
Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715 701

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Binary neural networks for speech recognition∗#

Yan-min QIAN‡1,2, Xu XIANG1,2

1Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering,

Shanghai Jiao Tong University, Shanghai 200240, China
2SpeechLab, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

E-mail: yanminqian@sjtu.edu.cn; chinoiserie@sjtu.edu.cn

Received Aug. 6, 2018; Revision accepted Dec. 23, 2018; Crosschecked May 13, 2019

Abstract: Recently, deep neural networks (DNNs) significantly outperform Gaussian mixture models in acoustic
modeling for speech recognition. However, the substantial increase in computational load during the inference
stage makes deep models difficult to directly deploy on low-power embedded devices. To alleviate this issue,
structure sparseness and low precision fixed-point quantization have been applied widely. In this work, binary
neural networks for speech recognition are developed to reduce the computational cost during the inference stage.
A fast implementation of binary matrix multiplication is introduced. On modern central processing unit (CPU)
and graphics processing unit (GPU) architectures, a 5–7 times speedup compared with full precision floating-
point matrix multiplication can be achieved in real applications. Several kinds of binary neural networks and
related model optimization algorithms are developed for large vocabulary continuous speech recognition acoustic
modeling. In addition, to improve the accuracy of binary models, knowledge distillation from the normal full precision
floating-point model to the compressed binary model is explored. Experiments on the standard Switchboard speech
recognition task show that the proposed binary neural networks can deliver 3–4 times speedup over the normal full
precision deep models. With the knowledge distillation from the normal floating-point models, the binary DNNs or
binary convolutional neural networks (CNNs) can restrict the word error rate (WER) degradation to within 15.0%,
compared to the normal full precision floating-point DNNs or CNNs, respectively. Particularly for the binary CNN
with binarization only on the convolutional layers, the WER degradation is very small and is almost negligible with
the proposed approach.

Key words: Speech recognition; Binary neural networks; Binary matrix multiplication; Knowledge distillation;
Population count

https://doi.org/10.1631/FITEE.1800469 CLC number: TP391.4

1 Introduction

Over the last few years, various kinds of deep
neural networks, including deep neural networks
(DNNs), convolutional neural networks (CNNs),

‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (Nos. 61603252 and U1736202) and experiments have
been carried out on the Pi supercomputer at Shanghai Jiao Tong
University
A preliminary version was presented at the 18th Annual Con-
ference of the International Speech Communication Association,
August 20–24, 2017, Sweden

ORCID: Yan-min QIAN, http://orcid.org/0000-0002-0314-3790
c© Zhejiang University and Springer-Verlag GmbH Germany, part
of Springer Nature 2019

long-short term memory recurrent neural networks
(LSTM-RNNs), and residual networks (ResNets)
have achieved tremendous success in acoustic model-
ing for speech recognition (Dahl et al., 2012; Hinton
et al., 2012; Jaitly et al., 2012; Mohamed et al.,
2012; Sainath et al., 2013; Sak et al., 2014; Bi et al.,
2015; Qian et al., 2016; Yu et al., 2016; Chen et al.,
2017, 2018a, 2018b, 2018c; Saon et al., 2017; Xiong
et al., 2017). On several large-scale speech recogni-
tion benchmarks, these methods can outperform the
best Gaussian mixture model-hidden Markov model
(GMM-HMM) system by a wide margin. However,

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com

702 Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715

these models usually incur excessively high computa-
tional cost during the inference stage (mainly due to
large matrix multiplication), which makes them in-
feasible to deploy on low-power embedded devices,
such as Internet of Things (IoT) devices without
WiFi connection. Hence, there is great interest in
speeding up the inference of DNNs while keeping the
performance degradation in an acceptable range.

Denil et al. (2013) have demonstrated that there
is a significant redundancy in the parameterization
of conventional deep learning models, which leads to
a waste of computation. Based on this phenomenon,
deep models can be aggressively simplified, which
can reduce the computational cost and accelerate
the model inference. In general, the current work on
acoustic modeling can be roughly grouped into two
categories: reconstructing the model by exploring
the sparseness property and quantizing the model
parameters with a low precision. The speedup with
advanced hardwares, such as field-programmable
gate array (FPGA) and application specific inte-
grated circuit (ASIC), is not considered in this study.

The first approach is to decrease the number
of parameters by exploiting the sparseness property
in deep models. Xue et al. (2013) applied singular
value decomposition (SVD) on the weight matrices
of DNNs to restructure the model based on the inher-
ent sparseness of the original matrices. After recon-
struction, the new model was re-finetuned to improve
the model accuracy. Yu et al. (2012) incorporated a
soft regularization aiming at minimizing the number
of nonzero elements of weight matrices during DNN
training. To save storage and speed up calculation,
they proposed a new data structure that can effi-
ciently process the weight matrices with many zero
elements. He et al. (2014) and Qian et al. (2015) de-
fined three importance functions on network nodes
and pruned the original DNN models according to
these measures. Han et al. (2015) explored an iter-
ative process to remove unimportant connections in
DNNs based on the weights. Novikov et al. (2015)
represented the weight matrices in a multi-linear for-
mat, and with this representation, a large weight ma-
trix could be described by much fewer parameters.
The other approach is to quantize the model parame-
ters with low precision fixed-point values. Han et al.
(2017) proposed an efficient speech recognition en-
gine using an FPGA and explored different data
quantization strategies and widths. Experiments

showed that, on the TIMIT phone recognition task,
a 12-bit width was enough for the weight and activa-
tion quantization in an LSTM network with little loss
in accuracy. Wang et al. (2015) achieved a promising
result for small-footprint speech recognition using
the split vector quantization based network quan-
tization. Gupta et al. (2015) studied the effect of
low-bit width data representation and computation
on neural network training. Using stochastic round-
ing, deep networks could be trained using only 16-bit
fixed-point representation, with little degradation
on MNIST and CIFAR10 tasks. Courbariaux et al.
(2016), Hubara et al. (2016), and Rastegari et al.
(2016) quantized both weights and activations of
neural network models into low-bit width values.
Zhou et al. (2016) further quantized the gradients
and tested different quantization configurations for
weights, activations, and gradients.

