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Abstract: In dimensional affect recognition, the machine learning methods, which are used to model and predict
affect, are mostly classification and regression. However, the annotation in the dimensional affect space usually takes
the form of a continuous real value which has an ordinal property. The aforementioned methods do not focus on taking
advantage of this important information. Therefore, we propose an affective rating ranking framework for affect
recognition based on face images in the valence and arousal dimensional space. Our approach can appropriately
use the ordinal information among affective ratings which are generated by discretizing continuous annotations.
Specifically, we first train a series of basic cost-sensitive binary classifiers, each of which uses all samples relabeled
according to the comparison results between corresponding ratings and a given rank of a binary classifier. We obtain
the final affective ratings by aggregating the outputs of binary classifiers. By comparing the experimental results
with the baseline and deep learning based classification and regression methods on the benchmarking database of
the AVEC 2015 Challenge and the selected subset of SEMAINE database, we find that our ordinal ranking method
is effective in both arousal and valence dimensions.
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1 Introduction

Affect recognition which involves multiple sci-
entific disciplines such as neuroscience, psychology,
cognitive science, and computer science, has at-
tracted great interest in the past two decades. The
mainstream of research in this field has mostly fo-
cused on the recognition of facial and vocal affect
in terms of basic emotions. However, a number
of researchers have found that in everyday interac-

‡ Corresponding author
* Project supported by the National Natural Science Founda-
tion of China (Nos. 61272211 and 61672267), the Open Project
Program of the National Laboratory of Pattern Recognition
(No. 201700022), the China Postdoctoral Science Foundation
(No. 2015M570413), and the Innovation Project of Undergradu-
ate Students in Jiangsu University (No. 16A235)

ORCID: Guo-peng XU, http://orcid.org/0000-0002-2062-0763
c© Zhejiang University and Springer-Verlag GmbH Germany, part
of Springer Nature 2018

tions people usually exhibit non-basic, subtle, and
rather complex mental or affective states such as
thinking, depression, and embarrassment (Baron-
Cohen, 2004). A small number of discrete emo-
tion categories are not enough to reflect the com-
plexity of affective states in those scenarios. There-
fore, the use of the dimensional description of hu-
man affect is advocated, in which an affective state
is characterized by a number of latent dimensions
(Russell, 1980; Scherer, 2000; Scherer et al., 2001).
The most widely used dimensional description of af-
fect is the two-dimensional (2D) emotional space of
arousal (active vs. passive) and valence (positive
vs. negative).

In the research of affect recognition in the
arousal and valence dimensional space, the machine
learning methods, which are used to model and pre-
dict affect, are mostly classification and regression.
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The classification methods, which use audio signals
or visual signals as feature representations, usually
reduce the recognition problem to a two-class prob-
lem (active vs. passive or positive vs. negative classi-
fication (Schuller et al., 2009; Nicolaou et al., 2010))
or a four-class problem (classifying the quadrants of
the 2D A-V space (Glowinski et al., 2008; Wöllmer
et al., 2010b)). The shortcoming of these methods,
on the one hand, is that the categories to be classi-
fied are obviously coarse and the affect states cannot
be recognized at a fine level of granularity. On the
other hand, the labels of affect are naively treated
as independent tags and the ordinal property of the
annotations is not used. The regression models typ-
ically learn a function which can best fit the map-
ping from the feature space to the affective anno-
tation space with appropriate regularizations. Al-
though they take the inter-relationship of labels into
account, transforming implicitly the ordinal scale
into a numerical scale introduces strong non-linear
scale bias (Martinez et al., 2014). Specifically, the
regression methods treat the annotations simply as
proportional numerical scales and neglect the fact
that the difference between affect annotations in
a certain dimensionality is non-uniform (Martinez
et al., 2014). Therefore, to improve the affect recog-
nition performance in the A-V space, learning to
rank (or ranking) methods have begun to attract the
attention of researchers.

Learning to rank, or ranking for short, being the
algorithm of machine learning, is widely used in the
field of information retrieval (Joachims, 2002; Xu and
Li, 2007). Ranking approaches can be generally di-
vided into three categories: pointwise, pairwise, and
listwise (Liu, 2011). The pointwise approach learns
a function, which is trained on individual instances,
to map the feature vectors of the given samples to
corresponding real-value scores or ordinal labels. It
is similar to classification or regression, but the or-
dinal property of labels is considered. In practice,
it is widely used because of its simplicity and ef-
fectiveness. The pairwise approach learns a scoring
function using relative ordering relationship of two
input candidates in pairs. It exploits more informa-
tion about the ground truth, but it needs to han-
dle a larger number of training instances (usually
quadratic in the size of training data), which poten-
tially causes slower or less efficient training. The
listwise approach views the list of input candidates

as a single instance to learn a scoring function that
is employed to rank new instances. It uses the most
ordering information of input candidates, but it has
a high computing complexity and also easily leads to
overfitting. What is more, the pairwise and listwise
approaches always aim at predicting ordering rela-
tionship of the given samples, not the exact ordinal
labels.

