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Abstract: Cross-eye jamming is an electronic attack technique that induces an angular error in the monopulse radar by artificially 
creating a false target and deceiving the radar into detecting and tracking it. Presently, there is no effective anti-jamming method to 
counteract cross-eye jamming. In our study, through detailed analysis of the jamming mechanism, a multi-target model for a 
cross-eye jamming scenario is established within a random finite set framework. A novel anti-jamming method based on multi- 
target tracking using probability hypothesis density filters is subsequently developed by combining the characteristic differences 
between target and jamming with the releasing process of jamming. The characteristic differences between target and jamming and 
the releasing process of jamming are used to optimize particle partitioning. Particle identity labels that represent the properties of 
target and jamming are introduced into the detection and tracking processes. The release of cross-eye jamming is detected by 
estimating the number of targets in the beam, and the distinction between true targets and false jamming is realized through cor-
relation and transmission between labels and estimated states. Thus, accurate tracking of the true targets is achieved under severe 
jamming conditions. Simulation results showed that the proposed method achieves a minimum delay in detection of cross-eye 
jamming and an accurate estimation of the target state. 
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1  Introduction 
 

Cross-eye jamming is an angular deception 
technique that attempts to deceive a tracking radar 
about the true position of its target by recreating the 
worst case angular error due to glint (du Plessis et al., 
2011). This type of jamming is employed mainly for 
self-protection in aircrafts, ships, and other platforms, 
and it is considered to be one of the most promising 
electronic counter measures (ECMs). Compared with 
non-coherent jamming approaches, such as towed 
radar active decoys, cross-eye jamming is essentially 

a form of coherent jamming, does not require the 
jammer be located apart from the platform, and can 
produce a large angle deviation away from the target. 
As an advanced electronic attack (EA) strategy, 
cross-eye jamming technology is gradually maturing 
with the wide application to digital radio frequency 
memory (DRFM) technology. A cross-eye jamming 
verification test system was established by the Preto-
ria University, and darkroom and outfield tests were 
conducted to verify the effectiveness of the 
two-source retrodirective cross-eye jamming (du 
Plessis et al., 2011). The defensive aid sub-system 
(DASS) deployed by the Euro Typhoon Fighter veri-
fied the performance of cross-eye jamming on an 
aircraft platform for several times. The Sorbstiya and 
SAP-518 jamming pods on Russia’s Su-27 and 
Su-30/32/33 fighters all have the ability to achieve 
cross-eye jamming (KRET, 2014). 
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Cross-eye jamming brings about a threat to the 
angle tracking used by monopulse radar; however, 
there have been few studies that considered counter-
acting the angular deception of cross-eye jamming. 
The polarization characteristic was introduced to 
detect the presence of coherent interference based on 
the polarization response difference between the tar-
get and jamming, although many polarization chan-
nels required by this method necessitated an upgrade 
of the radar system hardware (Li et al., 2013). The 
front-edge tracking method was proposed to recog-
nize the presence of jamming using the range differ-
ences between target echoes and jamming signals 
(Xue et al., 2011), while the DRFM technology 
combined with the range gate pull-off (RGPO) 
method eliminated these differences. At the same 
time, multi-mode composite radar (Wu et al., 2011; 
Bai and Wang, 2013) and multi-base radar (Zhao et al., 
2014; Li and Shen, 2015) showed great promise for 
anti-jamming, but they involved the use of mul-
ti-sensor fusion and are highly complex systems. 
These existing countermeasures for cross-eye jam-
ming heavily depend on the radar system configura-
tion and hardware conditions, thus limiting their 
popularization and application. These limitations are 
good reasons to explore an anti-jamming algorithm 
that can use an advanced signal and data processing 
algorithm based on the existing system resources 
without incurring additional hardware overhead. 

In the implementation of cross-eye jamming, the 
jammer first captures the tracking gate in the 
monopulse radar and then generates jamming signals 
to deceive the radar point toward an artificial target, 
which is far away from the true target. The signal 
power of the jamming is much larger than that of the 
target. The powerful jamming signal suppresses and 
covers the true target echo, and makes it difficult to 
detect the target based on the echo of the sum channel 
(du Plessis, 2012, 2016). It is feasible to improve the 
target detection probability by decreasing the detec-
tion threshold, which will reduce the loss of target 
information. However, a lower threshold of detection 
will increase the false alarm probability, resulting in 
the failure of the traditional multi-target tracking 
methods that are based on data association. The low 
threshold of detection introduces enormous chal-
lenges in state estimation and identity recognition of 
the true target. 

