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Abstract: Query auto-completion (QAC) facilitates query formulation by predicting completions for given query
prefix inputs. Most web search engines use behavioral signals to customize query completion lists for users. To
be effective, such personalized QAC models rely on the access to sufficient context about each user’s interest and
intentions. Hence, they often suffer from data sparseness problems. For this reason, we propose the construction and
application of cohorts to address context sparsity and to enhance QAC personalization. We build an individual’s
interest profile by learning his/her topic preferences through topic models and then aggregate users who share
similar profiles. As conventional topic models are unable to automatically learn cohorts, we propose two cohort
topic models that handle topic modeling and cohort discovery in the same framework. We present four cohort-
based personalized QAC models that employ four different cohort discovery strategies. Our proposals use cohorts’
contextual information together with query frequency to rank completions. We perform extensive experiments on
the publicly available AOL query log and compare the ranking effectiveness with that of models that discard cohort
contexts. Experimental results suggest that our cohort-based personalized QAC models can solve the sparseness
problem and yield significant relevance improvement over competitive baselines.
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1 Introduction

Query auto-completion (QAC) is a widely
known and deployed mechanism to facilitate the task
of formulating queries in search engines. As illus-
trated in Fig. 1, by updating a ranked list of query
completions that start with the current prefix, QAC
systems help users submit queries in less time and
with less effort.

Typically, query prefixes tend to be short and
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ambiguous, making it difficult to predict users’ in-
tent and to accurately suggest relevant completions.
In the worst case, a user has to manually type the
entire query. The most common and intuitive ap-
proach is to rank completions by their past or future
popularity (Bar-Yossef and Kraus, 2011; Cai and de
Rijke, 2016b), which aims at maximizing the QAC
effectiveness for all users.

However, it is far from optimal because the one-
size-fits-all approach fails to take users’ context infor-
mation, such as submitted queries and click-through
data, into consideration while such information often
influences users’ intended queries. In light of this,
personalized QAC ranking models that use contex-
tual information (Shokouhi, 2013; Cai et al., 2016a;
Li et al., 2017b) have been proposed to suggest rel-
evant queries. However, such personalization is ef-
fective only when there is a large amount of data
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available about individuals. Unfortunately, users’
context is often very sparse and insufficient to iden-
tify their interest and intentions. Fig. 2 demonstrates
the percentage of users submitting more than 10
queries in the AOL query log (Pass et al., 2006).
Fig. 2 shows that 22% of all users’ issues are less
than five queries in a three-month period, and 62%
users’ issues are no more than 10 queries. Further
compounding this issue, existing works often ignore
the data sparsity problem in the personalized QAC
and users with little search history are always left
out. These deficiencies led us in a different research
direction of personalized QAC, in which we use co-
hort context to deal with data sparsity and achieve
a robust personalization performance.

Prefix s |gam| game of|
games gameof thrones
= gamestop game of thrones cast
i gamestop.com  |game of thrones season 7
S game of thrones |game of life
% gamesgames.comgame of thronescharacters
£ gamechanger game of thrones map
3 games for girls  |game of thrones season 7 start
E gamefly game of throneswiki
8 gamehouse game of thrones books
games free game of thrones recaps

Fig. 1 Illustration of the query auto-completion
(QAC) in a commercial search engine for the query
“game of thrones”

1-2 queries
2%

3—4 queries

>10 queries
38%

5-6 queries

/

7-8 queries

9-10 queries

Fig. 2 The number of queries submitted by users in
the publicly available AOL query log

A cohort is a group of users who share common
characteristics (Hassan and White, 2013). It can ad-
dress data sparseness when users’ data is insufficient.
Therefore, the cohort has been effectively used in ap-
plications such as recommendation systems and web
search (Teevan et al., 2009; Yan et al., 2014). Given
a user, cohort-based models enhance personalization
by providing context (if sufficient information is un-
available) or an additional context to build person-
alization models richer if the personalization mod-
els already exist (Yan et al., 2014). Nevertheless,
there has been no study of applying cohort-based

models to improve QAC personalization. We solve
this problem by proposing four cohort-based per-
sonalized QAC models that learn cohorts of interest
through four distinct topic models. Apart from con-
ventional topic models, we propose two cohort topic
models (CTMs) that introduce the cohort as a latent
variable to uncover hidden cohort information from
individuals’ topic interest. A delightful bonus is the
CTMs’ ability to act as a soft clustering technique
that assigns each user to multiple cohorts instead of
a single one. Extensive experiments are constructed
on a real-world query log. The experimental results
show that cohort-based personalized QAC models
greatly improve ranking effectiveness with the mean
reciprocal rank (MRR) score increased by 1.5% when
compared with the personalized QAC without co-
horts. In addition, our CTMs are more efficient in
identifying cohorts than conventional topic models,
which further enhances the QAC performance.

We consider our contributions to be four-fold:
(1) We tackle the challenge of personalized QAC in
a novel way by exploiting the contextual informa-
tion of user cohorts; (2) We learn individuals’ la-
tent topic interest via topic models rather than pre-
defined topical categories; (3) We propose two CTMs
that loosely cluster users into multiple cohorts based
on their interest; (4) We analyze the effectiveness of
the proposed cohort-based personalized QAC mod-
els, which consider both query popularity and cohort
context, and find that our models significantly out-
perform the competitive baselines.