In this study, we explore the use of a pointwise
approach, specifically, ordinal regression, to solve the
affect recognition problem in the A-V space. Our al-
gorithm uses the relative order of affect annotations
to conduct an effective prediction for exact affec-
tive ratings. We first discretize the continuous and
real-value annotations in the arousal and valence di-
mensions respectively to form finite affective ratings.
Then a series of cost-sensitive binary classifiers are
trained using all samples which are relabeled accord-
ing to the comparison results between corresponding
ratings and a given rank of a binary classifier. We
finally obtain the affective ratings by aggregating the
results of basic binary classifiers. Our method can
be used in the real applications where the affect in-
tensity in the arousal or valence dimension needs
to be estimated. Specifically, it can be applied to
film recommendation based on affect content, hu-
man depression detection, driver emotion analysis,
and online education. In these scenarios, facial im-
ages are detected and cropped, and the feature vec-
tors of the faces are extracted as the inputs of our
affective rating ranking (ARR) framework. Then,
the affect intensity or rating in arousal or valence
can be estimated using the ARR framework. The
prediction results can be ranked to be applied to the
recommendation task or mapped to subtler emotions
in the emotion analysis task. The main contributions
of this paper are summarized as follows:

1. As far as we know, this is the first paper
proposing the ordinal regression approach to pre-
dict affect ratings based on face images in the A-V
space. The ranking method appropriately uses the
ordinal property of dimensional affect annotations.
The experimental results show that the ordinal prop-
erty is available and important for improving the
dimensional affect recognition performance.

2. In our ranking framework, a cost-sensitive
setting is adopted for each basic binary classifier.
We conduct exhaustive experiments to compare the
performance of our ranking method with different
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cost-sensitive settings being employed and empiri-
cally find the most suitable cost-sensitive settings
for affect rating ranking in the arousal and valence
dimensions, respectively.

2 Related works
In this section, we first review the typical stud-

ies where the traditional classification or regression
methods are employed to model the affect recog-
nition problem in the A-V space. Then we focus
on the ordinal ranking algorithms related to our
work and the existing attempts using ranking-based
approaches in affect recognition.

2.1 Classification methods

In terms of affect recognition using classifica-
tion methods in the A-V dimensional space, the
widely adopted strategy is to simplify the problem to
a three-class valence-related classification problem:
positive, neutral, and negative affect classification
(Yu et al., 2004; McDuff et al., 2010). A similar and
simple method is to reduce the dimensional affect
classification problem to a two-class problem (active
vs. passive or positive vs. negative (Schuller et al.,
2009; Nicolaou et al., 2010)) or a four-class prob-
lem (classifying the quadrants of the 2D A-V space
(Ioannou et al., 2005; Caridakis et al., 2006; Glowin-
ski et al., 2008; Wöllmer et al., 2010b)). Systems
that aim at dimensional affect recognition, consider-
ing that the affective states are represented along a
continuum, commonly tend to quantize the continu-
ous range into several levels. Wöllmer et al. (2008)
used the sensitive artificial listener (SAL) database,
quantized the annotations of valence and arousal into
four and seven levels respectively, and adopted the
conditional random fields (CRFs) and support vector
machine (SVM) to predict the quantized affective la-
bels. Wöllmer et al. (2010a) used a context-sensitive
technique and multimodal data containing facial and
audio information to recognize three to five levels of
the A-V values. Obviously, the aforementioned clas-
sification methods recognize only the affect states at
a coarse level. In addition, naively treating annota-
tions as independent category tags does not take the
inter-relationship (such as the ordering relationship
of labels) into account.

2.2 Regression methods

Some models based on regression methods have
been proposed to conduct continuous dimensional

affect prediction. Nicolaou et al. (2011) proposed a
multimodal system to continuously predict valence
and arousal states of a speaker using support vec-
tor regression (SVR) and long-short term memory
(LSTM) regression. He et al. (2015) used multi-
modal feature selection and feature fusion, and used
a deep bidirectional long-short term memory recur-
rent neural network framework to obtain the best
prediction results in AVEC 2015 Challenge. Even
though these methods are popular in the research of
continuous affect prediction in the A-V space, the
aforementioned non-linear scale bias still exists in
continuous annotations.

2.3 Ranking methods

In ordinal ranking research, Li and Lin (2006)
proposed a reduction framework from ordinal regres-
sion to binary classification using extended samples
and formally proved that a weighted 0/1 loss of the
binary classifier could bound the mislabeling cost of
the ranking rule constructed from the binary clas-
sifier. Chang et al. (2010) treated the age estima-
tion problem as an ordinal regression problem and
adopted the reduction framework above to obtain
better age prediction performance than traditional
classification and regression methods. Recently,
more and more ranking algorithms have been devel-
oped to solve the human age estimation problem.
Chang and Chen (2015) developed their ranking-
based age estimation approach and presented a cost-
sensitive ordinal hyperplane ranking algorithm. In
their approach, the age ranks were inferred by aggre-
gating a series of basic binary classification results, in
which cost sensitivities among the ranks were intro-
duced to improve the final aggregating performance.
Lim et al. (2015) proposed a VRank framework for
facial age estimation, using a deep learning architec-
ture to achieve efficient features and ranking each
age with the ranking SVM algorithm. In the last
stage, the proposed voting system algorithm was
used to infer the age by weighted relational infor-
mation. Abousaleh et al. (2016) presented a deep
learning framework called the ‘comparative region
convolutional neural network (CRCNN)’, in which a
set of hints (comparative relations) were generated
by comparing the input face with reference faces first
and then all the hints obtained were aggregated to
infer the age of a person. Feng et al. (2017) combined
the strength of cost-sensitive label ranking methods
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with the power of low-rank matrix recovery theories,
in which the correlations among different age labels
were captured and the model complexity was also
controlled. In the test stage, the decision values for
different age labels of the test image were ranked in
descending order and the age label ranked at the top
was selected as the estimated age value.