More recently, the binarization of deep mod-
els has attracted interest in image processing, with
both binary parameters and activations. Researchers
from the image community have shown that binary
deep models can obtain significant acceleration dur-
ing model inference while still having a competi-
tive accuracy (Hubara et al., 2016; Rastegari et al.,
2016). Inspired by this attempt on image processing,
in this study, binary neural networks are comprehen-
sively explored for acoustic modeling in speech recog-
nition for the first time. With binarization, the new
models show superiority in inference speed. The op-
timization algorithms for binary neural networks are
first designed for acoustic modeling, including several
types of deep models. Then a knowledge distillation
framework using normal full precision floating-point
deep models is developed to boost the performance
of binary neural networks.

The main contributions of this work are as fol-
lowing: (1) Binary matrix multiplication is imple-
mented and optimized so that it can run 5–7 times
faster than highly optimized floating-point baselines
on desktop central processing unit (CPU), mobile
CPU, and desktop graphics processing unit (GPU);
(2) Binary neural networks are comprehensively ex-
plored for speech recognition for the first time, while
binarization on various types of deep models is de-
veloped and compared for acoustic modeling; (3) A
knowledge distillation framework is designed for bi-
nary deep models to keep the accuracy degradation
within a small range.

Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715 703

2 Neural network based acoustic
modeling

In speech recognition, the speech signal (obser-
vation sequence) is assumed to be generated by a hid-
den Markov process which is modeled by an HMM.
In the HMM with hidden states S = {s1, s2, . . . , sK},
the parameters include the initial state probabil-
ity p(q0 = si), the state transition probability
p(qt = sj|qt−1 = si), and the observation proba-
bility p(xt|st), where 1 ≤ i, j ≤ K, t indicates a
time step, and xt represents the observation value
at time step t. Traditionally, the observation prob-
ability is modeled by a GMM (Young et al., 2006).
To achieve a better performance with deep models,
a GMM can be replaced by a DNN (Hinton et al.,
2012). In practice, a neural network is used to model
p(st|xt) instead of p(xt|st), since by the Bayes rule,
we have

p(xt|st) = p(st|xt)p(xt)

p(st)
, (1)

where p(st) is the prior probability, which can be
easily collected from the training transcriptions.

We take a DNN based acoustic model as an ex-
ample of neural network based acoustic modeling. A
DNN is a feed-forward multi-layer perceptron with
several hidden layers. The output of the previous
layer is first linearly transformed with a weight ma-
trix and a bias vector, and then nonlinearly trans-
formed element-wise by an activation function. Since
the DNN is used to model p(st|xt), the output layer
of the DNN is typically a softmax layer. Activation
functions are usually rectified linear unit (ReLU),
Sigmoid, and Tanh.

For an L-layer DNN, assume the input is x,
the ith layer linear output is oi, the layer nonlinear
output is ai, and the weight matrices and biases are
Wi,i−1 and bi, respectively. Omitting the time step
t, the forward calculation of a DNN can be described
as

a1 = x, (2)

for 2 ≤ l ≤ L− 1,
{
ol = Wl,l−1al−1 + bl,

al = sigmoid(ol),
(3)

for l = L,
{
oL = WL,L−1aL−1 + bL−1,

aL = softmax(oL),
(4)

where sigmoid(o) = [1
1+e−o1

, 1
1+e−o2

, . . . , 1
1+e−on],

and softmax(o) = [eo1∑
n
j=1 eoj

, eo2∑
n
j=1 eoj

, . . . , eon∑
n
j=1 eoj

].

In the above equations, x is the input feature
xt, and aL gives the conditional probability distri-
bution p(st|xt). Cross entropy (CE) is usually used
for model optimization, which can be described as

LCE = −
T∑

t=1

S∑
s=1

ηt(s) lnP (st = s|xt), (5)

where T is the number of speech frames in the train-
ing set, S is the number of DNN output units, and
ηt(s) = 1 if s is the index of the ground-truth label
at time step t, and otherwise ηt(s) = 0.

Using the back propagation algorithm, the
gradients of LCE with respect to all weight ma-
trices and bias vectors can be obtained. Then
the DNN parameters are updated by stochastic
gradient descent (SGD) or more advanced tech-
niques like Adam (Kingma and Ba, 2014) and Ada-
Grad (Duchi et al., 2011).

The DNN-HMM approach has shown great suc-
cess in speech recognition with a large improvement
compared to the traditional GMM-HMM. However,
the additional computational load stemming from
weight matrix multiplication leads to a slowdown
during inference.

3 Binary matrix multiplication

3.1 Population count based binary matrix
multiplication

In practical applications, the multiplication of
two matrices A ∈ R

m×k and B ∈ R
k×n requires

2 × m × n × k floating-point arithmetic operations
(multiplications and additions). The algorithm
Strassen runs in O(nln 7) = O(n2.81) time. However,
it has a large hidden constant factor and is extremely
cache unfriendly, which makes it difficult to obtain a
good performance on contemporary processors. Be-
cause of the hardware limitation of these operations,
it is hard to improve the speed of floating-point
matrix multiplication.

