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Abstract: The segmentation of moving and non-moving regions in an image within the field of crowd analysis is
a crucial process in terms of understanding crowd behavior. In many studies, similar movements were segmented
according to the location, adjacency to each other, direction, and average speed. However, these segments may not
in turn indicate the same types of behavior in each region. The purpose of this study is to better understand crowd
behavior by locally measuring the degree of interaction/complexity within the segment. For this purpose, the flow
of motion in the image is primarily represented as a series of trajectories. The image is divided into hexagonal cells
and the finite time braid entropy (FTBE) values are calculated according to the different projection angles of each
cell. These values depend on the complexity of the spiral structure that the trajectories generated throughout the
movement and show the degree of interaction among pedestrians. In this study, behaviors of different complexities
determined in segments are pictured as similar movements on the whole. This study has been tested on 49 different
video sequences from the UCF and CUHK databases.

Key words: Crowd behavior; Motion segmentation; Motion entropy; Crowd scene analysis; Complexity detection;
Braid entropy
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1 Introduction

Crowd behavior analysis has become increas-
ingly important in recent years as a field that re-
searchers in computer vision follow closely. Effective
alternative solutions have emerged from this inter-
est. Within this framework, existing studies cover
the topics such as segmentation of stable and mov-
ing regions, understanding, defining, and classify-
ing the way a crowd creates a motion pattern, and
tracking a pedestrian or groups in crowds via video
sequences and determining abnormal behaviors. The
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crowd was divided into moving and non-moving re-
gions in many studies. Objects close to each other
moving similarly are clustered in the moving areas,
with the final goal of defining and classifying cluster
behaviors.

The segmentation of crowd movement has been
ongoing for over 10 years. There are literature sur-
veys evaluating the existing methods on the subject
(Hu et al., 2004; Yilmaz et al., 2006; Zhan et al.,
2008; Junior et al., 2010; Thida et al., 2013; Zi-
touni et al., 2016). Li et al. (2015) handled the
segmentation problem of crowd movements by di-
viding them into three groups: flow field-based seg-
mentation, similarity-based clustering, and prob-
ability model-based clustering. Generally, edge-,
graph-, and watershed-based segmentation methods
used in the studies are classified as flow field-based
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segmentation. Successful clustering studies in high-
density crowd movements have been achieved. How-
ever, evaluation of long-range and overlapping mo-
tion patterns has not been successful.

Zhou et al. (2012a) proposed the coherent neigh-
bor invariance method, in which each motion vector
represents a movement in the crowd and it can dy-
namically create a segment movement based on the
proximity-similarity relationship with its k neighbor
vectors. Similarly, Hu et al. (2008b) created clus-
ters using the directions of motion vectors and their
proximity to each other in motion fields. In another
study (Hu et al., 2008a), clustering was based on the
dominant motion information in the cluster.

Ali and Shah (2007) transformed the motion
fields obtained by the optical flow method into tra-
jectories via the particle advection method, and then
employed the finite time Lyapunov exponent (FTLE)
method for segmentation to determine the bound-
aries of the motion fields. Mehran et al. (2010)
proposed a dynamic clustering system by applying
fluid dynamics methods to trajectories with the de-
veloped streakline framework. Wang et al. (2014)
produced a streakline framework and combined it
with a high-accuracy variational model to cluster
crowd movements.

Gao et al. (2017) segmented the moving areas in
a crowd according to the streak flow and crowd col-
lectiveness. For the streak flow, the use of motion
dynamics in the crowd benefits from three struc-
tural features for crowd collectiveness. Lin et al.
(2016) tried to identify the semantic regions and re-
current activity movements in crowded movements,
which meant that the activity was identifiable with
the semantic groups formed from the motion vectors
obtained from the optical flow. Chen et al. (2017)
tried to group movements in the crowd according to
their flow dynamics using the anchor-based manifold
ranking (AMR) method. de Almeida et al. (2017)
attempted to identify local and general changes in
crowd behaviors especially during abnormal events
with a method dependent on the histogram values of
the motion vectors.