Considering the defect of classification and re-
gression methods mentioned above, ranking-based
approaches have attracted the attention of re-
searchers though the attempts in affect recognition
are far fewer than those using classification and re-
gression. Yang and Chen (2011) introduced a novel
learning to rank algorithm called RBF-ListNet to
rank the affect of a set of music pieces. This list-
wise approach determining the ordering relationship
of given samples is applicable to the task of music
retrieval according to affect content, but it is not
quite suitable for the task of human affect recog-
nition, which prefers to obtain exact affect labels,
not just their ordering relationship. Martinez et al.
(2014) compared the performance of pairwise pref-
erence learning and binary classification on the di-
mensional affect dataset SAL and other datasets.
Although the results suggested that the preference
learning method leads to more reliable, generic, and
robust models that capture more information about
the ground truth, the pairwise approach here could
not be directly used to handle the problem of learn-
ing and predicting exact affective ratings. Our pro-
posed method based on the pointwise approach was
inspired by Chang and Chen (2015), and it focuses on
affective rating estimation by ordinal ranking based
on face images in the A-V space. Unlike classification
methods that transform continuous real-value anno-
tations into independent nominal categories or re-
gression approaches that treat the annotations sim-
ply as proportional numerical scales, we try to use
the ordinal regression approach which appropriately
employs the ordering relationship among annota-
tions to improve the affect recognition performance
in the A-V dimensional space.

3 Affective rating ranking framework

In our ARR framework, we first discretize the
continuous, real-value affect annotations in arousal
and valence dimensions respectively to form finite
affective ratings. Then a series of cost-sensitive bi-

nary classifiers are trained using relabeled samples
and their weights. Finally, the results of binary clas-
sifiers are aggregated to obtain the affective ratings.
Fig. 1 shows the illustration of our ARR framework
for arousal rating estimation of a given sample, and
the valence rating inference is just similar. Next, we
will describe these three parts in detail.
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Fig. 1 Illustration of our affective rating ranking
framework for arousal rating estimation of a given
sample

3.1 From continuous annotations to finite rat-
ings

In the field of dimensional affect recognition, the
annotations of the affect states in a certain dimen-
sion are usually continuous real values limited in a
range such as [−1, 1]. Although the interval in which
the annotation lies is small, the number of possi-
ble annotation values is infinite. Directly using the
ordinal ranking algorithms on the annotations in a
continuous interval is not feasible, because the or-
dinal ranking algorithms need finite labels or ranks.
Therefore, we have to transform the continuously
labeled annotations into discrete and finite ratings.

However, little attention has been paid to
whether there are definite boundaries along the con-
tinuous annotations to distinguish among different
intensities or levels (Gunes and Pantic, 2010). The
most common way to study this issue is to quan-
tize the valence and arousal dimensions into an ar-
bitrary number of intensities and levels (Wöllmer
et al., 2008, 2010a). We adopt a similar approach,
which divides the value range of annotations of a
certain dimension into finite internals with the same
length. Each interval stands for an affective intensity
or rating. For example, if we divide the continuous
annotations into K intervals, we annotate these K

intervals with 1, 2, . . . ,K ratings respectively, where
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the smaller real value lies in the interval, and the
lower rating corresponds to the interval. We de-
scribe a transforming process on a dimensional affect
dataset in detail in Section 4. After this processing,
we can use the aforementioned ordinal ranking algo-
rithm to solve the affect recognition problem in the
A-V space.

3.2 Cost-sensitive binary classifiers for affec-
tive rating ranking

Assume a set of training face images Ii, i =

1, 2, . . . ,m. We use xi ∈ R
d to represent the fea-

ture vector extracted from Ii and let yi be the trans-
formed affective rating of Ii. According to the rating
transformation method above, yi ∈ {1, 2, . . . ,K},
where K is the number of affective ratings and yi
is treated as a rank order. Denote S = {xi|i =

1, 2, . . . ,m}. For a given affective rating k in a
certain dimensionality (i.e., arousal or valence), the
whole dataset is split into two subsets as S+

k and S−
k :

{
S+
k = {(xi,+1) |yi > k} ,

S−
k = {(xi,−1) |yi ≤ k} . (1)

Then the two subsets are used to train a basic bi-
nary classifier. This binary classifier will answer such
a query: “Is the face more active than arousal rating
k?” or “Is the face more positive than valence rating
k?”. With k from 1 to K− 1, K− 1 binary classifiers
are learned and their binary decision results for a
given sample will indicate the ordering relationships
between the affective rating of the given sample and
affective ratings 1 to K − 1. We can use these order-
ing relationships to infer the exact affective rating of
the given sample. Thus, the affective rating ranking
problem is reduced to a series of binary classification
subproblems. It is naturally thought that if each
binary classifier is trained well, the correct ranking
result is more likely to be obtained.