704 Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715

However, in the binary case, it is possible to
replace most multiplications and additions with bit
operations, as each element of the resulting matrix
can be represented by an inner product: Cij =∑

k AikBkj . To explain this in detail, two bit opera-
tions “xor” and “popcnt” are defined: (1) xor(x, y) is
the element-wise exclusive or of integers x and y; (2)
popcnt(x) is the number of bits set to 1 in integer
x. Assume that there are two vectors a and b with
length n such that their elements are constrained to
be either +1 or −1 (binary values). This represen-
tation of a or b is not suitable for fast computation,
so an extra processing step is needed. All −1’s are
replaced with zero, and then the n bits are packed
into �n/k� (k = 32 or 64) k-bit integers. This pro-
cess converts a and b to ā and b̄, respectively. The
inner product of a and b can be calculated as

〈a, b〉 = n− 2× popcnt(xor(ā, b̄)). (6)

For a better understanding, an example is
given here. Let a and b be two vectors with
length eight: a = (1,−1, 1, 1, 1, 1, 1, 1) and b =

(−1, 1, 1,−1,−1, 1,−1, 1). It is easy to find that
their inner product is −2, which is equal to

8− 2× popcnt(xor(ā, b̄))

=8− 2× popcnt(xor(101111112, 011001012))

=8− 2× popcnt(110110102)

=8− 2× 5

=− 2.

(7)

3.2 Binary matrix multiplication on CPU

Recent CPUs have built-in support for pop-
ulation count instructions for both 32- and 64-
bit operands. On the Intel Haswell microarchi-
tecture, two eight-wide fused multiply-add (FMA)
instructions can be performed every cycle, yield-
ing 32 32-bit floating-point operations per cy-
cle (Hammarlund et al., 2014). In contrast, the 64-
bit population count instruction can be issued ev-
ery cycle, yielding 128 binary operations per cycle
(other instructions like xor can be issued simulta-
neously due to superscalar execution). Based on
this observation, the theoretical peak performance
(TPP) of an Intel Haswell CPU can be obtained. For
example, with an Intel i3-4150 CPU’s clock speed be-
ing 3.5 GHz, the floating-point TPP and binary TPP

are 3.5×32=112.0 giga floating-point/binary arith-
metic operations per second (GOPS) per core and
3.5×128=448.0 GOPS per core, respectively. As a
result, the population count instruction based bi-
nary matrix multiplication has 128/32 = 4.0 times
throughput compared with optimized floating-point
matrix multiplication. On an ARM Cortex A72
microarchitecture, one four-wide FMA instruction,
or up to eight floating-point operations can be per-
formed per cycle. Although the precise timing of
population count instruction on ARM cannot be esti-
mated, empirical evaluation shows that it can deliver
a considerable speedup.

To achieve compute-bound performance, the
implementation of binary matrix multiplication
uses packing to ensure consecutive memory loca-
tions access and cache- and register-aware blocks
to maximize data reuse. Algorithm 1 shows
the implementation of binary matrix multiplica-
tion. To reduce cache miss penalty, the subma-
trix sizes kc × nc and mc × kc are designed to best
fit the CPU cache (Goto and van de Geijn, 2008;
Low et al., 2016). Note that the constant n shown in
Eq. (6) is omitted since n can be treated as a bias.

An Intel i3-4150 CPU (Intel Haswell microarchi-
tecture) running at 3.50 GHz and a HiSilicon Kirin
950 CPU (ARM Cortex A72 microarchitecture) run-

Algorithm 1 High performance implementation of
binary matrix multiplication
Require: binary matrix A with size m × k, and

binary matrix B with size k × n
Ensure: matrix C = A×B with size m× n
1: for jc = 0 to n− 1 in steps of nc do
2: for pc = 0 to k − 1 in steps of kc do
3: Pack size kc × nc submatrix of B to Bc

4: for ic = 0 to m− 1 in steps of mc do
5: Pack size mc × kc submatrix of A to Ac

6: for jr = 0 to mc − 1 in step of 1 do
7: for ir = 0 to nc − 1 in step of 1 do
8: x = 0
9: for pr = 0 to kc − 1 in step of 1 do

10: x+=popcnt(xor(Ac(ir,pr),Bc(pr,jr)))
11: end for
12: Cc(ir, jr) −= 2x // Cc is a subma-

// trix of C that relates to AcBc

13: end for
14: end for
15: end for
16: end for
17: end for

Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715 705

ning at 2.30 GHz were used to compare the speed
of binary matrix multiplication and floating-point
matrix multiplication. The baseline floating-point
implementation used Intel Math Kernel Library 11.3
Update 3 on the Intel platform and OpenBLAS
0.2.19 on the ARM platform to achieve the maxi-
mum speed. To determine the maximum real per-
formance, a matrix multiplication of size (m,n, k) =

(2048, 2048, 2048) is used. It is worth noting that the
batch size m is much smaller than 2048 during infer-
ence in a real implementation because of latency (m
utterances are packed in one parallel batch for the
forwarding computation). Hence, the performance
of matrix multiplication with size (16, 2048, 2048),
corresponding to m = 16, was also evaluated.

Table 1 reports the single thread GOPS. For
each matrix size, the calculation was repeated
100 times to obtain the average GOPS on an Intel
i3-4150 CPU. This shows that binary matrix multi-
plication can achieve a 7.2× speedup when the batch
size is 16. Table 2 reports single thread GOPS on a
HiSilicon Kirin 950 CPU. Similar to the results in
Table 1, binary matrix multiplication is 6.7× faster
when the batch size is 16.

3.3 Binary matrix multiplication on GPU

Population count instructions are natively sup-
ported by recent NVIDIA GPUs via intrinsics, in-
cluding popc__() (an intrinsic function that maps
to a single instruction) for 32-bit operands and
popcll__() (an intrinsic function that maps to mul-
tiple instructions) for 64-bit operands.