2 Related work

There are a lot of works relevant to the re-
search described in this study, including QAC rank-
ing, collaborative web search techniques, and topic
modeling.

2.1 Query auto-completion

QAC is among the first services with which users
interact as they form and search their queries. Most
of the existing QAC works focus on relevance rank-
ing. For this purpose, early QAC models, such
as most popular completion (MPC), employ pre-
vious query popularity as the only ranking signal
(Bar-Yossef and Kraus, 2011). In essence, MPC
assumes that the current query popularity is the
same as the past, which is obviously insufficient
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to yield satisfactory completions. Numerous QAC
rankers have been proposed to strengthen MPC from
various aspects. Using time-series analysis tech-
niques to obtain temporal patterns of query fre-
quency, time-based QAC ranks completions by their
predicted future popularity (Shokouhi and Radin-
sky, 2012; Cai et al., 2016b). Shokouhi and Radinsky
(2012) proposed a long-term time-series approach to
model queries’ periodic patterns and to forecast the
future popularity for QAC ranking. Learning-based
QAC uses a supervised algorithm to train personal-
ized QAC rankers with features generated from user-
specific information (Shokouhi, 2013; Cai and de Ri-
jke, 2016a; Jiang and Cheng, 2016). Shokouhi (2013)
applied Lambda-MART (Burges et al., 2011) as the
learning algorithm and developed features based on
users’ age, gender, location, and short- and long-term
history. The neural network has been employed to
train a model that reranks (Mitra, 2015) or gener-
ates (Park and Chiba, 2017) completions for QAC.
More researchers have begun to explore behavior-
and interaction-based QACs. Li et al. (2017b) col-
lected a high-resolution QAC query log that records
every keystroke and associated system response lead-
ing to the final clicked query, and then they used
click models to model the QAC process with empha-
sis on users’ behaviors. Zhang et al. (2015) studied
implicit feedback during user-QAC interaction, and
proposed a model that adapts QAC to users’ im-
plicit negative feedback to unselected completions.
Mitra et al. (2014) examined individuals’ interac-
tion patterns with QAC and suggested that users
are more likely to engage with auto-completion at
word boundaries.

The aforementioned personalized QAC mod-
els, such as learning- and interaction-based mod-
els, require sufficient and detailed user information
to ensure effectiveness; however, none of the exist-
ing works aim at investigating the context sparse-
ness problem in QAC. We take the initiative and
show that grouping users into cohorts can mitigate
the sparsity issue. The QAC model proposed by
Li et al. (2017a) is most similar to our work, cap-
turing the correlation between users’ behavior pat-
terns through a probabilistic model based on latent
Dirichlet allocation (LDA). However, our model is
different from that in Li et al. (2017a) in the fol-
lowing ways: (1) Our goal is to improve QAC perfor-
mance when there is little context available; however,

Li et al. (2017a) did not consider this problem be-
cause they had abundant data from both QAC and
click logs. (2) The CTMs we propose are designed
to cluster users by user-cohort distribution, whereas
the contextual-LDA model in Li et al. (2017a) has
been used to analyze the behavior of individuals by
behavior-pattern distribution. (3) We use context
information from both users and their cohorts to
suggest query completions, whereas Li et al. (2017a)
have ranked completions based on behavior informa-
tion from a single individual.

2.2 Collaborative web search

When there is insufficient data about the cur-
rent user, the search behavior of other related users
may be beneficial in modeling his/her interest and
intentions. Based on this motivation, collaborative
search techniques have long been introduced to im-
prove the accuracy of web search engines, and spe-
cially designed systems have been presented to help
searchers successfully collaborate on realistic web
search tasks (Smyth et al., 2003; Morris and Horvitz,
2007). Recent works are concerned with a more com-
prehensive and cooperative way to process individ-
uals’ search behavioral data. By computing query
similarity and result similarity, White et al. (2013)
found users who historically performed tasks similar
to the current user, and used their on-task behaviors
to improve personalization performance. Aiming at
overcoming data sparseness in personalization, Yan
et al. (2014) described a characterization and eval-
uation of the use of cohort modeling. Yan et al.
(2014) experimented with three pre-defined cohorts,
i.e., topic, location, and top-level domain preference,
independently and in combination, and showed that
exploiting cohort behavior can yield significant rel-
evance gains. Hassan and White (2013) developed
machine-learning satisfaction models tailored to an
individual searcher and his/her cohorts. Hassan and
White (2013) found that tailoring models of dissat-
isfaction to similar users outperformed the baseline
that applied the same model across all users, present-
ing a promising direction toward the development of
more tailored satisfaction prediction.

Although collaborative techniques have been
used in personalized web search, currently there is
no work of applying them to QAC task. To the best
of our knowledge, this study is the first piece of work
that uses cohort-based models for QAC ranking.
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2.3 Topic model

Since the introduction of LDA (Blei et al., 2003),
various topic models have been proposed and em-
ployed to discover topic structures of large-scale
corpora (Steyvers et al., 2004; Chen et al., 2012).
Among them, topic models for community discovery
most resemble our work. By placing topic variables
on authors’ links in documents, Zheng et al. (2011)
proposed a general topic model of community discov-
ery for multi-author link data. Zheng et al. (2011)’s
proposal made it possible to mine detailed informa-
tion from each author’s participation and provided a
reasonable interpretation of the discovered commu-
nities. Unlike Zheng et al. (2011), who considered
links in the topic model of text mining, Yin et al.
(2012) focused on text-associated graphs, in which
they treated communities as pseudo-documents and
explored the relationships between terms and com-
munities. Yin et al. (2012) confirmed their hypoth-
esis that topics could help understand community
structure, and that community structure could help
model topics. Because previous studies did not in-
vestigate community evolution over time, Li et al.
(2012) presented a topic model that extends a com-
munity topic model with time variables, so that they
could capture the dynamic changes in communities.