In the studies which are grouped as similarity-
based clustering, the motion vectors obtained were
transformed into trajectories or tracklets, and clus-
tering operations were performed according to the
similarity relations between them. This produces
successful results in structured-unstructured crowd

scenes. In addition, effective solutions have been
presented for problems such as overlapping, scene
clutter, and tracking errors.

Cheriyadat and Radke (2008) proposed clus-
tering algorithms based on distance measure. The
longest common subsequence (LCSS) values between
trajectories were created using motion vectors ob-
tained by the optical flow to detect the dominant mo-
tion. Zhao and Medioni (2011) tried to clarify local
geometric structures and motion patterns with ten-
sor voting as an unsupervised learning model based
on the developed tracklets. Jodoin et al. (2013) high-
lighted the dominant movement with meta-tracking
by first calculating the orientation distribution func-
tion (ODF) value of each motion vector. This value
maintains the motion vectors according to direction.
Then it creates motion trajectories that it expresses
as meta-tracks. Finally, the hierarchical clustering
method forms the dominant patterns of motion by
clustering the meta-tracks that most closely resemble
each other.

Fan et al. (2018) aimed to segment coherent and
similar relationships in a crowd. In addition, the
method could be applied in cases of different scenes
and scale scenarios. Wu et al. (2017) aimed to de-
fine the pattern of movement of a crowd with the
scale and rotation invariant curl and divergence of
motion trajectories (CDT) descriptor. In this way,
they identified five types of behaviors (lane, clock-
wise arch, counterclockwise arch, bottleneck, and
fountainhead) exhibited by the crowd. Shao et al.
(2017) detected and classified groups in the crowd
according to collectiveness, stability, uniformity, and
conflict, representing the intra-group stability and
inter-group conflict of the motion vectors. Fradi
et al. (2017) aimed at detecting abnormal and vi-
olent incidents and the classification of crowd behav-
ior, and developed a method in which the crowd was
represented as a graph and each node in the graph
represented a tracklet.

The last category of segmentation studies is
probability model-based clustering, including exten-
sive use of the Gaussian mixture model (GMM),
random field topic (RFT), and latent Dirichlet al-
location (LDA) methods. Through these methods,
a number of studies have measured the probabilis-
tic estimates of when, where, and how crowd events
occur.

Yang et al. (2009) performed clustering through
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diffusion map distribution, which is created by the
direction and location values of motion vectors with-
out requiring object detection or tracking opera-
tions. Similarly, Saleemi et al. (2010) produced re-
sults based on the probabilistic distribution of the
position, direction, and magnitude of motion vec-
tors obtained via the optical flow. Zhou et al. (2011,
2012b) sought to solve the problem of detecting se-
mantic areas in unstructured spaces using the RFT
method.

Rao et al. (2016) used the new probabilistic-
based method and the lengths of the optical flow
vectors, and tried to detect such phenomena in the
crowd as walking, running, merging, and splitting.

In addition, some studies have modeled the
forces in crowd movements with the intention of
defining the distribution of the crowd in motion to
determine suitable emergency evacuation routes (He
et al., 2013). Chen et al. (2009) studied the inter-
action among pedestrians using a grid-based model.
Later, Yuan et al. (2017) introduced a new force
occurring among pedestrians at the moment of an
opposite direction of flow and subsequently tested
models in a simulation environment.

When viewed from a broad perspective, the aim
of all these studies was to create segments of crowd
movements with a similar acceleration and similar
direction, assuming that these segments exhibited a
similar pattern in each region. However, the present
study aims to closely investigate the behavior of each
segment and reveal the behavioral differences within
the cluster.

Zhao et al. (2015) aimed to measure the ab-
normal behavior of the crowd with their proposed
entropy model. For this purpose, they used the prob-
ability distribution of motion vectors obtained from
the optical flow. Similarly, Ali (2013) examined the
complexity of crowd movements, and classified dif-
ferent crowd images as irregular and regular crowd
behavior movements as low, middle, and high levels
according to entropy values calculated by the braid
entropy theory. However, comparing the entropy
value of crowd movements in different places may not
always produce accurate results due to the character-
istics of the methods used in the study. In Ali (2013),
the motion vectors were obtained by the optical flow
method. When acquiring motion knowledge in the
optical flow method, the distance of the camera from
the moving objects and the angles of perspective are

important. For example, a moving object with a
camera positioned close to it can possibly result in a
high entropy value, but this may not actually reflect
complexity. In the same way, the entropy value of
the optical flow motion information obtained with
a camera looking at the crowd from a distance can
be low, which may not indicate that the crowd flows
smoothly. Therefore, instead of comparing the en-
tropy values of different locations, the goal was to
regionally measure, assess, and compare the entropy
values of the same image and to determine how the
values change over time.