On the NVIDIA Pascal microarchitecture Tesla

Table 1 Speed comparison on an Intel i3-4150 CPU
(single thread)

Size FMM BMM Speedup

16, 2048, 2048 34.5 249.0 7.2×
2048, 2048, 2048 91.2 263.5 2.9×

TPP 112.0 448.0 4.0×
FMM: floating-point matrix multiplication; BMM: binary
matrix multiplication; TPP: theoretical peak performance

Table 2 Speed comparison on a HiSilicon Kirin 950
CPU (single thread)

Size FMM BMM Speedup

16, 2048, 2048 3.8 25.4 6.7×
2048, 2048, 2048 12.0 29.1 2.4×

TPP 18.4 ≈ 39.5 2.1×
FMM: floating-point matrix multiplication; BMM: binary
matrix multiplication; TPP: theoretical peak performance

P100 GPU, up to 64 32-bit FMA instructions (128
floating-point operations) can be issued every cycle
per streaming multiprocessor. In contrast, 16 32-bit
population count instructions, 64 32-bit integer add
instructions, and 64 32-bit bit-wise xor instructions
can be issued every cycle per streaming multiproces-
sor, yielding 2 × 64 × 32/(1 + 4 + 1) = 683 binary
operations per cycle. Hence, in theory, binary ma-
trix multiplication can achieve a 683/128 = 5.3 times
speedup.

The implementation of binary matrix multipli-
cation uses a modified version of an example program
in CUDA toolkit document that replaces multiply-
add operations with bit operations. The floating-
point baseline used NVIDIA cuBLAS library to
achieve the best performance. Table 3 describes the
GOPS of both implementations. When the batch
size is 16, the proposed binary matrix multiplication
is able to achieve a 5.4× speedup.

Table 3 Speed comparison on NVIDIA Tesla P100
GPU

Size FMM BMM Speedup

16, 2048, 2048 1.3× 103 7.0× 103 5.4×
2048, 2048, 2048 7.6× 103 30.6 × 103 4.0×

TPP 9.3× 103 49.6 × 103 5.3×
FMM: floating-point matrix multiplication; BMM: binary
matrix multiplication; TPP: theoretical peak performance

4 Binary neural networks for speech
recognition

Binarization on a feed-forward DNN is first in-
troduced for speech recognition. In a DNN with L

layers, let the activation in layer l be al, the weight
matrix between layers l and l+1 be Wl+1,l, and the
bias in layer l + 1 be bl+1, where 1 ≤ l ≤ L − 1.
The binarized weight matrices and activations are
denoted by Ŵl+1,l and âl, respectively. Note that
weight matrix W2,1 (the network input layer) is not
binarized in most cases, since binarization on this
input layer will cause an obvious degradation, which
will be shown in the experimental section.

Algorithms 2 and 3 describe the forward pass
and backward pass during the training of a binary
DNN, respectively, where BatchNormGradient(·)
calculates the gradient with respect to the input
of BatchNorm(·). Note that weights are stored as
floating-point values. In the forward pass and back-

706 Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715

Algorithm 2 Forward pass to train a binary DNN
Require: input a1, weight matrices W2,1,W3,2, . . . ,

WL,L−1, and biases b2, b3, . . . , bL
Ensure: activations a2,a3, . . . ,aL

1. Input layer: W2,1 is not binarized
c2 = W2,1a1 + b2
d2 = BatchNorm(c2)
a2 = HardTanh(d2)
â2 = Binarize(a2)

2. Hidden layers: Wl,l−1 and al (3 ≤ l ≤ L − 1) are
binarized
for l = 3 to L− 1 do

̂Wl,l−1 = Binarize(Wl,l−1)

cl = ̂Wl,l−1âl−1 + bl
dl = BatchNorm(cl)
al = HardTanh(dl)
âl = Binarize(al)

end for
3. Output layer: aL is not binarized
̂WL,L−1 = Binarize(WL,L−1)

cL = ̂WL,L−1âL−1 + bL
dL = BatchNorm(cL)
aL = Softmax(dL)

Algorithm 3 Backward pass to train a binary DNN
Require: gradient ∇dL

, input a1, activations â2, â3, . . . ,
âL, intermediate activations c2, c3, . . . , cL, d2,d3, . . . ,dL,
weight matrices ̂W2,1, ̂W3,2, . . . ,̂WL,L−1, and biases b2,
b3, . . . , bL

Ensure: gradients ∇W2,1
,∇W3,2

, . . . ,∇WL,L−1
and ∇b2 ,∇b3 , . . . ,∇bL

1. Output layer:
∇cL = BatchNormGradient(∇dL

)
∇bL = ∇cL

∇WL,L−1
= ∇cL âT

L−1
2. Hidden layers:
for l = L− 1 to 3 do

∇âl
= ̂Wl,l−1∇cl+1

∇dl
= ∇âl

� �{|dl| ≤ 1}
∇cl = BatchNormGradient(∇dl

)
∇bl = ∇cl

∇Wl,l−1
= ∇cl â

T
l−1

end for
3. Input layer:
∇â2

= W2,1∇c3
∇d2

= ∇â2
� �{|d2| ≤ 1}

∇c2 = BatchNormGradient(∇d2
)

∇b2 = ∇c2
∇W2,1

= ∇c2a
T
1

ward pass, before the calculation, weights are bina-
rized on the fly. The original floating-point weights
are updated with the gradients.

During the training of a binary DNN,
Binarize(·) is used to transform each element of
Wl+1,l or al to +1 or −1. The deterministic bi-
narization function is defined by

Binarize(x) =

{
+1, if x > 0,

−1, otherwise,
(8)

where x is a floating-point value. In this work we use

a stochastic version which is defined by

Binarize(x) =

{
+1, if x− p > 0,

−1, otherwise,
(9)

where p is a random value that is drawn from
a normal distribution with zero mean and unit
variance. This is different from the approach
in Courbariaux et al. (2016). Stochastic binariza-
tion incurs more computational cost than the de-
terministic version, but it reduces overfitting, and
hence it is used to binarize the activations dur-
ing training. Note that although HardTanh(x) =

max(−1,min(x, 1)) has no effect on the forward pass
since Binarize(HardTanh(·)) = Binarize(·), it sets
the gradient to zero in the backward pass when the
corresponding input is too large.