The above-mentioned community discovery
topic models have been generally used to identify the
underlying semantic structure of a document collec-
tion instead of addressing the data sparsity problem
in personalization. We take advantage of topic mod-
els in uncovering latent cohorts of interest, and offer
a potential direction to overcome context sparseness
in personalized QAC.

3 Cohort discovery modeling

In this section we will investigate cohort discov-
ery by means of topic models. We first introduce co-
hort modeling using two conventional topic models,
and then describe the construction of cohort topic
models which incorporate cohorts as latent variables.

3.1 Conventional topic models

Topic interest serves as an important indicator
of users’ search intentions. Many works use topical
categories, such as human-generated web ontology
provided by the Open Directory Project (dmoz.org),
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to model users’ interest and to improve various as-
pects of web search (e.g., document ranking, query
suggestion, and query classification) (Hassan and
White, 2013). Nonetheless, these pre-defined topics
limit the flexibility and accuracy of interest model-
ing. Therefore, our work uses topic models to build
user profiles so that topics and cohorts are discovered
in the topic modeling process.

As illustrated in Fig. 3, LDA is a general
Bayesian probabilistic topic model that represents
documents as finite mixtures over latent topics z.
Table 1 lists the major notations used in this study.
The key problem to solve using LDA is computing
the posterior distribution of latent topics given words
w of a document:

HZ1 p(zi, w;)
Hivzl ZkK:I p(zi =k, wi)

Because the denominator of Eq. (1) is a summa-
tion over K" words, the exact inference of p(z|w)
is generally intractable.

full conditional probability p(z;|z—;, w) to simulate
p(z|w), which leads to

) = PE W)
p(zlw) = = o

Q)

However, we can use the

(t)
p(2i=k|z-;, w)o et P (nfﬁ)ﬂiﬂk) '
2/:1 (”l(ct)w + ﬁt)
(2)
B2,
OO
M

Fig. 3 Graphical representation for latent Dirichlet
allocation

Applying the expectation of the Dirichlet
distribution, < Dir(n) >= n;/ ), n;, to Eq. (2)
yields
(t)

N =i + B
Pkt = 5
21‘5/:1 <”1(:)w + ﬁt)
(3)
(k)
n 4+«
ech = ot t )
21}::1 (nfff)ﬂ + ak)

where ¢y, = p(w; = t|z; = k) represents the proba-
bility of using word ¢ in topic k, and 0, = p(z; =



1250

Jiang and Chen / Front Inform Technol Electron Eng 2019 20(9):1246-1258

Table 1 Notations used in the topic models

Notation

Description

M, K, W,V A S
latent cohorts, respectively

N Document length
a, B, 7, 0

5=

Document-topic distribution
© Topic-word distribution

o) User-topic distribution

o User-cohort distribution

b% Cohort-topic distribution

P Cohort-user distribution

n Document-cohort distribution

The numbers of documents, latent topics, words in corpus, words in vocabulary, users, and

Hyperparameters of Dirichlet distributions

Tom The number of times that document d,, is clicked by a user
Uq A set of users who click document d,,

The number of times that topic k is observed in document d,, with token ¢ being excluded

ng The number of times that word ¢ is assigned to topic k with token ¢ being excluded

The number of times that topic k is assigned to user a with token ¢ being excluded

) The number of times that cohort s is assigned to user a with token ¢ being excluded

The number of times that topic k is assigned to cohort s with token i being excluded

The number of times that cohort s is observed in document d,, with token ¢ being excluded

The number of times user a is assigned to cohort s with token i being excluded

k|d,,) denotes the probability of topic k over docu-
ment d,,. Using Eqs. (2) and (3), the Gibbs sampling
procedure can be run. Hence, we formulate the user-
topic distribution as

M

plalui = a) = Y- —5"—

S p(2ldm),  (4)
m=1 22j=1"j

where n,, /Z;‘il n; is the probability that user a
clicks document d,, in the entire corpus. For each
user in the search log, we can obtain a 1 x K topic
interest vector. By applying general clustering meth-
ods to these vectors, we can group users into cohorts
with the similar topic interest.

Despite being informative about the content of
documents, LDA does not provide direct information
about the interest of the authors of those documents.
Therefore, the author topic model (ATM) (Steyvers
et al., 2004) extends LDA by including authorship
information in every document of the corpus, i.e.,
uq, as an observed variable. The plate notation for
ATM is demonstrated in Fig. 4. We adapt ATM
to the QAC scenario based on the assumption that
the users who click document d,,, are the co-authors
of d,. Given a document, by applying Gibbs sam-
pling which is similar to LDA, the topic and author
assignments are sampled from

@@ —(—w)

Niy

Fig. 4 Graphical representation for the author topic
model (u represents an author randomly chosen from
uq)

Pz =k, ui = a|z—i, Uy, w)
¢ k
n](i‘)—\l + B nlez + ag

, (5)
ZY:1 (nét)—\l + Bt) 21}::1 (nz(zklz + ak)

and the parameters are estimated by

X

n](ct)—\z + B
Pt = B
S (4 )
(6)
it +
¢a,k: = ’ P
S (00

where @y, ; is the same as that of LDA and ¢ =
p(z; = k|u; = a) is the probability of using topic k
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by user a. As stated earlier, uq can be seen as a set of
users who click document d,,,. Thus, the user-topic
distribution p(¢ = a) is a 1 x K vector with element
k equaling ¢, ;. Cohorts can be grouped by general
clustering methods accordingly.