Before concentrating on each binary classifica-
tion subproblem, we introduce the performance eval-
uation measurements first. In our ARR framework,
we select the mean absolute error (MAE) (Geng
et al., 2007) and cumulative score (CS) (Geng et al.,
2007) which are widely adopted in human age es-
timation evaluation as performance indices. They
are easy to calculate and can be used for perfor-
mance comparison among classification, regression,
and ranking methods from different angles. MAE

measures the mean difference between the labels and
the predictions on test samples. It can be defined as

MAE =
1

N

N∑
i=1

|y∗i − yi|, (2)

where y∗i is the predicted affective rating, yi is the
ground truth rating, and N is the number of test
samples. CS calculates the percentage of test sam-
ples whose prediction errors are not larger than an
error tolerance level L, which is defined as

CS(L) =
1

N

N∑
i=1

[[|y∗i − yi| ≤ L]]× 100%, (3)

where [[·]] is the truth-test operator, which is 1 if the
inner condition is true, and 0 otherwise. The adop-
tion of CS measurement is meaningful because when
we divide the continuous annotations into several
fine intervals, the affect states represented by adja-
cent ratings have little difference, and the predicted
error at a low tolerance level is acceptable.

Let us focus on each binary classification sub-
problem. Chang and Chen (2015) applied a cost-
sensitive setting to each binary classification sub-
problem and obtained better age estimation results
than those generated by using common 0/1 misclas-
sification cost. Therefore, to obtain better affective
rating prediction results by ranking, we also intro-
duce a cost-sensitive setting to each binary classifier.
Assume that the cost of misclassifying a sample for
affective rating label t in subproblem k is ck(t), where
t = 1, 2, . . . ,K and k = 1, 2, . . . ,K − 1. For the ith

sample xi, the cost of subproblem k can be repre-
sented as ck(xi). We consider mainly three kinds of
cost settings and select the best setting from them.
The first one is the absolute cost, which is defined as

ck(t) = |t− k| . (4)

The second cost is a special type of 0/1 cost cor-
responding to CS measure, not common accuracy
measure, which is defined as

ck(t) =

{
0, if (t− L) ≤ k ≤ (t+ L),

1, otherwise.
(5)

For the last cost setting, it combines the character-
istics of the first two costs and can be defined as

ck(t) =

{
0, if (t− L) ≤ k ≤ (t+ L),

|t− k| − L, otherwise.
(6)
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The error within L is discarded and only the
absolute error outside L is counted.

Then we just focus on training each better cost-
sensitive binary classifier to improve the final ranking
performance. Fig. 2 shows the training process for
the kth cost-sensitive binary classifier.

Complete training set
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Positive samples
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gh
ts Binary classifier k
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Fig. 2 Training process of the kth cost-sensitive bi-
nary classifier

In our approach, to implement a cost-sensitive
setting, the data reweighted SVM is employed to
solve the kth binary classification subproblem as
follows:

min
wk,bk,ξ

1

2
‖wk‖2 + C

(∑
i

ck(xi)ξi

)

s.t. ∀ i, lk(xi)
(
wT

k φk(xi) + bk
) ≥ 1− ξi, ξi ≥ 0,

(7)
where lk(xi) = +1 if xi ∈ S+

k and lk (xi) = −1 if
xi ∈ S−

k , φk is a function mapping the feature vector
xi into a high-dimensional space, and wk and bk are
the hyperplane parameters in the high-dimensional
space. Note that all subproblems do not have to
share a single kernel and each of them can project
its own feature space via φk. The discriminating
function fk(x) is then employed as

fk(x) = wT
k φk(x) + bk. (8)

3.3 Aggregating binary decisions for affective
rating inference

After training a series of cost-sensitive binary
classifiers (SVMs), we can aggregate these binary
decision results of binary classifiers for a given sam-
ple, such as xi, to obtain its affective rating. It can
be represented as

r(xi) = 1 +

K−1∑
k=1

[[fk(xi) > 0]], (9)

where fk(xi) is the binary decision result of the kth

binary classifier for a test sample xi. Fig. 1 shows a
specific aggregation of arousal rating inference of a
given sample.

4 Experiments

4.1 Datasets

We perform experiments on two datasets. The
first is the benchmarking database of the AVEC 2015
Challenge (Ringeval et al., 2015). It is a subset of the
RECOLA multimodal corpus of remote and collab-
orative affective interactions (Ringeval et al., 2013).
There are 27 videos of different subjects in total in
this dataset (9 for training, 9 for development, and
9 for testing). The gold standard ratings included in
the dataset give the annotations of arousal and va-
lence dimensions for training and development sets.
The annotations of the testing set are not provided.
Therefore, we use only the training and development
videos, i.e., 18 in total, for our experiments. We
divide the data into 3 subsets, all 9 training videos
for the training set, the 1st, 3rd, 7th, and 8th de-
velopment videos for the validation set and the rest
for the testing set, which is a subject-independent
setting.