In many studies, a segment was assigned assum-
ing that the movements close to each other demon-
strate the same kind of flow behavior in the same
direction, at similar speeds, and to the same loca-
tions. However, the crowd movement in these seg-
ments may not show the same behavior in each re-
gion. To understand the behavior of a crowd, it is
important to determine the degree of interaction and
complexity in some regions.

The purpose of this study is to better under-
stand crowd behavior by measuring the degree of in-
teraction and complexity among the pedestrians in
a crowd. In general, the contributions of this study
are as follows: (1) The degree of interaction or com-
plexity is locally determined within a high-density
moving group, which proceeds in the same direction
as shown in the resulting complexity map, although
this was expressed as a cluster in many other studies;
(2) When the whole image is taken into considera-
tion, complex-smooth behaviors in moving areas can
be classified and a general understanding of the flow
of the movement can be reached.

2 Material and methods

The steps in the study are presented in three sec-
tions, as shown in the algorithm overview in Fig. 1.

First, motion vectors obtained by the optical

Fig. 1 Steps of the study
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flow method are transformed into trajectories via
particle advection. The tracks of moving objects in
the video sequences are represented as trajectories.
A flow map is generated as the input to the system.

The image is then divided into hexagonal cells.
A braid is formed with trajectories corresponding
to each cell. To create the braid, trajectories are
tracked over time according to an angle value. The
braid is defined as a spiral pattern occurring when
three or more trajectories changed locations with
each other over time. Trajectories are given sym-
bolic counterparts for the swaps they made with each
other.

The complexity of the braid is calculated de-
pending on its symbolic counterparts. In the next
step, the interaction/complexity flow value in each
cell of the image, separated by uniform hexagons, is
calculated using finite time braid entropy (FTBE).
In this way, a complexity map is created to show the
crowd behavior.

Eventually, the method is interpreted on the
basis of the quantitative and qualitative results ob-
tained by testing a total of 49 different video se-
quences from the UCF (Ali and Shah, 2007) and
CUHK (Zhou et al., 2013) databases.

3 Calculations

3.1 Particle advection

Optical flow is a method used to obtain motion
information in an image (Horn and Schunck, 1981;
Lucas and Kanade, 1981; Barron et al., 1994). The
method is based on the temporal derivation of the
x and y axes, depending on the intensity value be-
tween consecutive frame pairs of the video sequences.
Thus, the motion of the image at the pixel level is
obtained as its size and direction. The equations are
written according to the amount of change in the
axes with the precondition that the light source does
not change with time (Eq. (1)), while the general
formula of the optical flow method is obtained by
Eq. (2).

dI

dt
= 1 ⇒ I(x, y, t) = I(x+ dx, y +dy, t+ dt), (1)

Ixu + Iyv = −It. (2)

The motion vectors (u, v) in Eq. (2) were trans-
formed into motion trajectories by the particle ad-
vection method (Bouguet, 2001; Brox et al., 2004;

Ali and Shah, 2007; Mehran et al., 2010). The
method was realized by the movement of imaginary
particles located on each pixel in the image start-
ing from the very first frame according to the op-
tical flow data obtained throughout the video se-
quence. Thus, the three-dimensional (3D) motion
data (u, v, t) obtained by the optical flow was con-
verted into two-dimensional (2D) observable motion
data using Eqs. (3) and (4):

xi(t+1) = xi(t) + u[xi(t), yi(t)], (3)

yi(t+1) = yi(t) + v[xi(t), yi(t)]. (4)

