of candidate feature point bj, 

and gmax is the largest gradient in the depth map. 
Definition 7 (Gradient continuity)    Gradient conti-
nuity measures the continuum of two candidate fea-
ture points, and is described by the difference of gra-
dients between adjacent feature points: 

 

2 2
gc ( , , ) ( ) ( ) .

j j k j k jB b b b bf j k g g g g
 

   x      (5) 

 
3.3  Iterative optimization 

In our proposed method, a filter is performed 
according to the sketch strokes, greatly reducing the 
number of feature points used in CRF matching. The 
convex rectangle of each stroke is computed and the 
inner candidate feature points are selected as the 
candidate subset of this stroke. The search space is 
greatly reduced by applying such a filter, but as a 

result the matching results of the CRF model will also 
depend upon the positions of sketch strokes: if the 
stroke is too far away from the actual feature line, the 
matching may lead to a substandard result which 
deviates from the best feature line. Introducing a step 
of rationality evaluation and candidate feature points 
migration is necessary for the filter to optimize the 
feature lines extracted iteratively. 

3.3.1  Rationality metric of feature lines 

Since the convex rectangles of sketch strokes are 
not necessarily located near the actual feature area, a 
metric that can measure the differences between ac-
tual feature lines and the feature lines extracted by 
CRF-matching is required. In our method, a rational-
ity metric based on shape and topological similarity is 
proposed to quantify the rationality of feature lines. 
The rationality metric is composed of three parts 
based on the global distance, shape similarity, and 
topological similarity. 

Global distance: This measures the global dis-
tance between sketch strokes and feature lines. Since 
the actual feature lines wanted for extraction are al-
ways close to the sketch strokes, the resulting feature 
lines are more probable to be the actual ones if the 
global distance is relatively small. The global distance 
is defined as the average Euclidian distance of cor-
responding points in sketches and depth maps: 

 

d 2( , ) ,

i ja b

n
E A B 

 x x
                  (6) 

 
where A denotes the strokes in the user’s sketch, B the 
extracted feature lines corresponding to A, and n the 
number of sample points in A. 

Global shape similarity: This measures the 
global shape differences between resultant feature 
lines and their corresponding strokes. The resulting 
feature line is more likely to be an actual one if their 
global shapes are similar. In our method, a Hausdorff 
distance is used to determine the global shape  
similarity: 

 

 s ( , ) max ( , ), ( , ) ,

( , ) max min ( , ),a bb Ba A

E A B d A B d B A

d A B d




 x x
         (7) 

 
where xa and xb denote the points in strokes A and 
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feature lines B, respectively. 
Topological similarity: this measures the struc-

tural topological similarity of sketch strokes and 
feature lines. Topological consistency is an important 
aspect for sketching and should be maintained in the 
matching process. Graph structure is usually used to 
describe topological information, but the topological 
similarity between the two graphs is difficult to 
measure quantitatively. Hence, a relative position 
difference metric of corresponding strokes and fea-
ture lines is used to delineate the summarized distance 
for corresponding lines, which is an approximation of 
the topological similarity: 

 
1

t t
0

( ) ( ),
n

i
i

E S E S




                          (8) 

where 

t
1, 1,

( ) ,
n n

i i j i j
j j i j j i

E S A A B B
   

      

 
and Ak and Bk (k=0, 1, …, n) denote the corresponding 
stroke and feature line, respectively. 

3.3.2  Migration of the matching area 

The strokes in the sketch should be similar to 
those in a given 3D model, so that a filter based on the 
sketch strokes can be used to obtain candidate feature 
points around that stroke (Section 2.1), but it is not 
ensured that all the corresponding feature points can 
be found in the filter area. By properly defining the 
initial matching point and matching area, the search 
space of CRF-matching can be reduced, but the 
matching result will be largely influenced. If the 
sketch stroke is close to the actual feature line, then 
the matching can be quickly located to the actual 
feature line; if the stroke is further away from the 
actual feature line, the matching may not achieve a 
sound result. Therefore, an iterative optimization is 
needed to progressively locate the filter area closer to 
the actual feature line. Iterative optimization is per-
formed in the following steps: 

1. Select n initial matching points {p1, p2, …, pn} 
randomly in the circle with radius r around the seed 
point (first as s0 in stroke), and the matching process 
is performed with an initial matching point (Fig. 5b). 