3.2 Cohort topic models

Because the above-mentioned two conventional
topic models cannot automatically group similar
users, general clustering methods, e.g., the K-means
algorithm and K-nearest neighbor classification (Wu
et al., 2008), should be employed to group users after
computing p(z|u). However, these methods are hard
clustering techniques, where each user is exactly al-
located to one cohort. For users with diverse prefer-
ences, it is natural to allow multiple cohort member-
ships. Therefore, a soft clustering approach may pro-
duce higher performance gain because it can better
capture within-user variance in interest. This moti-
vates us to propose CTMs, which incorporate cohorts
as latent variables. We separate the concepts of co-
hort and topic, so that one cohort can correspond
to multiple topics and multiple cohorts can share
one topic. Two distinct strategies are proposed to
integrate cohort discovery in topic modeling. Com-
pared with hard clustering methods, CTMs act as
soft clustering techniques that assign each user to
multiple cohorts with a probability associated with
each cohort.

Fig. 5 depicts the plate notation for our first
CTM, which is referred to as the cohort topic model
1 (CTM1) hereinafter.
associated with a multinomial distribution over co-

In this model, each user is

horts, represented by u; each cohort is associated
with a multinomial distribution over topics, repre-
sented by x; each topic is associated with a multi-
nomial distribution over words, represented by .
The multinomial distributions of u, x, and ¢ are
generated from the symmetric Dirichlet priors with
hyperparameters v, «, and (3, respectively. The gen-
eration process of words in CTM1 can be described
as follows:

1. Generate multinomial distributions: (1) For
each user u in the corpus, choose p ~ Dirichlet(y);
(2) For each cohort ¢, choose y ~ Dirichlet(); (3)
For each topic z, choose ¢ ~ Dirichlet ().

2. Generate each word w in each document d,,
of the corpus: (1) Set the vector of users ug; (2) Con-
ditioned on w4, sample a user u; = a ~ Uniform(ug);

C z w

vl

Fig. 5 Graphical representation for cohort topic
model 1 (CTM1)

(3) Conditioned on a, sample a cohort ¢; = s ~
Discrete(jiq); (4) Conditioned on s, sample a topic
z; = k ~ Discrete(x;); (5) Conditioned on k, sample
a word w; =t ~ Discrete(py).

The second step is repeated N times to form
document d,,,. The update equation from which the
Gibbs sampler draws the hidden variables is

p(zi =k, ci = s,u; = alz—j, ¢, U—j, w)

n.gct,)ﬁz—i_ﬂt glz—’—a
(06
ZZ/:l (”l(ct,)ﬁi*‘ﬁt) Zk 1 ( sw‘FO‘ )
aS)ﬁz + 75

w2 (w2
(7)

The approximated parameters are expressed as

nid + o
Xs,k = 5
S (4 )
(8)
z(IS)—‘z + P)/S
Ha,s = s ) 5
Zs:l ( as—\z + 78)

where x5, = p(z; = k|¢; = s) represents the proba-
bility of using topic & in cohort s, and pi4,s = p(c; =
slu; = a) denotes the probability of cohort s belong-
ing to user a. Because y; is the same as those of
LDA and ATM, we omit its estimation for simplicity.

Different from CTMI1, our second cohort dis-
covery approach, the cohort topic model 2 (CTM2),
builds on the idea that each user is randomly chosen
from a cohort instead of co-authors of a document.
As illustrated in Fig. 6, the multinomial distribution
over cohorts for each document is parameterized by
7; the multinomial distribution over users for each
cohort is parameterized by ; the multinomial dis-
tribution over topics for each user is parameterized
by ¢; the multinomial distribution over words for
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each topic is parameterized by . Symmetric Dirich-
let priors with hyperparameters v, §, «, and § are
placed over the four distributions, respectively. The
generation process of each word in CTM2 is listed
below:

1. Generate multinomial distributions: (1) For
each document d,,, choose n ~ Dirichlet(v); (2) For
each cohort ¢, choose ) ~ Dirichlet(d); (3) For each
user u in the corpus, choose ¢ ~ Dirichlet(a); (4)
For each topic z, choose ¢ ~ Dirichlet ().

2. Generate each word w in each document d,,
of the corpus: (1) Conditioned on d,,, sample a co-
hort ¢; = s ~ Discrete(n,,); (2) Conditioned on s,
sample a user u; = a ~ Discrete(y)s); (3) Condi-
tioned on a, sample a topic z; = k ~ Discrete(¢,);
(4) Conditioned on k, sample a word w; = t ~

Discrete(py,).
@R é‘”& % Yk

é* u z w

N|

M|

Fig. 6 Graphical representation of cohort topic
model 2 (CTMZ2)

Similar to CTM1, we calculate the posterior
conditional probability for the Gibbs sampling pro-
cedure by

p(zi = k,u; = a,¢; = 8|20, Ui, €y w)

nk) T ag

a,—?

nl(;,)—\l + Bt
(06

S (4 0) S ()

n(a) -+ 5(1 n(S) -+ Vs

s, m,—%

S (n82+0.) S5 (i)
)

Parameters of CTM2 are estimated by

ng?li—i-éa
1ps,a = 5
b (nlr 0.
®) (10)
nm,—\i—’—’-ys
Nm,s = s 5
5 (08 )
where ¥s, = p(u; = ale; = s) represents the

probability of user a’s interest in cohort s, and

Nm,s = p(ci = $|dy,) is the probability of assigning
cohort s to document d,,,. Because ¢, is identical
to that of ATM, we leave out its approximation for
simplicity.