The recent and rapid development of finite set 
statistics (FISST) theory provides a new theoretical 
framework for joint detection and tracking of a target 
under complex conditions using a random finite set 
(RFS) (Mahler, 2007). This involves modeling the 
complex scenes and states using a Bayesian frame-
work, taking into consideration elements, such as 
state space, observation space, false alarms, target 
missing, target appearance/disappearance, and vary-
ing tracking numbers (Mahler, 2014). The models 
developed under a Bayesian framework have great 
potential to realize accurate detection and stable 
tracking under cross-eye jamming. In particular, 
various approaches for tracking continuity with a 
Bayes filter, such as labeling (Lin et al., 2006; Clark 
and Bell, 2007; Xiao et al., 2015) and dyeing (Li et al., 
2014), provide the possibility to realize target recog-
nition in complex environments.  

In this study, cross-eye jamming is analyzed and 
a monopulse radar measurement environment is de-
veloped using RFSs in a Bayesian framework. Based 
on a probability hypothesis density (PHD) filter for 
multi-target tracking, the difference in features be-
tween target and jamming is used to optimize particle 
partitions, and identity labels are used to represent the 
characteristics of targets, which are present within the 
radar beam. Through association and interaction of 
the estimated states and identity labels, the release of 
the cross-eye jamming is detected with high correct 
probability and small delay. On this basis, accurate 
state estimation of the target and correct target 
recognition are realized. The effectiveness of the 
algorithm is experimentally validated. 

 
 

2  Signal and cross-eye jamming model 

2.1  Model for target and jamming 

The purpose of cross-eye jamming is to induce 
an angular error in the radar system, thus deceiving 
the monopulse radar into detecting an artificial target 
located away from the true target. The cross-eye 
jamming scenario is shown in Fig. 1 (du Plessis et al., 
2009). Assume that the phase-comparison monopulse 
radar consists of two identical antennas separated by a 
distance dp (denoted by circles in Fig. 1). The 
cross-eye elements are linearly separated by dc at a 
range of r, with an angular separation of 2θe as seen 
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from the radar (denoted by crosses in Fig. 1). The 
directions to the top and bottom cross-eye antennas 
are θr+θc and θr−θc, respectively. θe can be determined 
as follows: 
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where Pr(θr) is the normalized gain of two antenna 
elements. 

Similarly, the normalized sum- and difference- 
channel returns for the cross-eye jammer in isolation 
from the jammer antennas symmetrically positioned 
around θr=0 are given as (du Plessis, 2012) 
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where Pc(θ) is the normalized gain of the cross-eye 
jammer antenna elements with the angle measured 
from broadside. 
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Under conditions of cross-eye jamming, the 

sum- and difference-channel returns for the true target 
must be multiplied by the sum-channel antenna gain 
to ensure that they are equivalent to the jammer re-
sults. The total sum- and difference-channel returns 
for both the platform and the cross-eye jammer can 
thus be given as (du Plessis et al., 2009) 
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where the platform skin return will have an amplitude 
scaling of as and a phase shift of φs relative to the 
return from one direction through the cross-eye 
jammer. 

Under the assumptions in du Plessis (2012), the 
total monopulse ratio can be approximated as 
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where the cross-eye gain would be given by 
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Therefore, the ultimate monopulse ratio can be 
expressed as 
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Fig. 1  Geometric depiction of cross-eye jamming and its 
effect on detection by the monopulse radar 
d0 denotes the distance between the apparent target and 
platform center 
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where both the cross-eye jamming signal and plat-
form skin return are within the received echoes, and 
the first term acts as a beacon while the second term 
causes an angular error. The error portion of this 
monopulse ratio consists of two factors, one of which 
depends on the jammer parameters and the radar cross 
section of the platform while the other depends on the 
geometry of the engagement. Obviously, the target 
signal and jamming signal compose the echoes in the 
monopulse radar. In the presence of monopulse radar, 
the echo model can be described as “multiple targets,” 
which include the true target and the artificially  
apparent target induced by jamming. 