The second dataset we use in our experiments is
a subset selected from the SEMAINE database. The
SEMAINE database is a large audiovisual database,
which is recorded to study natural social signals oc-
curring during conversations between humans and
artificially intelligent agents. The scenario used in
the recordings follows the sensitive artificial listener
(SAL) paradigm. A user in a recording or a session
interacts with an emotionally stereotyped ‘charac-
ter’ who can be one of four personalities (Prudence,
Poppy, Spike, and Obadiah). Recordings in this
database involve 150 participants, in total 959 con-
versations with individual SAL characters, lasting
approximately 5 min each. The dimensional affect
annotations like arousal, valence, and expectation
are included. In our experiments, we select video
data of 12 subjects, 6 (subjects 16, 5, 2, 10, 14, and
17) for training, 3 (subjects 3, 12, and 15) for valida-
tion, and 3 (subjects 7, 8, and 11) for testing, which
is also a subject-independent setting.
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4.2 Data processing

We extract all frames from the videos first. Then
we crop the face from each frame and resize each face
image to the same size 224× 224.

The annotations of arousal and valence dimen-
sions are continuous real values in the datasets. As
discussed above, we should transform the continuous
and infinite values into discrete and finite ratings.
For arousal annotation in the AVEC 2015 bench-
marking database, the value range in the dataset is
(−0.6, 0.6) and we first divide the whole range into
several intervals with the same length 0.1, thus creat-
ing 12 derived ratings in total. However, actually the
face images corresponding to the ratings which are
close to the two ends are far fewer than those belong-
ing to ratings near the center. To mitigate the data
imbalance problem, we combine some ratings and do
oversampling and undersampling. Finally, the dis-
cretized ratings and some example face images are
shown in Fig. 3a. For valence annotation, the value
range in the dataset is (−0.2, 0.6), and we process
the annotation in the same way as with the arousal
one, forming seven ratings shown in Fig. 3b. The
specific image numbers of different ratings on differ-
ent data subsets in arousal and valence dimensions
are shown in Tables 1 and 2, respectively. For the
dataset from SEMAINE, we process data in a sim-
ilar way and transform the annotations into seven
ratings in arousal and eight ratings in valence.

4.3 Feature extraction

We extract two kinds of facial features, local Ga-
bor binary patterns (LGBP) (Senechal et al., 2012)
and scattering transform (ST) (Bruna and Mallat,
2013). In LGBP, the Gabor and LBP filtering oper-
ations follow one after the other. Different from the
normal LBP whose filter operates only on the original
images, the LBP filter in LGBP operates on a num-
ber of images which have been filtered by a bank of
different Gabor filters. The final LGBP feature his-
togram of an image is formed by concatenating the
histograms composed for each Gabor picture, with
histogram blocks in the same manner as for LBP. In
our experiments, we use 18 Gabor filters (3 wavelet
scales and 6 filter orientations) and apply Uniform
LBP (59 patterns) to an image split into 16 (4 × 4

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8
Arousal

Valence−0.1

−0.1−0.2−0.3

0.40.30.20.10

0 0.1 0.2 0.3

(b)

(a)

Fig. 3 Presentation of discretized affective ratings and
some corresponding face images of the AVEC 2015
benchmarking database in arousal (a) and valence (b)

Table 1 Image numbers of different ratings on different data subsets of the AVEC 2015 benchmarking database
in arousal

Data subset
Image number

1 2 3 4 5 6 7 8

Training set 5004 4999 6539 8299 8419 8451 8243 4838
Validation set 2576 2868 3763 4042 4040 4492 2660 2580
Testing set 3329 4288 4187 4121 4509 4262 2399 2352

Table 2 Image numbers of different ratings on different data subsets of the AVEC 2015 benchmarking database
in valence

Data subset
Image number

1 2 3 4 5 6 7

Training set 4465 8197 8492 8111 7923 3979 4680
Validation set 3096 4077 3907 4161 2293 883 2184
Testing set 1572 4443 4803 4346 4930 1927 3004
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blocks) local regions. Then we obtain a feature vec-
tor of dimensionality 18 × 16 × 59 = 16 992. For
the AVEC 2015 benchmarking database, after per-
forming PCA, which preserves the 97% energy, the
feature vectors are reduced to 137-D for valence and
131-D for arousal. For another dataset selected from
SEMAINE, the final feature vectors are 102-D for
valence and 99-D for arousal. We discretize rat-
ings, preprocess images, and extract features for
arousal and valence dimensions independently, so
the numbers of samples of these two dimensions are
different, causing different dimensionality of feature
representation.

For ST, it is implemented by cascading wavelet
modulus operators in a deep convolution network,
where the signal information is scattered along mul-
tiple paths. The coefficients formed in different lay-
ers react to details of patterns in different degrees.
Thus, the concatenation of coefficients can be used
as a good feature representation, which guarantees
the translational invariance to a certain extent and is
stable to deformations overall. In our experiments,
we use wavelets of four scales and eight orientations,
and the number of layers of the scattering network is
two (i.e., the maximum scattering order is 1). After
the scattering operation, we concatenate scattering
coefficients to obtain a 25 872-D feature vector for
each face image. We also perform PCA which pre-
serves the 99% energy to reduce the dimension of
the feature vector on both datasets we use. This
results in a 73-D feature vector for valence and a 69-
D one for arousal in the AVEC 2015 benchmarking
database, and a 71-D feature vector for valence and
a 68-D one for arousal in the other one. Finally, we
normalize the feature value in each dimension of a
feature vector to the range 0 to 1.