Overall, our CTMs assign each user to each co-
hort with a membership weight (uq,s in CTM1 and
s,q in CTM2). Consequently, users with similar in-
terest can be softly clustered into multiple cohorts
by their values of fi4 s Or 95 4.

The time complexity of the four topic models
mentioned above is listed in Table 2. For all these
topic models, the complexity of each iteration of the
Gibbs sampling process is linear to the total num-
ber of hidden variables, i.e., K and S. We observe
that CTM1 and CTM2 have the same time com-
plexity. Generally, for a given corpus, the value of
KW far exceeds that of AS,i.e., KW > AS. There-
fore, the complexity of CTMs is approximately of the
same order as that of LDA and ATM. As Gibbs sam-
pling can be parallelized by MapReduce (Neiswanger
et al., 2014), the four topic models are scalable to
large-scale datasets.

Table 2 Time complexity of the four topic models

Topic model Time complexity

LDA O(KW)
ATM O(AKW)
CTM1 O(ASKW)
CTM2 O(SAKW)

4 Cohort-based personalized query
auto-completion

We formally define the QAC task as follows:
given a query log @ and a set of query completions
C(p) that matches the typed prefix p, a QAC system
can rank query completions in C(p) by the available
ranking signals.

As mentioned in Section 3, four distinct topic
models are employed, i.e., LDA, ATM, CTM1, and
CTM2, to identify users with similar interest. There-
fore, given user a, for each latent cohort s, we itera-
tively select the user’s cohort members by

b = arg max sim(a, y),
g max sim(a, y)

1/D(a,y), LDA or ATM, (11)
Sim(av y) = /Jfa,s : My,sa CTM17
ws,a : ws,ya CTM27
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where U denotes the set of all users, sim(a,y) the
resemblance of users a and y, and D(a,y) the Eu-
clidean distance between p(z|a) and p(z|y). Note
that user a is a cohort member of himself/herself
with sim(a,a) = 1. Additionally, considering com-
putational efficiency and noise reduction, for each
user a, only the top L users in terms of sim(a, y) are
regarded as the cohort members of a.

Once the cohorts of a user are identified, we can
use the contextual information of the user himself/
herself and his/her cohorts to rank query comple-
tions. The scoring function of our cohort-based per-
sonalized QAC is a convex combination of two rank-
ing signals expressed as

Score(q) = AFreqScore(q)+ (1 — A\)CoScore(q), (12)

where A € [0,1] is a tunable parameter determin-
ing the weights of two signals, FreqScore(q) is based
on the frequency of completion ¢, and CoScore(q)
calculates the similarity between completion ¢ and
historical queries submitted by cohorts. Specifically,
we output the two scores as

f(q)
max, co(p) f(ge)’

CoScore(q) = norm(w,) - sim(q, ¢;),

FreqScore(q) = (13)
13

where norm(wj;) is the contribution from each cohort
member to ensure » Wi = 1, satisfying

sim(a, b;)

I . )
ZFl sim(a, b;)
f(g) denotes the number of times completion ¢ oc-
curs in log@, and sim(q,q;) the N-gram similar-
ity between completion ¢ and query ¢; (submitted
by cohort member b;). Because FreqScore(q) and
CoScore(q) use different units and scales, we stan-

dardize them according to Cai et al. (2016b) before
combination.

norm(w;) =

5 Experimental setup

In this section, we first list the questions to guide
our experiments, and then give details about the ex-
perimental setup.

5.1 Research questions

We address the following research questions in
this study: (1) How can we compare our cohort-
based personalized QAC models against models that

ignore cohort context? (2) Do CTMs outperform
conventional topic models in terms of QAC ranking
effectiveness? (3) Which part contributes more to a
better QAC ranking, query popularity or query sim-
ilarity? (4) How does the number of cohorts affect
the performance of QAC models based on CTMs?
(5) Do cohort-based models address the data sparse-
ness problem in personalized QAC?

5.2 Dataset

We used the publicly available AOL dataset
(Pass et al., 2006) to conduct our experiments.
This dataset comprises sampled queries submitted
by anonymized users to the AOL search engine from
March 1 2006 to May 31 2006, which is sufficiently
large to ensure statistical significance. We removed
the navigational queries containing URL substrings
and discarded queries starting with special charac-
ters. Considering the fact that the proposed QAC
models need users’ contextual information to im-
plement personalization, users who issued four or
more queries were kept. Descriptions of the clicked
documents were extracted from the Open Direc-
tory Project (ODP). After cleaning and filtering, the
dataset consisted of 122 029 unique clicked docu-
ments associated with 274 135 distinct queries sub-
mitted by 144 646 unique anonymous users. The
dataset was then split into a training set and a test-
ing set with ratios of 75% and 25%, respectively.
Traditional k-fold cross-validation is not applicable
to streaming settings because it would disorder the
temporal data sequence (Gama et al., 2014). There-
fore, queries in the training set were the first 75% of
queries submitted by each user, and the latter 25%
of queries formed the testing set.