2.2  Echo model with a random finite set 

As above mentioned, to improve the target de-
tection probability under the powerful jamming, a low 
threshold detection strategy was adopted, resulting in 
a rapid increase of the number of over-threshold de-
tections. The measurement set obtained after a low- 
threshold constant false alarm rate (CFAR) was 
modeled as an RFS, in which target measurement, 
jamming measurement, and false alarm measurement 
are all included (Vo, 2008). The measurement set 

1{ }M
i iZ z ==  that contains M observations can be ex-

pressed as ,Z W W C= ∪ ∪  where W is the target 
observation, W  the jamming observation, and C the 
false alarm observation. They are all expressed by the 
RFS as 
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Cross-eye jamming usually occurs after the tar-

get platform has been tracked and locked by a 
monopulse radar. It is possible to construct the 
measurement set in the following situations: (1) the 
measurement set includes only the observation of a 

false alarm, Z=C; (2) the measurement set includes 
the target and a false alarm, without jamming, 
Z=W∪C; (3) the measurement set includes the target, 
a false alarm, and jamming at the same time, Z=W∪ 

.W C∪  
Typical multiple targets mixed with observa-

tions under cross-eye jamming are shown in Fig. 2, 
where the radar observations are mixed with target 
observations, jamming observations, and a large 
number of false alarm signals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

3  Joint detection and tracking under a multi- 
target model 
 

There are various situations that may occur 
within complex jamming environments, such as a 
newborn target, target derivation, target disappear-
ances, jamming, and missed detection. Accurate in-
formation about the number of targets in the radar 
beam is difficult to obtain by monopulse radar at 
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Fig. 2  Target, jamming signals, and the corresponding 
radar observations: (a) signals in the range-Doppler (R-D) 
plane; (b) mixed radar observations 
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every moment, which leads to many uncertainties. On 
the other hand, due to the lack of prior information 
about the tracking environment and uncertainty in 
target detection and tracking, the correlation between 
the target echo and the signal source becomes blurred. 
Monopulse radar cannot determine whether the 
source of the observation is from the actual target, 
clutter, or jamming. This will lead to the problem of 
combination explosion, and increase the computa-
tional complexity of the traditional multi-target 
tracking method based on data association. It be-
comes particularly difficult to deal with multi-target 
tracking situations, where the number of targets is 
unknown and changes over time. 

Under the RFS framework, there are serval typ-
ical multi-target tracking filters, such as the PHD 
filter, cardinalized probability hypothesis density 
(CPHD) filter, multi-Bernoulli filter, and generalized 
labeled multi-Bernoulli (GLMB) filter. These filters 
are approximations of a multi-target Bayes filter 
based on different assumptions (Hong et al., 2011). 
The PHD filter is equivalent to the optimal multi- 
target Bayesian filter, when the assumption that both 
the multi-target state and the false alarm obey the 
Poisson group process is established (Ulmke et al., 
2007). The computation and storage complexity of 
the PHD filter is much lower than that of the multi- 
target Bayesian filter, and the model has a wide range 
of applications with the outstanding ability for anti- 
false alarm and high estimation accuracy of the multi- 
target state (Vo et al., 2007). The time and measure-
ment updates of the CPHD filter are based on the 
same modeling assumptions as the PHD filter, except 
that the clutter RFS is an independent and identically 
distributed cluster process (Vo et al., 2008). Unlike 
the PHD filter, the CPHD filter does not include a 
formal model for target spawning. The CPHD filter is 
essentially only a part of the second-order moments of 
a multi-target Bayesian filter (Vo et al., 2009). The 
assumption for distribution in the multi-Bernoulli 
filter is the multi-Bernoulli process, and the Bernoulli 
filter is just the multi-target Bayes filter, given that the 
number of targets is known a prior to be 0 or 1 (Vo 
et al., 2008; Vo and Vo, 2013). The GLMB filter is an 
exact closed-form multi-target filter, and is the first 
tractable provably Bayes-optimal multi-target detec-
tion and tracking algorithm (Papi et al., 2015; Beard 
et al., 2016). Under suitable approximations, the 

GLMB filter can be made efficient with regard to both 
tracking performance and computational throughput 
(Fantacci and Papi, 2016; Bryant et al., 2018).  