4.1 Straight through estimator

While the forward calculation of the binary
DNN is straightforward, there is an issue in back-
ward calculation. Mathematically, the gradient of
Binarize(·) is always zero with respect to its input
(except at 0), which makes gradient based train-
ing impossible. However, this can be resolved using
the straight through estimator (STE) (Bengio et al.,
2013).

STE is a gradient estimator that allows the use
of a threshold function in neural networks trained
by back propagation. Although STE is a biased es-
timator of the gradient, it performs well in prac-
tice. In the forward pass, Binarize(·) acts normally
to produce the binary output. In the backward pass,
Binarize(·) is replaced with the identity function. In
other words, it just allows the gradient with respect
to the binary output to pass through.

In this work, a variant of STE (Courbariaux et
al. 2016) is used to cancel the gradient when the
magnitude of the input is too large:

{
q = Binarize(p),

∇p = ∇q 	 �{|p| ≤ 1}, (10)

where p and q are the input and output of Binarize(·)
respectively, and “	” denotes the Hadamard prod-
uct. When the absolute value of p exceeds 1, the gra-
dient with respect to q is set to zero; otherwise, the
gradient with respect to q is copied to the gradient
with respect to p. The indicator function �{|p| ≤ 1}

Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715 707

is exactly the gradient of HardTanh(·). Hence, the
composition of HardTanh(·) and Binarize(·) directly
implements the variant of STE mentioned above.

4.2 Optimization for fast inference

4.2.1 Module reforming

Batch normalization (Ioffe and Szegedy, 2015)
used in Algorithm 2 can be described as

BatchNorm(x) =
x− μ√
σ2 + ε

γ + β, (11)

where x is the layer input, γ and β are learnable
parameters, and ε is a small value to avoid underflow.
During inference, the mean μ and variance σ2 are
replaced with fixed values that are estimated over
the training data, which leads to an efficient and
compact representation:

BatchNorm(x) = ξx+ δ, (12)

where ξ = γ√
σ2+ε

and δ = β − μγ√
σ2+ε

, both of which
can be pre-computed before deployment.

4.2.2 Module compacting

During training, floating-point weights are es-
sential to do the update, but during inference, only
their binarized versions are used. For this reason,
by replacing Wl,l−1 with Ŵl,l−1 in Algorithm 2,
module Ŵl,l−1 = Binarize(Wl,l−1) can be removed.
Moreover, considering Binarize(HardTanh(·)) =

Binarize(·), module al = HardTanh(al) can be re-
moved. Furthermore, module al = BatchNorm(al)

and âl = Binarize(al) can be seamlessly integrated
into one module so that unnecessary computation
can be avoided.

4.3 Binarization on other advanced neural
networks

For other more advanced neural networks,
such as CNNs and LSTMs, it is also possible to
build a binary counterpart. Considering the great
success of deep CNNs in speech recognition re-
cently (Bi et al., 2015; Qian et al., 2016; Sercu et al.,
2016; Xiong et al., 2016; Yu et al., 2016), the bina-
rization of CNNs is further explored here.

Typically, there are two kinds of layers in CNNs,
fully connected layers and convolutional layers. For
the fully connected layers, the same binalization

procedure as described above for DNNs is imple-
mented, and the binarization method described in
Algorithm 1 can be applied directly. For con-
volutional layers, the nonlinear function ReLU(·)
is replaced by a composition of HardTanh(·) with
Binarize(·). Similar to the binarization of fully con-
nected layers, batch normalization is used to limit
the linear outputs to a relatively small range, which
makes the training process more stable. The kernel
weights are stored and updated in the floating-point
format. During forward and backward propagation,
the kernel weights are first binarized before calcula-
tion. The first layer of a binary CNN is not binarized,
just as with a binary DNN. Using this binarization on
CNNs, the computational load can be significantly
reduced in model inference. Moreover, the speedup is
especially large for very deep CNNs with many con-
volutional layers, such as the visual geometry group
network (VGG) (Bi et al., 2015; Qian et al., 2016;
Sercu et al., 2016) or ResNet (Yu et al., 2016) based
acoustic models.

In addition, to achieve a trade-off between accu-
racy and speed, we can binarize a portion of CNNs.
In this study, experimental results show that a partly
binarized CNN or a very deep CNN can achieve a
good accuracy compared to the fully binarized CNN.

5 Knowledge distillation from full pre-
cision deep models to binary neural
networks

By convention, a neural network based acous-
tic model with parameter θ typically maps a D-
dimensional acoustic feature vector x ∈ R

D into a
distribution y over K classes, denoted as p(y|x, θ).
The goal of neural network training is to find a set
of parameters θ so that the outputs closely match
the labels on the training data. The parameters θ

are usually updated by minimizing the cross entropy
loss between the empirical posterior distribution and
the predicted posterior distribution for the current
batch (X,Y) consisting of N training samples:

J(θ;X,Y)=

N∑
n=1

CE
(
p(yempirical

n), p(yn|xn, θ)
)
. (13)

Normally, the empirical posterior distribution is
derived from the ground-truth label and represented
by one-hot encoding (only one of all K classes has

708 Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715

the probability of 1). Under this condition, the above
cross entropy loss can be rewritten as

Jhard(θ;X,Y) =

N∑
n=1

CE
(
p(ylabel

n), p(yn|xn, θ)
)

=

N∑
n=1

K∑
k=1

−�{ylabel
n,k = 1} ln p(yn,k|xn, θ), (14)

where the subscript “hard” means that the loss func-
tion uses hard targets, and “hard” is the one-hot en-
coding of labels.