5.3 Evaluation metric and baselines

As a ranking task, we evaluated QAC perfor-
mance in terms of MRR. This is the average recipro-
cal rank in the list of query completions, expressed
as

1 1
MRR 7] qZE:T ks (14)
where T' denotes the length of the testing set and
rankg- the position of the final submitted query g¢*
in the query completion list. If no matched query is
found in the list, 1/rank,~ is set to 0.
To verify the effectiveness of our proposals, the
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following competitive methods were adopted as base-
lines: (1) the MPC model that ranks query comple-
tions by their aggregated occurrences in the whole
training period (Bar-Yossef and Kraus, 2011); (2)
the personalized QAC model that uses only the
contextual information of the user himself/herself
to compute CoScore(q) in Eq. (13), denoted as P-
QAC (Bar-Yossef and Kraus, 2011); (3) the learning-
based model that handles the short context QAC
problem by classifying users’ search intensions, re-
ferred to as C-QAC (Jiang and Cheng, 2016); (4) the
neural-based model which addresses the QAC prob-
lem by integrating user, query, and time information
in a recurrent neural network (RNN), indicated as
N-QAC (Fiorini and Lu, 2018). Four variations of
the cohort-based personalized QAC model were con-
sidered, ranking query completions based on Eq. (12)
but differing in cohort discovery modeling: (1) LDA-
QAC used LDA and the general clustering method
to uncover users’ topic interests and to group co-
horts; (2) ATM-QAC employed ATM and general
clustering technique to identify users’ interest in var-
ious topics and cluster cohorts; (3) CTM1-QAC uesd
CTML1 to assign users to multiple cohorts; (4) CTM2-
QAC exploited CTM2 to dynamically learn cohorts.

5.4 Settings and parameters

In all of our experiments, we fixed the number of
topics K at 80. Topic modeling results were reported
after 50 empirical iterations. Hyperparameters in
our cohort discovery modeling were set as « = 50/ K,
8 =0.01,v=50/S,and § = 0.1. Weset L = 6 when
computing CoScore(g) in Eq. (13) across all exper-
iments. In addition, in LDA-QAC and ATM-QAC,
the K-means algorithm was employed to cluster co-
horts. Following Shokouhi (2013), we set the size of
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N-grams at three to compute query similarity. For
C-QAC and N-QAC, we adopted the same settings as
in Jiang and Cheng (2016) and Fiorini and Lu (2018),
respectively. In our QAC ranking experiments, for
each query in the testing set, we gave a ranked list of
the top 20 query completions corresponding to prefix
length p ranging from 1 to 5.

6 Results and discussion
6.1 Overall performance

We first investigated whether our cohort-based
personalized QAC models had advantages over com-
petitive baselines on relevance ranking (question 1).
Table 3 summarizes the evaluation results of the
QAC rankings produced by different QAC mod-
els. Apart from the absolute MRR scores at var-
ious prefix lengths (p), the average MRR score of
each QAC ranker under all prefix lengths was re-
ported. The pairwise differences of four cohort-based
personalized QAC models against P-QAC were de-
tected and marked in the upper right-hand corner of
the corresponding scores.

It can be seen from Table 3 that MPC performs
the worst among all compared QAC models, with the
MRR scores of the seven personalized QAC rankers
far exceeding that of MPC. For the four baselines,
P-QAC, C-QAC, and N-QAC significantly outper-
formed MPC in every case, with average MRR im-
provement produced by P-QAC, C-QAC, and N-
QAC soaring to around 20%. The great enhance-
ment of QAC performance suggests that users’ con-
text provides a valuable signal to generate good QAC
ranking and that the ability to tailor query comple-
tions to a particular individual, rather than offer-
ing a unified completion list, provides a wealth of

Table 3 Mean reciprocal rank (MRR) results of different QAC models for prefix p consisting of 1-5 characters

, MRR
MPC  P-QAC  C-QAC N-QAC LDA-QAC  ATM-QAC CTMI-QAC  CTM2-QAC
1 0.0981  0.3535 0.3287 0.3365 0.3600 0.3534 40.36704 40.36844
2 0.1851  0.4434 0.4365 0.4413 0.4497% 0.4448 80.45244 40.45534
3 0.3165  0.5246 0.5183 0.5207 0.5280% 0.5258 20.53135 40.53484
4 0.4249  0.5925 0.5947 0.5963 0.5920 0.5931 20.59695 40.59975
5 0.4921  0.6355 0.6364 0.6381 0.6318" 0.6356 40.6385% 40.6407%
Overall  0.2991  0.5071 0.4992 0.5035 0.5096 0.5077 40.51455 40.51704

The best results of baselines and of all models in each row are underlined and boldfaced, respectively.