The PHD, CPHD, multi-Bernoulli, and GLMB 
filters based on different assumptions have certain 
effect on multi-target tracking under complex envi-
ronments, and each has its own advantages and dis-
advantages. Specific to multi-target detection and 
tracking applications under cross-eye jamming based 
on signal and model analysis conclusions, the meas-
urements obtained by monopulse radar from the tar-
get and jamming can be modeled as a typical target- 
spawning process, and the generation of jamming 
observation has obvious correlation with the true 
target. Based on the target-spawning model charac-
teristic of the PHD filter, the PHD filter with identity 
labels is a potential approach for realizing accurate 
detection, state estimation, and target recognition 
under angular deception jamming, from the aspects of 
model matching, algorithm performance, and com-
putational complexity among the multi-target track-
ing filters. 

3.1  Standard PHD for multi-target tracking  

The PHD filter is a first-order statistical moment 
approximation of the full probability density function 
for multiple targets within the RFS framework. It 
solves the problem of the actual execution degree of 
RFS and avoids the difficulty to solve the full proba-
bility density (Shi et al., 2013). It is the optimal 
Poisson approximation of the posterior probability 
density for multi-target RFS under the Kullback- 
Leibler information criterion. The PHD filter helps 
avoid the recursion of the multi-target Bayesian filter 
in the RFS space, and greatly reduces computational 
complexity. The number of targets present in a radar 
beam can be estimated through the integration of the 
PHD, and the peak of the PHD corresponds to the 
estimated state of the targets. Thus, the PHD filter 
improves the tracking accuracy for multiple targets 
and at the same time ensures the real-time effective-
ness of the resultant algorithm. 

In the PHD filter, the first-order moment ap-
proximation of multi-target posterior density 
Dk|k(x|Z(k)) is adopted to express the density function 
of the multi-target posterior density p(xk|Z(k)) at the kth 
moment. Thus, the prediction equation for the PHD 
filter is constructed as follows (Mahler, 2003): 
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where φk|k−1=bk|k−1(x|ξ)+ek|k−1(ξ)fk|k−1(x|ξ), bk|k−1(·|ξ) 
represents the spawned target set of the PHD, 
Bk|k−1=({ξ}) of ek|k−1(·) represents the probability of 
the existence of the target, fk|k−1(·|·) represents the 
transfer probability density of a single target, and γk(·) 
represents the newborn target set Γk of the PHD. 

The state update equation of the PHD filter is 
expressed as follows (Mahler, 2003): 
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Lz(x) is the likelihood function for single target 

observation, λk represents clutter intensity, ck(z) rep-
resents the spatial distribution of clutter, and λkck(z) 
represents the clutter RFS of the PHD. 
 

( 1)
| 1 , , | 1( ) ( ) ( ) ( | )d ,k

k k D k z D k z k kD P L P x L x D Z x−
− −= ∫ x  

(17) 
where PD, k(·) is the detection probability. 

Although the PHD filter effectively avoids the 
data association problem, its output includes only the 
discrete number and state information of the target. 
The correlation between the state estimation and the 
target identity in each frame cannot be obtained; thus, 
stable tracking of the target cannot be achieved (Xiao 
et al., 2015). Nevertheless, it is very important for 
monopulse radar to be able to distinguish the identity 
of targets present in the radar beam and obtain a stable 
trajectory of the true target. Therefore, it is necessary 
to combine the characteristics of target and jamming 
with a standard PHD filter to realize the association 
between the state estimations and identity attributes, 
to achieve accurate detection, estimation, and recog-
nition of the true target. 

3.2  Joint detection and tracking integrated with 
identity labels 

The implementation of cross-eye jamming has 
its own characteristics and laws, and jamming is  

released as an ECM approach for deceiving mono- 
pulse radar when the target has been tracked and 
locked. Before cross-eye jamming is released, the 
trajectory of the target is determined based on meas-
urement, which includes only the target echo and 
noise, and the identity label of the target is contained 
in its state vector. After release jamming, the radar 
measurements composed of target, jamming, and 
false alarm clutter correspond to state estimations of 
multiple targets with different identity labels (Reuter 
et al., 2014). Section 2.1 reveals the angular charac-
teristic difference and relationship between the true 
target and the artificial target generated by jamming. 
Therefore, it is feasible to use the characteristic dif-
ferences of the target and jamming to optimize the 
partition of state particles, and deliver the identity 
labels using the relevance between the state estima-
tion before and after the jamming release. The multi- 
target joint detection and tracking process integrated 
with identity labels is shown in Fig. 3. 