Here, xi(t) and yi(t) denote the x and y locations
at time t of the ith particle, respectively. xi(t+1) and
yi(t+1) denote locations at time t+ 1. To obtain the
trajectories, we needed to add the same number of
particles (m× n = N) as the number of pixels used
in the image up to the end of the video sequence:

tjr1 = {(x11, y11) , (x12, y12) , . . . , (x1T , y1T )} , (5)

tjr2 = {(x21, y21) , (x22, y22) , . . . , (x2T , y2T )} , (6)
...

tjrN={(xN1, yN1) , (xN2, yN2) ,. . ., (xNT , yNT)} , (7)

where T denotes the total frame number (Fig. 2a)
and (tjr1, tjr2, . . . , tjrN ) indicate trajectories. The
flow map FlowMap (Eq. (8)), representing the mo-
tion flow (shown as blue tracks in Fig. 2b), was used
as an input value for the system. Since static fields,
noise, and trajectories are not long enough and are
not capable of representing the image, particles that
moved shorter than the average distance were not
included in the calculations in the next stages.

FlowMapstep = {tjr1, tjr2, . . . , tjrN}. (8)

In addition, the optical flow method require-
ment provides more successful results when the speed

Fig. 2 Dividing the image into a hexagonal grid: (a)
totally T frames used as the input; (b) flow map shown
as blue lines (q is the number of cells/column and r

is the number of cells/row of the hexagonal grid); (c)
trajectory fragments corresponding to Cellij

References to color refer to the online version of this figure
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of movement is less than one pixel and the movement
intensity is higher. In other words, the motion vec-
tors obtained from the high-density flows represent
the true motion more successfully.

3.2 Hexagonal grid

As mentioned above, the original value of this
work is not in computing the entropy value of a whole
frame of motion and comparing it with other differ-
ent images or subsequent frames, but to handle it by
dividing the existing frame into equal parts. At this
point, it then becomes possible to separate a mo-
tion into semantic regions, to compare the entropy
value of each segment to neighboring segments, and
to detect how those entropy values change.

For this purpose, the frame was divided into a
hexagonal grid (Fig. 2b) and the overall address val-
ues of the q×r cells were determined (Eq. (9)). Each
trajectory in the flow map (Eq. (8)) was divided ac-
cording to its corresponding parts in the cells. For
example, the trajectory fragments corresponding to
Cellij in Fig. 2c are shown in green lines. After this
step, the processes took place according to the trajec-
tory parts corresponding to each cell. Algorithm 1
illustrates the division of the trajectories into cells
and the calculation with FTBE entropy.

Cellij = {(1, 1) , (1, 2) , . . . , (q, r)}. (9)

Algorithm 1 Assigning trajectory parts into cells
Input: Trajectory FlowMap in Eq. (8)
Output: Each Cell has trajectory parts by position
1: for i = 1 to q (number of columns) do
2: for j = 1 to r (number of rows) do
3: for k = 1 to N (number of trajectories) do
4: if any part of tjrk in Cellij then
5: Add part of tjrk into Cellij
6: end if
7: end for
8: EntropyCellij

= FTBE(Cellij)

9: end for
10: end for

3.3 Measurement of braid entropy

Topological entropy can be defined as a measure
of complexity in a dynamic system. By measuring
the value of the braid topological entropy, the degree
of complexity of the braid can be calculated (Thif-
feault, 2010; Budišić and Thiffeault, 2015). In this

study, the braid entropy theorem was used to cal-
culate the complexity of crowd flow motion. The
“braid” is derived from the braiding of hair. Ac-
cording to the theory, there is a mathematical repre-
sentation of the helical movements that go into hair
braiding. Grouped hair strands form a spiral pattern
within a certain order. The displacement of a hair
strand by others is mathematically represented in the
spiral pattern. Eventually, a spiral braid is expressed
by the mathematical representation of consecutive
relocations of these strands. The degree of complica-
tion in the structure can be determined by starting
off with the mathematical representation of the spi-
ral pattern. Braid theory calculates the complexity
(entropy value) of this spiral pattern (Allshouse and
Thiffeault, 2012; Thiffeault and Budisic, 2014).