Hinton et al. (2015) introduced the idea that the
correlations among the classes in the softmax out-
puts of a classifier can be very informative, since
it is more reasonable to misclassify a dog as a
cat rather than an apple. In contrast, to train
the model against hard targets, one can train a
new simple model using the posteriors (soft tar-
gets) from a well-trained model. This mode is
also named teacher-student learning (Li et al., 2017;
Lu and Renals, 2017; Lu et al., 2017), in which the
new simple model is the student model and the
well-trained model is the teacher model. Usually
the teacher is a more powerful model using a com-
plex structure having a significantly better accuracy,
while the student is relatively simple with a small
scale. To boost the performance of the student model
to be deployed in a resource-limited embedded de-
vice, the training criterion can be changed to

Jsoft(θ;X,Y)=

N∑
n=1

CE
(
p(yn|xn, θ

teacher), p(yn|xn, θ)
)

=

N∑
n=1

K∑
k=1

−p(yn,k|xn, θ
teacher)ln p(yn,k|xn, θ). (15)

In this study, the full precision floating-point
deep model and the binary deep model are used as
the teacher and student, respectively. This frame-
work can be used for knowledge distillation from the
full precision floating-point deep model to the binary
model. Experiments show that with this knowledge
distillation approach, the performance of a binary
neural network can be significantly improved. Specif-
ically, a normal full precision floating-point deep
model is first trained with hard targets, and then
used to generate soft labels for the training data. By
combining these two loss functions corresponding to
the hard and soft labels separately, the new system

can be optimized according to

J(θ;X,Y) �λJhard(θ;X,Y)

+ (1− λ)Jsoft(θ;X,Y),
(16)

where λ is an interpolation parameter. When λ = 0,
the criterion is equal to Jsoft(θ;X,Y), which just
uses the soft labels; otherwise, when λ = 1, the cri-
terion is equal to Jhard(θ;X,Y), which uses just the
ground-truth hard labels (the same as the normal
CE training).

6 Experimental results

To validate the effectiveness of binary neural
networks for speech recognition, the proposed bi-
nary DNNs and binary CNNs were evaluated on
the standard Switchboard telephone speech recog-
nition task. Kaldi (Povey et al., 2011) was used to
train the GMM-HMM model and decode the speech,
while Torch7 (Collobert et al., 2011) was used to
train all types of neural network models. An LDA-
MLLT-SAT GMM-HMM model with 8876 tied states
was first built with the standard Kaldi recipe for
Switchboard data. The GMM-HMM model was then
used to generate the state level alignments for neu-
ral network training. The Switchboard/CallHome
(SWB/CH) portions of the NIST Hub5 2000 eval-
uation set (Hub5’00) and the Fisher/Switchboard
(FSH/SWB) portions of the Rich Transcription 2003
evaluation set (RT03S) were used as the test sets.
The 309-h speech data were divided into training
data (90%) and cross validation data (10%) for neu-
ral network training. One-pass decoding with a tri-
gram language model trained on the Switchboard
transcripts was applied in testing. Note that the
main focus is the binary deep model based acoustic
modeling algorithm, so we ran only the first decod-
ing pass with the trigram language model to do the
fair comparison.

6.1 Model description

The detailed architecture configurations of the
baseline full precision DNN, CNN, and very deep
CNN (VDCNN) models are shown in Table 4.

6.1.1 DNN

Thirty-six-dimensional log-mel frequency fil-
ter bank (FBANK) along with their first- and

Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715 709

Table 4 Architecture configurations of different deep models

Model VDCNN CNN DNN

Number of convolutions 10 2 −
Number of max poolings 5 1 −

Padding Frequency & time None −
Input size 17× 64× 1 11× 36× 3 1188

Conv, 3× 3, 64
Conv, 3× 3, 64

Pool, 1× 2
Conv, 3× 3, 128
Conv, 3× 3, 128

Pool, 1× 2
Convolutional & Conv, 3× 3, 128 Conv, 8× 7, 256 −

max pooling layer Conv, 3× 3, 128 Pool, 1× 3
Pool, 2× 2 Conv, 4× 3, 256

Conv, 3× 3, 256
Conv, 3× 3, 256

Pool, 2× 2
Conv, 3× 3, 256
Conv, 3× 3, 256

Pool, 2× 2
Output size 2× 2× 256 1× 8× 256 −

1188 × 2048
1024 × 2048 2048 × 2048 2048 × 2048
2048 × 2048 2048 × 2048 2048 × 2048

Fully connected layer 2048 × 2048 2048 × 2048 2048 × 2048
2048 × 2048 2048 × 2048 2048 × 2048
2048 × 8876 2048 × 8876 2048 × 2048

2048 × 8876
Softmax 8876 8876 8876

The model configuration, such as 3× 3 and 64, indicates that the layer uses a 3× 3 filter and the output contains
64 feature maps. CNN: convolutional neural network; DNN: deep neural network; VDCNN: very deep CNN; Conv:
convolutional layer; Pool: max pooling layer

second-order derivatives were used to train the full
precision DNN model. The acoustic features were
mean normalized per speaker. A temporal context
of 11 consecutive frames was used as the input for
a DNN. The full precision DNN has six fully con-
nected layers with 2048 sigmoid hidden units in each
layer. The last layer is a softmax layer with the same
output targets as the senones.

6.1.2 CNN

The full precision CNN model used the same
expanded feature as the input. The feature was or-
ganized into three channels with an 11 × 36 image
size in each channel. The full precision CNN model
was built using the classic structure (Sainath et al.,
2013), which has two convolutional layers followed by
four fully connected layers. Max pooling was used
after the first convolutional operation and all hidden
layers used ReLU as the activation function. There
were 256 feature maps in each convolutional layer.