The joint detection and tracking process for 
target and jamming integrated with cross-eye jam-
ming characteristics based on the sequential Monte- 
Carlo method is as follows: 

1. Step 0 (k=0) (initialization) 
For i=1, 2, …, N0, the initial particles are sam-

pled as ( )
0 0|0~i Dx  (the prior PHD (Vo et al., 2005)). 
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3. Step 2 (k≥1) (update) 
When z∈Zk, compute 
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where Rk=Nk−1+M represents the total number of  
particles. 

For i=1, 2, …, Rk, the update weight is given as  
 

( )
( )

,( ) ( )
| 1

| 1 ,

( )
( ) .

( ) ,
k

i
i k z ki i

k k k k
z Z k k k k zz

ϕ
ω ν ω

κ ω ϕ −
∈ −

 
= +  + < > 

∑


  



x
x  

(24) 
The update state is kept constant, given as 
 

( ) ( )
| | 1.
i i

k k k k−=x x                                (25) 
 

The update label is kept constant, given as 
 

( ) ( )
| | | 1 | 1( ) ( ).U i p i

k k k k k k k kL L − −=x x                  (26) 
 
The prediction particle partition at step k is given 

as 
 

1 1
ˆ ˆ,1 ,2 ,1 ,21, 1 1, 1{ , , , } { , , , }.

k k

U U U p p p
k k k kk N k NP P P P P P

− −− + − +
=   (27) 

 
4. Step 3 (k≥1) (resampling) 
The total particle mass is computed as 
 

( )

1

ˆ .
kR

i
k k

i
N ω

=

=∑                           (28) 

Set ˆ ,k kJ pN=  where p denotes the number of 
particles for the single target. When i=1, 2, …, Rk, j=1, 
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Fig. 3  Flow process depicting the steps involved in joint detection and tracking of the multiple targets integrated with 
identity label 
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2, …, Jk, resampling yields the following results: the 
resample state is given as ( ) ( )

| |child( ),j i
k k k k= x x  each 

resample particle has a weight of ˆ / ,kN p  and the 

resample label is given as ( ) ( )
| | | |( ) ( ).R j U i

k k k k k k k kL L= x x  Par-
ticle partition after resampling is given as 

1
ˆ, 1 , 2 , 1{ , ,  , }.

k

R R R
k k k NP P P

− +


 
5. Step 4 (k≥1) (estimation extraction) 
There are some good extraction methods with 

high estimation accuracy and fast calculation speed, 
such as multi-expected a posteriori (MEAP) (Li et al., 
2016, 2017). To retain and deliver the identity labels 
of states, the traditional clustering and re-clustering 
steps are introduced to obtain particle partitions. 

For the number of estimated targets ˆ
kN  and 

particle set ( )1 2{ ,  ,  ,  }kJ
k k kx x x  obtained in step 3, all 

particles are clustered on the angle dimension, be-
cause cross-eye jamming will form a spurious angle, 
which is different from the true angle of the target 
(Clark and Bell, 2007). 

(1) Step 4.1 (initialization center) 
Set h:=1. 
Randomly choose ˆ

kN  particles from the particle 

set ( )1 2{ ,  ,  ,  }kJ
k k kx x x  to be the initial center as the 

following: 
 

( )( ) ( ) ( ) 1 2
ˆ, 1 , 2 , { ,   ,  } { ,  ,  ,  }.k

k

Jh h h
k k k k kk N ∈ ,m m m x x x  (29) 

 

Establish ˆ
kN  particle partitions ( ) ( )
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( )
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k

h
k NP to satisfy ( ) ( )

, , ,h h
k n k nP∈m  where n=1: ˆ .kN  

(2) Step 4.2 (particle partition) 
For ( )i

kx , i=1:Jk: 

Calculate ( ) ( )
, || ||,i h

k k n−x m  and set a= 
( ) ( )

, arg min || || .i h
n k k n−x m  Then, ( ) ( )

, .i h
k k aP∈x  

Sequentially calculate every particle and assign 
them to the corresponding partitions. 