4.4 Performance evaluation

To evaluate the effectiveness of our approach
called ARR-SVM here, we compare the results with
the traditional baseline methods of multi-class clas-
sification SVM (C-SVC) and SVM for regression
(epsilon-SVR), and deep learning based methods
multi-class classification CNN (C-CNN) and deep
BLSTM for regression (R-DBLSTM). Note that
epsilon-SVR and R-DBLSTM are conducted on the
discretized ratings, instead of the original continuous
annotations. For C-SVC, we directly use the C-SVC
setting in LIBSVM (Chang and Lin, 2011) to train

classifiers on the training set and select the model
that provides the highest accuracy on the validation
set to test and record the performance on the test
set. For epsilon-SVR, the model that obtains the
lowest mean squared error (MSE) on the validation
set is used to conduct a testing on the test set. In
terms of C-CNN, we finetune the age net trained
in Levi and Hassncer (2015) using the training data
and select the model that obtains the highest accu-
racy on the validation set to perform testing on the
test set. For R-DBLSTM, we train models on the
training set and select the one that gives the lowest
sum of square errors on the validation set to test.
For ARR-SVM, we train and obtain K − 1 binary
classifiers, each of which uses all training samples
that are relabeled with binary labels according to
the compared results between rating labels and the
specific rank in {1, 2, . . . ,K− 1} during training and
performs best on the corresponding validation set.
Then we use Eq. (9) to obtain the predicted ratings
of test samples.

In terms of parameter selection, for each
SVM, no matter whether in C-SVC, epsilon-SVR,
or our ARR-SVM, the kernel is always selected
as the RBF kernel. We employ the grid search
method to find the best combination of parameters
C and γ. Parameter C is searched in the range{
2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25, 26, 27

}
,

and parameter γ is selected from a slightly smaller
range

{
2−5, 2−4, 2−3, 2−2, 2−1, 20, 21

}
. Parameter ε

in epsilon-SVR is selected as 0.1 for our experiments.
For C-CNN and R-DBLSTM, the parameters that
obtain the best performance on the validation set
are selected as optimal parameters.

4.4.1 Performance comparison of CS-1 (L=1) and
MAE

Table 3 reports the CS-1 (L=1) and MAE
results of different approaches in arousal. For
ARR-SVM, the costs applied to reweight the train-
ing samples of the kth cost-sensitive binary clas-
sifier are derived from Eq. (4). This selection
is motivated by the experimental results of ARR-
SVM when using different costs, which will be dis-
cussed later. Clearly, our ARR-SVM method with
the ST feature provides the best performance in
both CS-1 and MAE measures. For CS-1 eval-
uation, the regression based methods epsilon-SVR
and R-DBLSTM obtain poor results at only around



Xu et al. / Front Inform Technol Electron Eng 2018 19(6):783-795 791

30%. However, for the MAE measure, epsilon-SVR
achieves better performance than C-SVC, and R-
DBLSTM outperforms C-CNN. This is mainly be-
cause the optimization targets of epsilon-SVR and
R-DBLSTM are more consistent with the target of
reducing the MAE error than those of C-SVC and
C-CNN.

Table 3 CS-1 and MAE comparison in arousal in the
AVEC 2015 benchmarking database

Learning method Feature type CS-1 (%) MAE

Epsilon-SVR LGBP 29.42 1.9011
C-SVC LGBP 38.44 2.2211
ARR-SVM LGBP 42.11 1.8559
Epsilon-SVR ST 31.07 1.7922
C-SVC ST 39.29 2.3596
ARR-SVM ST 50.83 1.7507
C-CNN – 44.58 1.9469
R-DBLSTM ST 32.27 1.7653

Bold numbers denote the best results. CS-1: cumulative
score calculated by Eq. (3) when L=1; MAE: mean absolute
error

Table 4 shows the experimental results of two
evaluation indices in valence. Each cost-sensitive bi-
nary classifier of ARR-SVM uses the data reweight-
ing costs generated by Eq. (6) where L=3. The se-
lection of this cost function is also supported by the
experimental results shown in what follows. Note
that C-SVC using the ST feature provides the best
performance in CS-1 evaluation. This could be due
to the fact that the ST feature extracted for the
valence affect recognition task is more suitable for
classification. Our ARR-SVM approach using the
ST feature still obtains the best result in MAE mea-
sure. Similar to the results in arousal, regression-
based methods tend to obtain worse results than
classification-based methods in the CS-1 measure,
but provide better performance in MAE evaluation.
It is also not difficult to find that the ST feature per-
forms better than the LGBP feature in the affective
rating estimation task, and the prediction results ob-
tained in valence are better than those in arousal in
the AVEC 2015 benchmarking database.