The adaptation of this theory to the crowded
flow irregularity is as follows: Each trajectory ob-
tained by the particle advection method corresponds
to strands in the braid theory. The trajectories cre-
ate a spiral structure throughout the crowd flow.
Therefore, the problem of calculating the complex-
ity of the crowd turns into a problem of calculating
the complexity of this spiral pattern throughout the
crowd flow. The physical braid can be defined as a
pattern, in which three or more trajectories (strands)
are intertwined (Fig. 3a). By taking the projection of
the trajectory with respect to the x axis (or any axis)
and time, a geometric representation of the braid is
created in a process called mapping (Fig. 3b).
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Fig. 3 Three sample trajectories: (a) trajectory starts
with the cross point and finishes with dot points in
the physical braid; (b) trajectories projected onto the
plane containing the x axis and time; (c) the standard
braid diagram corresponding to (b) (Allshouse and
Thiffeault, 2012)

3.4 Sequence of the generator

In the projection process, the trajectories were
sorted by their location relative to the selected axis.
The place indices that occurred in the sorting re-
sult were determined as the start identity document
(ID) of the trajectories. The trajectory displacement
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which moves from the front or to the rear of each
other is called a “cross.” For example, in the al-
gebraic representation in Fig. 3c, the projection of
three trajectories with respect to the x axis is taken,
and index values are assigned as one to three. In
the interval between t and t + 1, one cross opera-
tion is performed. Three values are obtained in each
cross process: cross time, cross direction (clockwise
or counterclockwise), and cross location (trajectories
between which the procedure occurs).

For example, in the spiral pattern shown in
Fig. 3c, at time t = 1, the intersection between the
first and second trajectories in clockwise σ1, and at
time t = 2, the intersection between the second and
third trajectories in counterclockwise σ−1

2 are sym-
bolically expressed as σ1σ

−1
2 . Although the sym-

bol having the smaller index from the trajectories in
the cross process determines the number of the sym-
bols, the movement clockwise or counterclockwise
determines the sign (−+1) of the symbol. At the end
of the process, all crossing operations are sorted by
time (σ1σ

−1
2 ), and this sequence is called “generator”

(Moussafir, 2006; Allshouse, 2010).

3.5 Length of the loop

Up to this point, the trajectories have been rep-
resented by the algebraic notation and the sequence
of the generator has been calculated. Following that,
these values are used to calculate entropy. This is
done with the concept of a “loop” (Fig. 4). The red
dots represent trajectories. The trajectories form
a loop through the process of displacing each other
from the front or back. If the length of the loop in
time increases exponentially, this indicates that the
crowd shows a complex behavior. Otherwise, the
behavior of the crowd is in a straight line. In other
words, the increasing number of cycles indicates that
the complexity of the motion of the crowd flow has
greatly increased. Some features of the braid are
illustrated by the vertical green lines shown on the
initial coordinate plane (Fig. 4), where the number
of intersections that occur above or below the parti-
cle with μi , and the number of intersections between
particles with vi, are expressed.

The Dynnikov coordinate system expresses the
behavior of loops by taking the difference of μi and vi
values in the initial coordinate plane. The summary
definitions ai and bi show the behavior of neighboring

μ3 = 3 μ4 = 1

v1 = 4 μ1 = 1 v2 = 4 μ2 = 3 v3 = 2

Fig. 4 A sample topological loop drawn for four
punctures
References to color refer to the online version of this figure.
The µi’s and vi’s are presented in the plot and the corre-
sponding Dynnikov coordinates are a = [1,−1] and b = [0, 1]

(Allshouse, 2010; Allshouse and Thiffeault, 2012)

trajectories in the loop:

{
ai =

1
2 (μ2i − μ2i−1) ,

bi =
1
2 (vi − vi+1) ,

(10)

where i = 1, 2, . . . , n− 2.
These values are signed integers and are com-

bined in the Dynnikov coordinate system to repre-
sent a loop:

u = (ai, ai+1, . . . , an−2, bi, bi+1, . . . , bn−2) . (11)

The length of the loop was calculated using
these values. Eq. (12) was used for this operation
(Moussafir, 2006). The length of the loop is a pro-
portional value, which depends on the intersection
of all the trajectories in the cycle with each other
(horizontal green line in Fig. 4). Here, a scaler value
Lq depends on the growth rate of the loop over time.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lq = |a1|+|an−2|+
n−3∑
i=1

|ai+1−ai|+
n−1∑
i=0

|bi|,

b0 =− max
1≤i≤n−2

(
|ai|+max (bi, 0)+

i−1∑
j=1

bj

)
,

bn−1 = −b0 −
n−2∑
i=1

bi.