6.1.3 VDCNN

Following our previous work on VDC-
NNs (Qian et al., 2016), a 64-dimensional static
FBANK with 17 context window was formed as
the single input channel. The full precision VD-
CNN has 10 layers of convolutional layers and four
fully connected layers. All hidden units used ReLU
as the activation function. Compared to the shal-
low CNN, a VDCNN used a smaller kernel size and
a larger input channel size which can increase the
model depth. The feature map number was increased
gradually to keep a reasonable model scale. The su-
periority of a VDCNN has been demonstrated on
several speech tasks, e.g., telephone speech recog-
nition (Sercu et al., 2016) and noise-robust speech
recognition (Qian and Woodland, 2016; Qian et al.,
2016). Details on VDCNN can be found in Qian et
al. (2016).

For binary neural networks, the basic model
configuration is the same as that in the correspond-
ing full precision deep models shown in Table 4.
The only difference is the activation functions, which

710 Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715

are replaced by three new functions in the pro-
posed binary deep neural networks, HardTanh(·),
Binarize(·), and BatchNorm(·).

6.2 Evaluation on binary DNN

The comparisons on accuracy and speed be-
tween the full precision DNN (FPDNN) and pro-
posed binary DNN (BDNN) are shown in Table 5.
Word error rate (WER) was used as the performance
metric for speech recognition. To test the speed of
inference, FPDNN and BDNN models were evalu-
ated on an Intel i3-4150 CPU. The batch size was
set to 16. Frames per second (FPS) was used to
measure the speed. As shown in Table 5, compared
with FPDNN, BDNN can achieve about 4.0 times
speedup with about 25.0% WER degradation.

There are some considerations on the architec-
ture design for the binary DNN, which have signifi-
cant impacts on accuracy.

6.2.1 Using full precision weight matrix in the input
layer

Since the input features for DNN training are
floating-point values, to exploit binary matrix mul-
tiplication, these should be quantized to k-bit val-
ues. However, this is not very helpful. If k is
large, to adopt k-bit values in binary matrix mul-
tiplication, the calculation amount is k times larger
than that from 1-bit binary matrix multiplication, in
which case there will be little speedup compared with
floating-point matrix multiplication. In contrast, if k
is small, the information loss caused by quantization
on the original feature is very large, which is very

Table 5 WER and FPS comparison of DNN models
on Switchboard telephone speech recognition task

WER (%)

Model Hub5’00 RT03S FPS

SWB CH FSH SWB

FPDNN 15.6 27.9 20.7 30.2 459
BDNN 20.8 34.6 26.6 36.6 1679

BDNN-inBin 21.8 35.6 27.4 37.4 −
BDNN-noBN 73.1 81.9 75.2 78.9 −
FPDNN-3072 15.9 27.9 20.7 30.1 229
BDNN-3072 19.5 32.7 25.0 34.8 1080
WER: word error rate; FPS: frames per second; FPDNN:
full precision DNN; BDNN: binary DNN; BDNN-inBin:
BDNN with binary weight matrix in the input layer;
BDNN-noBN: BDNN without using batch normalization;
FPDNN-3072: FPDNN with 3072 hidden nodes; BDNN-
3072: BDNN with 3072 hidden units per hidden layer

harmful for model optimization.
The binary DNNs with full precision weight ma-

trix (BDNN) or with binary weight matrix in the in-
put layer (BDNN-inBin) are also shown in Table 5.
It is observed that there is an obvious WER degra-
dation when doing the binarization on the first input
layer. In the following experiments, the weight ma-
trix in the first input layer was not binarized for all
the proposed binary deep models.

6.2.2 Using batch normalization

In the architectures of binary DNN and binary
CNN, before nonlinear transform, the linear output
of each layer (Wx+ b) was first batch normalized.
This is critical to train a good binary neural network
model. Since W and x are binary, the linear out-
puts from Wx+ b can have very large or very small
values that heavily deviate from +1 or −1. With-
out batch normalization, the dynamic range of the
linear output is too large and the training process
is not stable. The related binary DNN without us-
ing batch normalization (BDNN-noBN) is listed in
Table 5. We can see that the binary model without
batch normalization does not converge well, leading
to high WERs. Note that using batch normalization
will introduce little overhead during model inference.
For instance, given the batch size k, the number of
hidden units in the last layer m, and the number
of hidden units in the current layer n, the compu-
tational complexity of binary matrix multiplication
and batch normalization are O(kmn) and O(kn), re-
spectively. Usually m is very large (m = 2048) so the
calculation time of batch normalization can be omit-
ted when compared to that of matrix multiplication.

6.2.3 Using more hidden units in hidden layers

Since the weights are represented with only 1-bit
binary values, the expressive power of binary DNNs
is much smaller than that of full precision DNNs.
This is a major reason for the degraded WER of the
binary DNN. To achieve an improved performance,
a binary DNN with more hidden units in the hidden
layer was built. Here a binary DNN model with 3072
hidden units per hidden layer (BDNN-3072) was con-
structed. For a fair comparison, the full precision
DNN with 3072 hidden nodes (FPDNN-3072) was
also built. The results are shown in Table 5. It shows
that enlarging the hidden layer does not achieve

Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715 711

any further improvement on the normal full preci-
sion DNN, which leads to the same conclusion as
in Dahl et al. (2012) and Mohamed et al. (2012). In
contrast, using more hidden units in the binary DNN
obtains more than 6.0% WER improvement over all
test sets. Moreover, BDNN-3072 achieves more than
4.0 times speedup compared to FPDNN-3072, and is
still 2.5 times faster than FPDNN.

6.3 Evaluation on binary CNN and VDCNN

In this subsection the binarization on CNN is
performed. The comparison results between the pro-
posed binary CNN (BCNN) and full precision CNN
(FPCNN) are shown in Table 6. Similar to BDNN,
a full precision matrix was always used in the first
input layer of all binary CNN models. It can be ob-
served that the normal full precision CNN has better
results than the full precision DNN shown in Table 5.