Table 5 reports the experimental results in
arousal on the selected subset of SEMAINE
database. C-CNN achieves the best results in both
CS-1 and MAE measures. It is probably because
C-CNN has learned better feature representation
directly from the facial images. Our ARR-SVM

Table 4 CS-1 and MAE comparison in valence in the
AVEC 2015 benchmarking database

Learning method Feature type CS-1 (%) MAE

Epsilon-SVR LGBP 39.91 1.5362
C-SVC LGBP 58.74 1.5048
ARR-SVM LGBP 65.89 1.3387
Epsilon-SVR ST 43.47 1.3840
C-SVC ST 66.45 1.3854
ARR-SVM ST 63.84 1.3286
C-CNN – 54.88 1.6687
R-DBLSTM ST 47.60 1.3483

Bold numbers denote the best results. CS-1: cumulative
score calculated by Eq. (3) when L=1; MAE: mean absolute
error

method still outperforms baseline methods epsilon-
SVR and C-SVC. In addition, R-DBLSTM obtains
good results in MAE measure but poor performance
in CS-1 evaluation.

Table 5 CS-1 and MAE comparison in arousal in the
subset of the SEMAINE database

Learning method Feature type CS-1 (%) MAE

Epsilon-SVR LGBP 28.93 1.8084
C-SVC LGBP 29.11 2.7851
ARR-SVM LGBP 45.79 1.8660
Epsilon-SVR ST 26.21 1.8576
C-SVC ST 44.60 2.0549
ARR-SVM ST 45.23 1.7197
C-CNN – 53.30 1.5828
R-DBLSTM ST 29.45 1.6413

Bold numbers denote the best results. CS-1: cumulative
score calculated by Eq. (3) when L=1; MAE: mean absolute
error

Table 6 shows the experimental results in va-
lence. ARR-SVM using the LGBP feature gives
the best result in CS-1 measure. Regression-based
methods epsilon-SVR and R-DBLSTM provide lower
MAE, and C-CNN still obtains a good CS-1 result.

4.4.2 CS comparison at different error tolerance
levels

Fig. 4 shows the CS results in arousal and
valence dimensions for different approaches, using
the ST feature on the AVEC 2015 benchmarking
database when the error tolerance level is in the
range of {0, 1, 2, 3}. ARR-SVM outperforms all the
other methods consistently at different error toler-
ance levels in arousal. It suggests that the ordinal
information is available and important to improve
affect recognition performance in arousal. Note that
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Table 6 CS-1 and MAE comparison in valence in the
subset of the SEMAINE database

Learning method Feature type CS-1 (%) MAE

Epsilon-SVR LGBP 35.38 1.7214
C-SVC LGBP 42.65 2.3794
ARR-SVM LGBP 46.25 2.0434
Epsilon-SVR ST 20.98 2.1378
C-SVC ST 42.88 2.1558
ARR-SVM ST 44.18 1.9989
C-CNN – 45.16 2.2341
R-DBLSTM ST 34.77 1.8238

Bold numbers denote the best results. CS-1: cumulative
score calculated by Eq. (3) when L=1; MAE: mean absolute
error

CS-0 (L=0) is equivalent to the common accuracy
and for epsilon-SVR and R-DBLSTM, we calculate
CS-0.5 for CS-0. For valence, C-SVC obtains com-
petitive results with the ARR-SVM approach and
even performs better than ARR-SVM in CS-0 and
CS-1 measures. However, ARR-SVM consistently
provides higher accuracy than other methods at dif-
ferent error tolerance levels and performs better than
C-SVC at higher error tolerance levels.

Fig. 5 presents arousal and valence results on
the subset of SEMAINE database. For arousal, C-
CNN obtains the highest accuracy at all error tol-
erance levels. It suggests that C-CNN has learned
good feature representation from facial images for
arousal rating recognition. Our ranking method
ARR-SVM gives comparable results with C-CNN
at high error tolerance levels and outperforms other
methods at different error tolerance levels. For va-
lence, classification-based methods C-SVC and C-
CNN achieve competitive results with ARR-SVM
and regression-based methods epsilon-SVR and
R-DBLSTM give the worse performance.

4.4.3 Performance comparison when using different
cost-sensitive settings

We conduct exhaustive experiments in the
AVEC 2015 benchmarking database to compare re-
sults of our ARR-SVM method when different cost-
sensitive settings are applied. Tables 7 and 8
show the experimental results for arousal and va-
lence, respectively. For arousal results, it can be
seen that the absolute cost generated by Eq. (4)
produces the best performance on all three kinds of
measures by using the ST feature. In terms of the
LGBP feature, although we cannot find any kind of
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Fig. 4 Cumulative score (CS) comparison at error
tolerance levels {0, 1, 2, 3} for different approaches in
arousal (a) and valence (b) using the scattering trans-
form (ST) feature on the AVEC 2015 benchmarking
database

cost that consistently attains the best results on all
measures, we can select the absolute cost that pro-
duces the best accuracy and the second best CS-1
and MAE measures as the best cost. What is more,
the no-cost setting does not give even one best result
on three kinds of measures when using ST and LGBP
features. It can validate the importance of using a
cost-sensitive setting. Therefore, we can conclude
that the absolute cost is more suitable for reweight-
ing instances to train each basic binary classifier in
arousal rating ranking.