(12)

For a system with n trajectories, if (n − 1)

loops occurred between neighboring trajectories and
(n − 2) · (n − 1) loops occurred above and below
with non-adjacent trajectories and (n− 1)2 cycles
occurred in total, the generator sequence was then
applied. Finally, the time complexity of the algo-
rithm, which included each hexagon, was calculated
as O(n2).
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3.6 Finite time braid entropy computation

Finally, as seen in Fig. 5, the FTBE value was
calculated by Eq. (13). Trajectories are evaluated
within the time interval I (I = [t0, t0 + T ]).

Entropy =
1

T
logLq, (13)

where T is the time interval between the first cross
and the last cross in each cell. FTBE is the com-
plexity value that depends on the cross processing at
time interval T .

If the growth rate of Lq is low, the loop rep-
resents a simple movement. On the other hand, if
there is an exponential growth, this indicates a com-
plex movement.

Cellij
Projection axes

initial = 0°

FTBE
calculation

Calculate
generator σ1σ2

Loop generator Eq. (10)
Dynnikov coordinate Eq. (11)

Loop length
computation Eq. (12)

FTBE computation Eq. (13)

Add projection axes by 
5° per epoch until 175°

Cellij = [1×36]
feature vector Eq. (14)

–1

Fig. 5 Calculating the feature vector for each cell
using braid entropy

3.7 Projection axes

Trajectories obtained from the movements in
the crowd flow should be arranged in the braid the-
ory method. As a prerequisite of the method, the
direction of the strands forming the braid should al-
ways be forward. When the trajectories shown in
Fig. 2b are projected according to any angle, the de-
sired properties of the braid can be obtained. For

this study, the projection process was applied to the
trajectory groups within each hexagon at an interval
of 5◦ (Fig. 6a). In fact, the interactions among the
trajectories were detected from 36 different perspec-
tives. In addition, the cross operations performed
throughout the motion produced unique values for
the respective projection angles.

5°
5°

5°
(a)

(b) (c) (d) (e)

x

y

Fig. 6 Projection process differences of 5◦ with a
trajectory corresponding to any hexagon (a), accord-
ing to the x axis (b), 5◦ axis (c), 10◦ axis (d), and a
175◦ projection process and algebraic braid (e)

References to color refer to the online version of this figure

Moreover, for the step time of each hexagonal
cell, 36 different exact braid entropy values were
calculated:

Entropystep
Cellij

= [bi1, bi2, . . . , bi36] . (14)

These values were determined from 36 different
angles of the hexagon and the results expressed the
complexity of the crowd behavior. The cross opera-
tors obtained by the projection on the axes at differ-
ent angles are shown in Figs. 6b–6e, in accordance
with their colors.

At this stage, the fact should again be empha-
sized that images of crowd flow movements recorded
with a single projection can cause a problem in prop-
erly detecting the interactions between the pedestri-
ans. In this study, considering the projection prob-
lem, two basic steps were used to determine the in-
teractions in the crowd. First, the image was divided
into equal regions, so that the focus was on only the
behavior in the relevant region of movement. It is ex-
pected that the movement in the relevant region will
always show the same behavior, especially in a struc-
tured crowd flow. A change in this area is believed to
indicate some information that could be attributed
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to the interaction of the people in the crowd. Sec-
ond, the interaction was calculated with 36 different
angles using the braid entropy method. In this way,
it was possible to calculate, independently from the
projection and the behaviors in this region alone.