Set h=h+1. 
(3) Step 4.3 (center recalculation) 
Calculate the means of partitions as 

 
( ) ( 1)
, , mean ( ).h h

k n k nP −=m                    (30) 
 

Calculate the formula as follows: 
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If inequality (31) holds, go to step 4.4; otherwise, 

repeat step 4.2 until inequality (31) holds.
 (4) Step 4.4 (means and covariance calculation) 

Compute the means of the partitions as 
 

( ) ( )
, ˆ mean( ).n h

k k nP=x                     (32) 
 
Compute the covariance of the partitions as 
 

( )
, 

ˆ cov( ).n h
k k nP=S                        (33) 

 
Output the means and covariance of the ˆ

kN  
partitions as ˆ ˆ(1) (1) (2) (2)ˆ ˆ ˆˆ ˆ ˆ{( ,  ), ( ,  ), , ( ,  )}.k kN N

k k k k k kx S x S x S  
(5) Step 4.5 (re-clustering the particles) 
Compute the relationship between ˆ

kN  partitions, 

if any two state estimations ( )ˆ i
kx  and ( )ˆ j

kx  among 
ˆ(1) (2)ˆ ˆ ˆ   { , , , }kN

k k kx x x  satisfy 
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(34) 

 
where H represents the matrix of extraction of the 
position vector from the state vector, and δε is a 
threshold used to measure the close relationship be-
tween two vectors. This indicates that there is a close 
relationship between the two state estimations, and 
the clustering is unreasonable. 

Re-cluster the particle sets corresponding to ( )ˆ i
kx  

and ( )ˆ j
kx  on the range dimension or/and velocity di-

mension, and form two new particle sets.  
After re-clustering the particles, the final particle 

partition posterior state estimation is , 1 , 2{ ,  ,E E
k kP P  

ˆ, ,  }.
k

E
k NP  Different labels should be included in 

each individual partition, and the partition labels 
should be fixed in step 5. 

6. Step 5 (k≥1) (sociation and track  
determination) 
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The final partition label is determined based on 
association and track extraction. The relationship 
between xk, i and , child( )k ix  is compared with , 

E
k jP  

and , ,R
k jP  following which two 0-1 MU and MR ma-

trices are constructed as follows (Xiao et al., 2015): 
 

{ }( )
, , 1

, 

1, if | ,
MU =

0, otherwise,

i R E
k k j k l k

j k

i P P Jε ∈ ∩ >



x
   (35) 

{ }( )
, , , MR | child( ) ,i R E

j k k k j k li P P= ∈ ∩x                  (36) 

 

where 1
ˆ1,  2, ,  1,kj N −= +  ˆ 1,  2, ,  ,kl N=   and 

1
ˆ1/ (4 ).kNε =  

For each 1
ˆ1,  2,  ,  1,kj N −= +  if ,MU 0,l j l∑ =  

the target is dead and the target track that possesses 
the label for partition , 

R
k jP  is also deleted. If 

, MU 1,l j l∑ =  for particle partition , 
E

k pP  satisfying 

, MU 1j p =  when , 
E

k pP  is unlabeled, the label of par-

tition , 
R

k pP  is set as its label and target survival is 

declared. When the label of , 
E

k pP  is not included in the 

corresponding label set, the steps are continued. 
When the label of , 

E
k pP  is included in the label set and 

, , MU MU ,j p j p′>  partition , 
R

k jP  is set as the label of 

, ;E
k pP  otherwise, the steps are continued until such 

conditions are reached. 
If , MU 1,l j l∑ >  when , 

E
k pP  satisfies p= 

, max MRl j l  and , MU 1,j p =  the label of partition 

, 
R

k jP  is set as its label and the target survival is  

declared. 
When , 

E
k pP  satisfies , MU 1 ( ),j q q p= ≠  a new 

label is assigned to the existing labels, and the target 
spawn is declared. 

If there still exists an unlabeled partition, a new 
label is assigned to the existing labels, and the target 
birth is declared. 

By running a filter, the number of estimated 
targets can be used to determine the presence of 
jamming, and the monopulse radar can successfully 
distinguish the target and jamming based on the dif-
ferent identity labels. 

4  Simulation verification of the algorithm 

4.1  Measurement and state model 

Experiments were performed wherein the rela-
tive motion and dynamic geometry of monopulse 
radar and the target under cross-eye jamming were 
simulated. To simplify the analysis, it was assumed 
that the radar was always at the coordinate origin, and 
the target was modeled using a nearly constant turn 
(NCT) model (Li and Jilkov, 2003). The target flew 
towards the radar, and the two jammers for cross-eye 
jamming were onboard on the wing of the plane in 
Fig. 4. The parameters and setting of the scene are 
shown in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Here, the target state is denoted by 