2. Extract n resulting feature lines {f1, f2, …, fn} 
using the CRF-matching model, evaluate the ration-
ality metric of each feature line, and then select the 

most likely feature line fi and its corresponding initial 
matching point as the seed point spk of the kth itera-
tion (Fig. 5c). 

3. In accordance with the displacement d=spi−1− 
spi between the seed points of (i−1)th and ith itera-
tions, the matching area is migrated along d when the 
rationality value reaches the threshold, and if the 
rationality is lower than the threshold, the matching 
area should be expanded along d (Fig. 5d). 

4. Steps 2 and 3 are repeated until the rationality 
value is high enough, and the feature lines obtained 
are selected as the final results. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4  Experimental results 
 

The proposed method is implemented with C++, 
and the 3D models used are selected mainly from the 
Princeton benchmark dataset. Given a 3D model, the 
viewpoint and sketch are specified by the user, and an 
extraction process is then applied to obtain the cor-
responding feature lines. The feature lines of various 
objects and views have been obtained, and the char-
acteristics of sketches including the number, shape, 
and topology of strokes have been captured. 

Result 1 

Result 2 

Result 3 
(c) 

(b) 

(a) 

Initial matching area Convex rectangle of stroke

(d) 

Previous matching area 

Next matching area 

Initial matching point 

Fig. 5  Process of iterative optimization 
(a) Matching area; (b) Initial matching point selection; 
(c) Matching result with various initial matching points; 
(d) Matching area migration 
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Fig. 6 shows the feature lines extracted from 
different face models based on the same sketch. Al-
though there are differences in mesh quality and 
shape between the various models, the feature lines 
are extracted reasonably and fit the significant fea-
tures well. The characteristics of the sketches, such as 
the number, shape, and topology of strokes, are 
maintained during the extraction process, and the 
template drawn by the user is also conveyed well. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Since the extraction process is based on a tem-

plate of a given sketch, the feature lines can be 
computed properly only if the feature points are ex-
tracted as a Canny edge points set. As a result, the 
feature lines that best reflect the user’s template can 
be extracted easily even if mesh quality is poor or 
model features are not so salient. 

Fig. 7 shows the results extracted for the chest, 
collarbone, and abdomen of a body model. Some 
parts of the surface are smoother than the other parts 
(near the abdomen). If a conventional feature line 
extraction method is performed, such as suggestive 
contours (DeCarlo et al., 2003) and ridges and valleys 
(Judd et al., 2007), the results may not be satisfactory 
no matter how the threshold is set. Note that RTSC 
from Princeton University is used here for compari-
son. The shape features are quite different in each part 
of the surface. Some of the real feature lines are lost 

when the threshold is too high, e.g., SC Thresh=0.1 
(abdomen feature lines in Figs. 8a and 8b), and many 
redundant lines are extracted at a very low threshold, 
e.g., RV Thresh=0.02 (Fig. 8c). The results of the 
proposed method show that for 3D models with 
various degrees of smoothness on different sections, 
reasonable feature lines can be obtained using the 
template. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 shows the results extracted for a rabbit 
model, involving many irregular mesh structures on 
the model surface. The extraction results show that 
for 3D models with poor mesh quality, our proposed 
method obtains exact feature lines which are consis-
tent with user perception, without the need for addi-
tional preprocessing or mesh optimization. The re-
sults extracted using conventional methods are shown 
in Fig. 10. The inner details are lost at a high threshold, 
e.g., SC Thresh=0.1 (Fig. 10a), many fragmented 
contours are extracted at a very low threshold, e.g., 
SC Thresh=0.02 (Fig. 10c), and some important fea-
ture lines cannot be extracted in both situations, such 
as the contours under the head and around the legs. 
 