3.8 Complexity map

Finally, the braid entropy feature vector of size
1×36 calculated for Cellij in Eq. (14) was calculated
for all the cells in the grid, and ComplexityMap was
generated at the corresponding step. The complexity
map was calculated for all existing step values:

ComplexityMapstep =
{
EntropyCellij

}
, (15)

where step = 1, 2, . . . , L/K with L the total number
of frames in the scenario and K the number of frames
in one step, and (i, j) = {(1, 1) , (1, 2) , . . . , (q, r)}.

4 Results and discussion

The complexity map we created with this study
revealed that, unlike other studies, the flowing mo-
tion of a crowd going in the same direction does not
show the same behavior in each region. In other

words, there were regions with more or fewer com-
plexities in the interactions of the flow of the crowd
moving in the same direction. When these regions
are detected and viewed as a whole, the behavior
of the crowd can be better understood in terms of
complexity.

For example, looking at the literature studies in
Figs. 7c and 7d, it was supposed that a marathon
crowd continued to move in the same pattern in each
region. In fact, when the images are examined, it
appears that there is a relatively complex movement
in which the interaction increases among individuals
at the rotation points of motion. These studies in the
literature ignored knowledge of complexity in crowd
segments since they treated the behavior as a whole.

Similarly, in the studies shown in Figs. 7e and
7f, dots are used to show the movement of the indi-
viduals, depending on only the movement informa-
tion between two frames. However, it was concluded
that the 2-frame approach does not contain sufficient
information about the complexity of the movement
because it shows the movement as a whole and the
behavior as the same types.

Fig. 7 shows the regional complexity results.
Cells (regions) are colored from green to red (small to

(b) (c)(a) (f)(d) (e)

μ−σ

μ+σ

Fig. 7 The present study results compared with those of studies from the literature: (a) color scale; (b) our
results; (c) Ali and Shah (2007); (d) Mehran et al. (2010); (e) Zhou et al. (2012a); (f) Zhou et al. (2013)

References to color refer to the online version of this figure
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large) according to the average of values in Eq. (14)
calculated for each cell. Although the cases where
the average value of the cell is low indicate that the
movement is stable, flat, and relatively low in den-
sity, a high average value shows a relatively high
entropy. When the results are examined, it can be
seen that the interaction among people increases at
the turning points of the crowd, and that the move-
ment is more complex than that in the other regions.
The lowest value (shown in green) was determined
by subtracting the average value of all cells from
the standard deviation, while the maximum value
(shown in red) was determined as the sum of these
values. Intermediate values are shown according to
the corresponding color tone in the scale (Fig. 7a).

In light of these results, we should also mention
that there is a difference between braid entropy and
the regional density, although there is a correct pro-
portion. The value measured with braid entropy is
the value of the complexity of the trajectories due to
their “cross” operations during the flow. On the other
hand, the density can be thought of as the number

of trajectories in a certain region.
In this case, it is highly probable that the en-

tropy values are high in regions where the trajectory
density is high because it is likely that there will
be an interaction between people in a high-intensity
movement. However, entropy values will still be high
if there is an interaction between people in areas with
a low intensity. Moreover, in cases where there are no
interactions between people in high-density regions,
the entropy value will be low (if the trajectory goes
through the movement without crossing).

In this study, a total of 49 different scenarios
were tested, including 19 scenarios from the UCF
crowd segmentation dataset (Ali and Shah, 2007)
and 30 scenarios from the CUHK crowd dataset
(Zhou et al., 2013). The images in UCF were in
sizes ranging from 350 × 230 to 720 × 480 pixels,
and each image in CUHK was 1000 × 670 pixels in
size. Images in both databases have frame numbers
ranging from 50 to 800. The results obtained when
testing the marathon image in the UCF database
are shown in Fig. 8. For this image, the database
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Fig. 8 Results of testing the marathon image in the UCF database
References to color refer to the online version of this figure. For each step moment, calculations were made using 50 frames
and the quantitative results are shown on the coordinate plane under the image. The two classes of the Gaussian mixture
model (GMM) are colored red (complex) and green (smooth). Each point in the plane represents a cell and is the average of
the feature vector values in Eq. (14)
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contains L = 500 frames (K = 50 frames, h = 20