[ ]T,  ,  ,  ,k k k k kx x y y=  x  where (xk, yk) is the center of 

the target and ( ,  )k kx y   is the velocity of the target. 
The state transition equation is as follows: 
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T
1 , 1 , 1[ , ]k x k y kw w− − −=w  is a vector for processing 

noise, which is zero-mean Gaussian with standard 
deviations of σx=σy=100 m/s2, and T is the sampling 
period. 

x
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Fig. 4  A sketch depicting the target and jamming mapped 
in a two-dimensional (2D) plane 
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The radar observations include range, velocity, 

and azimuth for the target, and the observation equa-
tion for the target is expressed as follows: 
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where wr, k, wp, k, and wθ, k are zero-mean Gaussian 
noise vectors in the range and azimuth, with standard 
deviations of 

, r kwσ =5 m, 
, p kwσ =3 m/s, and 

, kwθ
σ =  

0.3 mrad/s, respectively. The simulation involved 250 
time cycles. The true scene for the simulation is 
shown in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Fig. 5, the start and end of target motions are 
marked and the target trajectory is traced between 
them. Cross-eye jamming is released during the 11th 
step cycle, and the jamming is shown. According to 
the cross-eye jamming course, the jamming is re-
leased by the target after the target has been detected 
and tracked stably by monopulse radar, and the low 
threshold of CFAR detection is introduced; thus, the 
detection probability of the target is assumed to be 
pD=1, and the survival probability of the target is set 
to pS=0.99. 

The mixed measurements obtained by 
monopulse radar are shown in Fig. 6. It can be seen 
that many measurements are obtained at every mo-
ment, including observations of the target, jamming, 
and false alarm signals. Due to the low threshold 
detection, there are many points exceeding the detec-
tion threshold at each moment. Therefore, monopulse 
radar needs to detect, track, and distinguish the target 
in the observations with high false alarms. 

In the simulation, to fully verify the performance 
of the proposed algorithm in terms of the detection 
and estimation accuracy under the influence of pow-
erful jamming, multiple Monte-Carlo experiments 
were conducted. The number of Monte-Carlo ex-
periments was 100, with the simulation scenario and 
parameters described in Fig. 3 and Table 1, respec-
tively. The initial parameters of the joint detection 
and tracking were set as follows: the number of  

Table 1  Parameters used in the simulation 

Parameter type Parameter Value 

Target parameters 

Initial range R
 Initial velocity V 

Fly direction 
Amplitude scaling as 
Phase shift φs 

5 km 
1200 m/s 

Toward a target 

0.02 
30° 

Jamming parameters 

Time of releasing 
Baseline length 
Amplitude ratio a 
Phase difference φ 
Range difference relative to the target 
Velocity difference relative to the target 

The 11th step 
20 m 
0.95 
175° 
10 m 
6 m/s 

Radar parameters Beam width 
Line of sight direction 

5° 
Toward a target 

Other parameters 

Measuring period 
Initial signal-to-noise ratio 
Equivalent jamming-to-signal ratio 
Total simulation time

 

6 ms 
0 dB 

34 dB 
1 s 
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Fig. 5  True scene for the simulation 
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particles for simulating a single target was 2000, and 
the number of newborn particles was 200. Successive 
sampling was based on the last observation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.2  Simulation results 

The detection accuracy and delay for jamming 
release are the main indicators to examine the per-
formance of the algorithm. The proposed algorithm 
detects and decides jamming release based on the 
number of estimated stable targets. During the pro-
cessing, if the number of estimated targets is one, it 
indicates the presence of a true target in the scenario 
alone; if the number of the estimated targets is two, it 
indicates the appearance of jamming, and both the 
true target and the jamming are within the radar beam.  

Fig. 7 depicts the average statistical results for 
the estimation number, and it can be seen that the 
proposed algorithm is accurate in estimating the 
number of targets present within the radar beam. 
When cross-eye jamming is released, the change in 
echo can be quickly detected by the algorithm and 
reflected in changes in the number of the estimated 
targets. In Fig. 7, it can be seen that the delay for 
detecting jamming is small. The cross-eye jamming is 
released during the 11th step, and the monopulse radar 
detects the number of changed targets in the 12th step 
in most cases. The average detection delay is only one 
frame period, which means that real-time detection of 
jamming is highly effective. 