The statistical

significance of pairwise differences is determined by the t-test * for p < 0.01 and 2 /¥ for p < 0.05
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opportunity to satisfy users’ information needs. As
to the three personalized baselines, P-QAC consis-
tently gained advantage over C-QAC and N-QAC
for short prefixes (1-3 characters). However, P-
QAC falled shorter as prefixes got longer. Overall,
P-QAC performed better than C-QAC and N-QAC
with 0.79% and 0.36% MRR improvements, respec-
tively. The reason behind this unexpected weak per-
formance of learning-based C-QAC might be that
it is essentially a reranking task of queries returned
by MPC. Although its ranking accuracy evidently
surpasses that of MPC, C-QAC cannot improve the
results any further because there remain a large num-
ber of instances, in which the intended queries do not
appear among the original rankings. The underper-
formance of N-QAC can be explained by the fact that
the neural ranker generally needs abundant context
to guarantee its effectiveness. However, as we dis-
cussed in Section 1, more than half of the users in
the AOL dataset submit less than 10 queries. There-
fore, the lack of sufficient data hinders the ability of
N-QAC.

As to our cohort-based personalized QAC mod-
els, we observed that all of them outperformed P-
QAC, C-QAC, and N-QAC in terms of overall MRR
scores. This shows the potential of using cohort con-
text in QAC ranking. Specifically, ATM-QAC shows
minimum improvement over P-QAC. In most cases,
ATM-QAC marginally outperformed P-QAC except
at p = 1, where the MRR of ATM-QAC decreased
slightly. Though encountering small drops by 0.05%
at p = 4 and 0.37% at p = 5, LDA-QAC still ex-
hibited generally better performance than P-QAC,
with the overall MRR score increased by 0.25%.
CTM1-QAC and CTM2-QAC substantially boosted
the ranking effectiveness over P-QAC on every prefix
length. All the improvement was statistically signifi-
cant, which demonstrates the robustness of these two
models. In particular, for all prefix lengths, the most
significant gains of QAC models based on CTMs over
P-QAC occurred in the short prefix category, with up
to 1.35% and 1.49% improvements against P-QAC
produced by CTM1-QAC and CTM2-QAC under
p = 1, respectively. The reason is probably that
when the lengths of prefixes are short, the collected
cohorts’ context contains useful information to filter
out irrelevant completions and to improve ranking.
However, when the lengths of prefixes get longer,
the QAC problem becomes less challenging due to a

reduction of the matched completions. Hence, it is
hard to further improve the accuracy, even though
the contextual information may be more targeted.
In comparison with MPC, which pays no atten-
tion to users’ context as well as P-QAC, C-QAC, and
N-QAC, which use only previously submitted queries
from the current user, our cohort-based QAC models
overcome those limitations altogether by adopting
contextual information from cohorts. The remark-
able MRR improvement over four baselines confirms

the effectiveness of our proposals.

6.2 Cohort-based query auto-completion per-
formance analysis

In this subsection, we take a closer look at the
four cohort-based personalized QAC models and ex-
amine whether soft clustering techniques like CTM1
and CTM2 can further improve the QAC ranking ac-
curacy (question 2). The results of significance tests
of the improvement of CTM1-QAC and CTM2-QAC
against LDA-QAC using a paired t-test are marked
in the upper left-hand corner of CTM1-QAC and
CTM2-QAC scores in Table 3.

It is encouraging to find that models based on
CTMs produced better ranking results than mod-
els using the conventional topic models and the K-
means algorithm in identifying cohorts, which shows
the advantage of CTMs. Specifically, the MRR
gap between LDA-QAC and ATM-QAC was sub-
tle, although LDA-QAC marginally exceeded ATM-
QAC on the overall ranking (0.19%); its effective-
ness was not robust and showed moderate declines
at p =4 (0.11%) and p = 5 (0.38%). This may be
explained by the fact that the K-means algorithm
dilutes the difference between the values of p(z|u)
computed by LDA and ATM. By contrast, both
CTM1-QAC and CTM2-QAC outperformed ATM-
QAC and LDA-QAC significantly and consistently
in all cases. For instance, CTM2-QAC achieved the
highest overall MRR score with up to 0.74% im-
provement over LDA-QAC and nearly 1% improve-
ment over ATM-QAC. Presumably, a hard cluster-
ing method such as the K-means algorithm failed to
reflect users’ different interest; hence, the clustered
cohorts may not be accurate. In contrast to conven-
tional topic models, our CTMs are precisely designed
for cohort discovery, and can capture users’ multiple
cohort memberships. Therefore, soft clustering tech-
niques make cohort-based QAC ranking much better
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than hard membership assignment.

Interestingly, CTM2-QAC  outperformed
CTM1-QAC under all prefix lengths. This may
indicate that compared with CTMI1, the wuser
clustering process described by CTM2 is closer to
that in the actual situation.

6.3 Effect of contribution weight A

To help answer question 3, we varied the con-
tribution weight A in Eq. (12) from 0 to 1 with a
step length of 0.1, and examined the following ef-
fect on the overall performance of P-QAC as well
as four variations of the cohort-based personalized
QAC model.

Fig. 7 reveals that the average performance of
the five personalized QAC rankers was quite sensitive
to the change of A. The MRR score of the five models
reached its peak when A reached 0.1 for P-QAC, 0.2
for LDA-QAC, 0.1 for ATM-QAC, 0.2 for CTM1-
QAC, and 0.3 for CTM2-QAC. Once reaching its
top, the ranking effectiveness of all models took a
sharp downturn and ended at the same point when
A = 1, in which case ranking depended solely on
query frequency.