pixels). The results from step 1 to step 10 (step
= 1, 2, . . . , 10) are shown in Fig. 8. For the step
time, the braid entropy value was calculated for each
cell by FTBE and a 1 × 36 feature vector was gen-
erated as described in Eq. (14). Finally, the com-
plexity map (Eq. (15)), composed of feature vectors
of all cells, could be separated into two regions with
GMM clustering: those where the motion complex-
ity or interaction was great and those with regular
flow motion. The cells shown in Fig. 8 and colored in
red indicate that the complexity or interaction was
intense. The green regions indicate a stable, flat, and
less complex (smooth) movement. The quantitative
values of these regions are shown in Fig. 8 on the
coordinate plane under each figure. Each point in
the coordinate plane represents a cell. The x axis
shows the number of cells having movement inside
and joining the processes, while the y axis indicates
the mean value of the feature vector of the cell.

In Fig. 9a, all the steps are presented in a sin-
gle graph as a summary. The red graph shows the
average values of the regions where the complexity
is greater than the two divided regions, while the
green graph shows the regions with a relatively low
complexity. This can give an idea as to how the val-
ues of the complex and non-complex regions change
throughout the movement.

Here, there were two parameters that need to
be decided: K (number of frames processed in each
step) and h (radius of hexagonal cells). For different
K and h values, the results, depending on the average

of all the steps of each region, are shown in Figs. 9b
and 9c. According to these graphs, the values of
K = 50 frames and h = 20 pixels are acceptable.

In addition, a summary graph was created for
10 different scenarios from the database. The results
are shown in Fig. 10 with the results of the complex
and non-complex regions of the scene images, where
K = 50 and h = 20. However, the number of steps
varied depending on the total number of frames for
each view.

As mentioned in the previous sections, the mo-
tion of the flow of a crowd is represented by trajec-
tories. When the results in Fig. 10 and the database
are examined, such as bottleneck or fountainhead
behavior and arch behavior, they form a complex
pattern, since the trajectories make an entangled
pattern with each other, and the entropy value in
these regions seems to be higher than the regions in
which a smooth-line behavior is observed.

The results for the 49 different scenarios used
in the study are shown in Fig. 11. To present these
results in a summary, the average value of the two
regions in each video sequence was used. On the x

axis, the names of the images used are given, and
on the y axis, the average complexity values of the
regions are given.

5 Conclusions and future work

We have examined the interactions among peo-
ple in crowd movements. The motion information in
the video sequences was represented by trajectories.

Fig. 9 Results obtained for different frame rates and hexagonal sizes in summary graphs: (a) mean entropy
values of the complex and smooth areas in all steps in Fig. 8; (b) average entropy values of the complex and
smooth regions changed according to the number of frames (K) used at each step of Fig. 8; (c) average entropy
values of the complex and smooth regions changed according to the radius of the cell used in each image

References to color refer to the online version of this figure
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Fig. 10 Summary graph calculated for the marathon scenario in Fig. 9a as shown in different stations from
the database
References to color refer to the online version of this figure. Red and green lines represent the complex and smooth behaviors,
respectively

Fig. 11 Results calculated for 49 different scenarios. References to color refer to the online version of this
figure

The spiral pattern formed by the trajectories was in-
vestigated locally and the degree of complexity in the
region was determined using the FTBE value calcu-
lated from 36 different directions at an interval of 5◦.
Ultimately, by interpreting the behavior of the crowd
using the generated complexity map, we identified

the regions in which the movement was proceed-
ing smoothly and those in which the interactions
among the individuals increased. We also demon-
strated that braid theory can be a useful method for
interpreting trajectories.
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In this study, the degree of interaction and
complexity were determined locally within a high-
density moving group proceeding in the same di-
rection and were shown as the resulting complexity
map. This is expressed as a cluster in many studies.
When the whole image was taken into consideration,
the complex and smooth behaviors in the moving ar-
eas can be classified and a general understanding of
the flow of the movement can be reached.

In future work, we plan to examine unstruc-
tured movements, evaluate the anomalies in results
for these environments, and test the feature vectors
obtained for each region using learning models. We
are also considering a study analyzing the ways in
which the braid entropy value is changed by different
behavior types such as the bottleneck, fountainhead,
and arch.
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