State estimation accuracy and target recognition 
accuracy are other indicators of the algorithm per-
formance. That is to say, the proposed algorithm must 
not only estimate the target state, but also discriminate 

the target and jamming, thus obtaining stable tracking 
to the true target. The ultimate goal is to make the 
monopulse radar stably track the true target, rather 
than track the jamming or the energy centroid of both. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
The state estimation performed by the traditional 

PHD filter without combining the identity labels is 
shown in Fig. 8. It can be seen that the traditional 
PHD filter can obtain the states of all targets in the 
radar beam according to the observations. However, 
since the target identity information is not added in 
the filtering process, the association between the 
target state and target identity is not obtained. 
Therefore, the filtering results are some isolated state 
values, there is no stable track corresponding to the 
target attribute, and it is not clear whether the state is 
the target or jamming. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The proposed algorithm adds identity infor-

mation in the filtering process through labels based on 
the traditional PHD filter. Therefore, it is possible to 
effectively correlate the estimated state with the target 
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Fig. 6  Mixed measurements for the monopulse radar 
after CFAR detection in the x (a) and y (b) axes 
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Fig. 7  Average of the estimation results for the number of 
targets at each moment 
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Fig. 8  State estimation for the traditional PHD filter in 
the x (a) and y (b) axes 
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attribute, not only to obtain continuous tracking, but 
also to discriminate the target and jamming based on 
identity labels. Fig. 9 shows the results of the pro-
posed algorithm. It can be seen that, compared with 
the results of the traditional PHD filter in Fig. 8, after 
adopting the label PHD, continuous tracking of the 
true target state can be released by associating the 
estimated state with the identity label. It marks the 
distinction between the target and jamming, and fi-
nally outputs only the stable track of the target. 

To further illustrate the performance of the 
proposed algorithm under cross-eye jamming, the 
true target value and the estimated state value ob-
tained based on labels are compared in a two- 
dimensional (2D) plane. In Fig. 10, it can be seen that, 
the state estimation for the target obtained by the 
proposed algorithm is always close to the true target 
location under cross-eye jamming. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
The accuracy of the estimated state value for the 

target is determined by comparing the degree of the 
deviation between the estimation result and the true 

value. Specific indicators include the optimal sub- 
pattern assignment (OSPA) distance, the estimation 
errors in the x and y axes, and the range and angle 
estimation errors (Schuhmacher et al., 2008). The 
average performance of the state estimation for 100 
experiments is shown in Figs. 11–13. 

The average OSPA error curve for the 100 
Monte-Carlo experiments is shown in Fig. 11. It can 
be seen that the average OSPA error for the target 
with the proposed algorithm is less than 3 m. It indi-
cates that the proposed algorithm has a high estima-
tion accuracy, and the estimated value is close to the 
true value throughout the filtering process. In the 
whole anti-jamming process, the proposed algorithm 
can effectively distinguish the target and the jamming, 
thus ensuring that the true target can be tracked stably 
and reliably all the time, without error tracking in the 
jamming or loss of the target. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figs. 12 and 13 show the estimation error curves 

for tracking the true target in the x and y axes, together 
with range and angle estimation errors. It can be seen 
that the estimation errors in the x and y axes are both 
less than 3 m in the Cartesian coordinate system. In 
the polar coordinate system, the angle estimation 
errors are very small, thus ensuring that the 
monopulse radar always points to the true target 
without being disturbed. As noted earlier, the essence 
of cross-eye jamming is to generate a large angle error 
in monopulse angle measurement and cause the radar 
to point to an artificial target located some distance 
away from the true target. The proposed algorithm 
enables the correct estimation of the range and angle 
of the true target to avoid being tricked, and these 
results verify its effectiveness in counteracting cross- 
eye jamming. 
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Fig. 9  State estimation obtained using the proposed algo-
rithm in the x (a) and y (b) axes 
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Fig. 10  Two-dimensional estimated state results for the 
proposed algorithm 
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Fig. 11  OSPA error performance for target tracking 
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5  Conclusions 
 

In this study, we have proposed and investigated 
an algorithm for counteracting typical cross-eye 
jamming for monopulse radar. Through detailed 
analysis of the jamming principle and establishment 
of a random set multi-target model, a novel anti- 
jamming method based on the PHD filter has been 
developed combining the characteristic differences 
between the target and jamming with the jamming 
release processing information. The simulation re-
sults showed that the proposed algorithm can detect 
the release of jamming with high probability and 
small delay, and can achieve an accurate state esti-
mation and correct target recognition. The tracking 
error for the true target has been found to be small, 
ensuring that the monopulse radar retains the correct 
bearing and table track for the true target. 
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