As we can see from Fig. 7, all of the five rankers
performed better under small A values (0-0.3). On
these circumstances, QAC models largely relied on
context-based query similarity rather than frequency
to rank completions. Moreover, when A = 0, the
MRR scores of all five models were significantly
higher than those when A = 1. In other words,
the performance of QAC models depending only
on query similarity was much better than that of
models considering frequency alone. Therefore, we
can conclude that query similarity is more impor-
tant and beneficial than query frequency in terms
of QAC ranking. Additionally, CTM1-QAC and
CTM2-QAC notably outperformed the other three
rankers under all A settings, which once again veri-
fied the effectiveness and robustness of QAC models
based on CTMs. We used the optimal \ values of
these five personalized rankers in our experiments.

6.4 Impact of cohort number S

To answer question 4, we let cohort number
S range from 2 to 20 with a step length of 2, and
then evaluated the performance of CTM1-QAC and
CTM2-QAC under different S settings. Fig. 8 shows
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the overall MRR scores of CTM1-QAC and CTM2-
QAC given different cohort numbers.

From Fig. 8, we found that the MRR score of
CTM1-QAC evidently fluctuated with the change of
S. After reaching the highest point at S = 18, it went
straight down to the bottom. In contrast, CTM2-
QAC demonstrated insensitivity over different S val-
ues. The overall MRR score of CTM2-QAC stayed
rather stable and also reached an optimal value at
S = 18. We examined the values of p, s and ¢ o de-
scribed in Section 3.2 and found that for each cohort
s in CTM2, users with the top v, o, values were those
who submitted hundreds of queries, regardless of the
value of S. Consequently, the context used to calcu-
late CoScore(q) in Eq. (13) almost stayed the same,
whereas in CTM1, users with the highest p, s values
were not always possessing the richest contextual in-
formation or updating in accordance to S. This may
explain why CTM1-QAC and CTM2-QAC presented
two distinct situations with the same change of co-
hort number S. We set S = 18 for CTM1-QAC and
CTM2-QAC in our experiments.
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6.5 Addressing context sparseness

We considered question 5 by evaluating the
MRR scores of the seven personalized QAC models
discussed in this study under various context sce-
narios. We broke the ranked results into 10 groups
according to the number of queries that each user
submitted in the dataset. Fig. 9 depicts the results.

As we expected, on the whole, the greater the
query volume, the better the ranking accuracy of
the personalized QAC models. Evidently, N-QAC,
C-QAC, and P-QAC were the weakest models. In
particular, N-QAC produced the lowest MRR score
in short context (4-10 queries). However, N-QAC
achieved the highest score among all models for users
who issued more than 12 queries. This is prob-
ably because a large amount of data is required
to train an effective neural ranker. Meanwhile, C-
QAC performed slightly better in short context (4-6
queries) and began to lose ground to P-QAC as con-
text increased. This can perhaps be explained by the
fact that the candidates generated by MPC limit C-
QAC’s benefit in addressing the short context prob-
lem. In comparison, the four cohort-based personal-
ized models provided obviously higher MRR scores in
the very limited context. Although ATM-QAC and
LDA-QAC did not yield a strong performance gain
over the three no-cohort baselines, CTM1-QAC and
CTM2-QAC clearly dominated the other methods.
Specifically, the two models based on CTMs man-
ifested a significant and steady performance boost
over P-QAC as queries accumulated. Even for users
with little available context (query number < 7),
there was no abrupt drop of metric values. This may
be due to the fact that soft clustering techniques can
well capture users’ topical interest and clustering co-
horts, thus mitigating the sparsity issue. The above

T ¥-N-QAC
C-QAC
-—-P-QAC
——ATM-QAC 3
LDA-QAC
—4-CTM1-QAC
~A-CTM2-QAC

4 5 6 7 8 9 10
MNumber of submitted queries

1 12 =12

Fig. 9 Performance of seven personalized QAC
rankers for users who submit different numbers of
queries

findings further underpin the superiority of cohort-
based QAC models over the alternative approaches
and indicate that the personalized rankers based on
CTMs can appropriately tackle the context sparse-
ness problem while remaining robust.

7 Conclusions and discussion

QAC personalization offers the potential of sig-
nificantly enhancing the users’ search experience.
Previous QAC models ignore individuals’ differences
in search intensions or face severe context sparseness
challenges. We have alleviated the sparsity prob-
lem by exploiting contextual information collected
from a particular user and his/her cohorts. We
have clustered cohorts according to the user inter-
est profile learned by topic models.
ventional topic models cannot automatically group
users without employing general clustering methods,
we have proposed two distinct CTMs that act as

Because con-

soft clustering techniques, where each user has been
assigned to multiple cohorts with a probability as-
sociated with each cohort. To achieve the greatest
ranking improvement, query completions have been
ordered by combining query frequency with query
similarity based on the context obtained through co-
hort discovery modeling. Extensive experiments on
a real-world query log demonstrated significant im-
provement over the competitive baselines, verifying
the effectiveness of the proposed cohort-based per-
sonalized QAC models.

Our study can be developed in several direc-
tions. First, due to dataset limitations, we can ac-
cess only users’ preceding queries and documents as
contextual information. It would be interesting to
integrate extrinsic information, such as users’ social
networks and interactions with the system, in build-
ing users’ profiles, to check if the information can
further boost personalized ranking relevance. Sec-
ond, because CTMs are general cohort discovery ap-
proaches, it is tempting to estimate their range of
applicability to other web search areas, especially
document retrieval and query suggestion. Finally,
we aim to explore alternative cohort determination
methods and evaluate them for QAC ranking task.
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