 
 
 
 
 
 
 

 

 

 

(a)                     (b)                  (c)                 (d) 

Fig. 6  Sketch drawing templates and various models 
(a) Sketch; (b) Model; (c) Result; (d) Result+Model 

(a)                    (b)                      (c)                    (d) 

Fig. 9  Feature line extraction for the rabbit model 
(a) 3D model; (b) Sketch; (c) Result; (d) Result+Model 

(a)                     (b)                      (c) 

Fig. 8  Extraction results of the body model using RTSC
with a high (a), medium (b), or low (c) threshold 

(a)                    (b)                     (c)                   (d) 

Fig. 7  Feature line extraction for the body model 
(a) 3D model; (b) Sketch; (c) Result; (d) Result+Model 
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The Canny threshold significantly influences the 
selection of candidate feature points used in the pro-
posed method. Figs. 11a and 11b show the template 
and 3D model, with some difference around the left 
eye and the mouth between the strokes and the actual 
object area. Figs. 11c–11e show the matching results 
of the left eye and the mouth at a low threshold 
(λ=0.00005). Figs. 11d–11f show the results at a high 
threshold (λ=0.0001). These results demonstrate that 
the edge points may be increasingly redundant at a 
low threshold; at a high threshold, the matching re-
sults will be much closer to the actual feature lines. 
The emphasis of each feature function in the 
CRF-matching model can be adjusted to make the 
matching results more consistent with the user tem-
plate. In the proposed method the parameters are set 
to empirical values, and adopting a model parame-
terization with statistical measurements according to 
a specific sample would be more effective. 

The main threshold in Canny edge detection is 
the Canny gradient threshold λ, which may alter the 
search space of matching between sketch strokes and 
feature points. The value of λ actually leverages the 
computational complexity and search space in the 
matching process: when λ is increased, the search 
space of matching gets smaller and the complexity of 
the matching process is reduced, but a too high thre-
shold will make the matching point set (all the can-
didate feature points for matching) lack actual feature 
points. Similarly, a too low threshold will produce too 
many redundant matching points. The λ should 
therefore be set to an appropriate value to make the 
matching point number as small as possible, while the 
actual feature points are extracted. Fig. 12 shows 
different edge points extracted with various λ. In our 
proposed method, λ is set to 0.00005. 

Fig. 13 shows the iterative optimization results 
of the human mouth. The initial matching point will 
leave the drawing area and the extracted feature lines 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

(a)                         (b)                         (c) 

Fig. 12  Sample feature points with the Canny gradient 
threshold λ=0.0002 (a), λ= 0.00005 (b), and λ=0.00008 (c)

(a)                                         (b) 

(c)                                          (d) 

Fig. 13  Iterative optimization process 
(a) Initial position; (b) After two iterations; (c) After five
iterations; (d) After 10 iterations. Initial matching point is 
labeled on the right 

(a)                          (b)                              (c) 

Fig. 10  Extraction results of the rabbit model using RTSC
with a high (a), medium (b), or low (c) threshold 

(a)                                        (b) 

(c)                                        (d) 

(e)                                        (f) 

Fig. 11  The influence of Canny threshold λ 
(a) Sketch; (b) 3D model; (c) The eye extracted with λ=
0.00005; (d) The eye extracted with λ=0.0001; (e) The mouth
extracted with a low λ; (f) The mouth with a high λ. Strokes
are marked in thin lines, and matching results in thick lines
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are closer to the actual feature lines, and are finally 
located in the optimization area. The iterative opti-
mization shown above can progressively make the 
matching results be approximately sound feature lines, 
only if sketch strokes are not too far away from the 
actual feature area. 
 
 

5  Conclusions 
 

This paper proposes a 3D model feature line 
extraction method which allows users to manipulate 
the extraction with a template. A conditional random 
fields (CRF) matching model with multiple features 
between stroke points and candidate feature points is 
established, which effectively combines the user’s 
sketch with the model feature line extraction process. 
To match the sketch points with corresponding feature 
points, a similarity metric based on topological 
structure is proposed to evaluate the rationality of the 
extracted feature lines, and an iterative optimization 
process is applied to obtain globally optimized model 
feature lines. The results show that the method is 
efficient in extracting valid 3D model feature lines 
which correspond to the guidance sketch. 

This method, however, has two main drawbacks. 
First, the parameters used, including feature functions 
and the Canny edge detection threshold, are set em-
pirically, and may not obtain the best results for cer-
tain kinds of models, and a distorted sketch drawing 
based on statistical measurements (such as data 
probabilities of a given model type) to obtain model 
parameters using sample data may be more effective. 
Second, the image space features used in this method 
make for a quicker extraction, but are also constrained 
by image resolution. Using object space features in 
matching would be more effective for very complex 
feature lines, and stylization can thus be applied to the 
matching results (Kalogerakis et al., 2009). 
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