For valence results in Table 8, we can see that
when the ST feature is used, the CSMAE3 cost gen-
erated by Eq. (6) where L=3 can be viewed as the
cost to produce the best performance. It attains
the best accuracy and MAE and produces good CS-
1 result. The no-cost setting gives the worst MAE
and relatively low accuracy and CS-1 measures. It
is not difficult to find that the CS style costs tend to
produce better CS-1 results. In terms of the LGBP
feature, the CSMAE3 cost gives the best MAE, the
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Fig. 5 Cumulative score (CS) comparison at error
tolerance levels {0,1,2,3} for different approaches
in arousal (a) and valence (b) using the scattering
transform (ST) feature on the subset of SEMAINE
database

second best accuracy, and good CS-1 result which
is very close to the best CS-1 performance. There-
fore, similar to the ST feature, the CSMAE3 cost
is also the best cost-sensitive setting in valence rat-
ing ranking when considering all three kinds of mea-
sures. Note that the absolute cost produces the poor-
est performance, which is even far worse than that
given by the no-cost setting on each measure. The
discussions above indicate mainly that the appro-
priate cost-sensitive settings, such as absolute cost
for arousal and CSMAE3 for valence, which are in-
duced by experiments, are important for improving
the performance of our ranking method.

5 Conclusions and future work

In this paper, we have proposed an ordinal rank-
ing framework, ARR, to solve the affect recognition
problem in the A-V space. We first discretize the
continuous, real-value annotations in arousal and va-
lence dimensions, respectively, to form finite affect
ratings. Then a series of cost-sensitive binary classi-

Table 7 Accuracy, CS-1, and MAE comparison of
ARR-SVM when using different cost-sensitive set-
tings and features in arousal

Cost Feature type
Accuracy CS-1

MAE
(%) (%)

No cost LGBP 14.64 41.63 1.9023
CS-1 LGBP 14.73 41.55 1.9052
CS-2 LGBP 14.76 42.12 1.8835
CS-3 LGBP 14.50 41.40 1.9063
CSMAE1 LGBP 14.51 41.84 1.8870
CSMAE2 LGBP 14.45 41.65 1.8876
CSMAE3 LGBP 15.30 41.97 1.8434
Absolute LGBP 15.33 42.11 1.8559
No cost ST 17.57 49.10 1.7806
CS-1 ST 16.43 45.92 1.8160
CS-2 ST 16.75 48.24 1.7821
CS-3 ST 16.62 48.59 1.7938
CSMAE1 ST 16.83 49.03 1.8133
CSMAE2 ST 16.61 47.77 1.8158
CSMAE3 ST 16.98 48.48 1.7513
Absolute ST 17.75 50.83 1.7507
No cost: no cost used for data reweighting; MAE: mean
absolute error; CS-n: cost generated by Eq. (5) when L=n

(n=1, 2, 3); CSMAEn: cost generated by Eq. (6) when L=n

(n=1, 2, 3); Absolute: cost generated by Eq. (4). Bold
numbers denote the best results

Table 8 Accuracy, CS-1, and MAE comparison of
ARR-SVM when using different cost-sensitive set-
tings and features in valence

Cost Feature type
Accuracy CS-1

MAE
(%) (%)

No cost LGBP 22.93 65.91 1.3426
CS-1 LGBP 24.22 64.34 1.3969
CS-2 LGBP 23.88 64.56 1.3776
CS-3 LGBP 23.44 65.98 1.3402
CSMAE1 LGBP 23.66 63.38 1.4077
CSMAE2 LGBP 23.88 64.31 1.3785
CSMAE3 LGBP 23.91 65.89 1.3387
Absolute LGBP 22.13 60.05 1.4607
No cost ST 23.01 62.69 1.4035
CS-1 ST 23.72 64.08 1.3426
CS-2 ST 23.58 62.64 1.3528
CS-3 ST 23.60 64.26 1.3320
CSMAE1 ST 22.73 62.11 1.3642
CSMAE2 ST 23.88 62.49 1.3510
CSMAE3 ST 24.96 63.84 1.3286
Absolute ST 23.96 63.24 1.3473

No cost: no cost used for data reweighting; MAE: mean
absolute error; CS-n: cost generated by Eq. (5) when L=n

(n=1, 2, 3); CSMAEn: cost generated by Eq. (6) when L=n

(n=1, 2, 3); Absolute: cost generated by Eq. (4). Bold
numbers denote the best results

fiers are trained using all samples relabeled accord-
ing to the comparison results between corresponding
ratings and a given rank of a binary classifier. We
finally obtain the affect rating by aggregating the
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results of basic binary classifiers. We compare CS
and MAE evaluations of our ranking method with
baseline and deep learning based classification and
regression methods. Experimental results show that
our proposed approach can produce effective results
in affect recognition in the A-V space. The ordinal
property of the annotations in the dimensional af-
fect space should be appropriately used to enhance
recognition performance.

In the future, we will explore the pairwise rank-
ing framework and search for the feature represen-
tation that is more suitable for ranking methods in
affect recognition in the A-V space.
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