Table 6 WER comparison of CNN and VDCNN mod-
els on Switchboard telephone speech recognition task

WER (%)

Model Hub5’00 RT03S

SWB CH FSH SWB

FPCNN 15.1 26.9 20.3 29.6
BCNN 21.1 34.7 26.8 37.1

BCNN-FPFC 16.3 28.8 21.4 31.2
FPVDCNN 13.8 24.6 18.7 27.9
BVDCNN 21.6 33.5 26.1 35.7

WER: word error rate; FPCNN: full precision CNN;
BCNN: binary CNN; BCNN-FPFC: BCNN with full pre-
cision values on fully connected layers; FPVDCNN: full
precision very deep CNN; BVDCNN: binary very deep
CNN

6.3.1 With/without binarization on fully connected
layers

Two kinds of binary CNN were implemented,
and the results are shown in Table 6, indicated by
BCNN and BCNN-FPFC. BCNN denotes the new
binary model with binarization on all layers (except
the input layer as stated above), including both con-
volutional and fully connected layers. It is observed
that the degradation is about 25.0% from FPCNN
to BCNN, which is consistent with the observation
on DNN shown in Table 5.

We know that the computational load on the
convolutional layers is higher than that on the
fully connected layers for CNNs. Therefore, a

BCNN-FPFC was built, which performs only the
binarization on the convolutional layers and still
has full precision values on fully connected layers.
BCNN-FPFC makes a good trade-off between accu-
racy and speed. The results show that the perfor-
mance is substantially improved with this partly bi-
narized CNN. Compared to FPCNN, the WER gap
is reduced to 5.0% over all test sets, which is very
promising.

6.3.2 Binary VDCNN

The binarization was further extended to the
more powerful VDCNN, with results shown in Ta-
ble 6. We can observe that very deep CNNs with
more convolutional layers significantly achieve bet-
ter performance than shallow ones using either the
full precision VDCNN (FPVDCNN) or the binary
VDCNN (BVDCNN).

6.4 Evaluation on knowledge distillation for
binary neural networks

The knowledge distillation from the normal
full precision deep models using the teacher-student
learning framework was evaluated and the perfor-
mance comparisons of binary DNNs are shown in
Table 7. We used FPDNN as the teacher model.
Different interpolation weight λ settings in Eq. (16)
were studied to find the best one. Note that using
λ = 1.0 actually corresponds to the normal cross
entropy (CE) training using the purely hard labels.
The results show that the knowledge in full preci-
sion DNN (FPDNN) can be effectively transferred
with the proposed training scheme, resulting in a
significant and consistent improvement for all test
sets. Using purely soft labels (λ = 0.0) seems suffi-
cient when doing knowledge distillation between full

Table 7 WER comparison of BDNN with knowledge
distillation from the FPDNN on Switchboard tele-
phone speech recognition task

WER (%)

Model Teacher λ Hub5’00 RT03S

SWB CH FSH SWB

FPDNN − − 15.6 27.9 20.7 30.2
BDNN+TS FPDNN 1.0 20.8 34.6 26.6 36.6
BDNN+TS FPDNN 0.5 19.6 33.5 25.3 35.3
BDNN+TS FPDNN 0.0 19.7 33.0 25.1 35.1
WER: word error rate; FPDNN: full precision DNN; λ:
interpolation weight; BDNN+TS: binary DNN using the
teacher-student learning method

712 Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715

precision and binary DNNs.
Increasing the number of hidden units in BDNN

was also investigated to examine whether the student
model can learn the knowledge from the teacher more
effectively with an enlarged model scale. The results
of two BDNNs with 2048 or 3072 hidden units are
shown in Table 8. It is observed that although the
same teacher model is used, the performance is obvi-
ously further boosted with more hidden units in the
student model, which demonstrates more effective
knowledge distillation. Compared with FPDNN,
there is a 10.0%–15.0% performance deterioration
with our proposed binary DNNs over all the test
sets, but a large acceleration in model inference.

The same knowledge distillation framework was
also performed and validated on CNNs. In this
case, the full precision VDCNN was used as the
teacher model to improve the shallow binary CNN.
The shallow CNN is more feasible than the VDCNN
for the real applications on the low-power embed-
ded devices, so only the shallow CNN was explored
as the student model here. The comparison results
are shown in Table 9. The same observation and
conclusion as those for binary DNNs are obtained:

Table 8 WER comparison of different BDNN models
with knowledge distillation from the same FPDNN
on Switchboard telephone speech recognition task

WER (%)

Student Teacher Hub5’00 RT03S

SWB CH FSH SWB

FPDNN − 15.6 27.9 20.7 30.2
BDNN-2048 FPDNN 19.7 33.0 25.1 35.1
BDNN-3072 FPDNN 18.6 31.5 23.6 33.6
WER: word error rate; FPDNN: full precision DNN;
BDNN-2048/-3072: binary DNN with 2048/3072 hidden
units

Table 9 WER comparison of different BCNN models
with knowledge distillation from the FPVDCNN on
Switchboard telephone speech recognition task

WER (%)

Model Teacher Hub5’00 RT03S

SWB CH FSH SWB

FPCNN − 15.1 26.9 20.3 29.6
BCNN − 21.1 34.7 26.8 37.1
BCNN FPVDCNN 18.8 31.5 23.9 33.8

BCNN-FPFC − 16.3 28.8 21.4 31.2
BCNN-FPFC FPVDCNN 15.2 27.4 20.3 29.8
WER: word error rate; FPCNN: full precision CNN;
BCNN: binary CNN; BCNN-FPFC: BCNN with full pre-
cision values on fully connected layers; FPVDCNN: full
precision very deep CNN

doing knowledge distillation from a powerful full pre-
cision deep model to the binary CNN will obviously
improve the WER, and the performance gap be-
tween BCNNs and normal FPCNNs is reduced signif-
icantly. Specifically for the BCNN without fully con-
nected layer binarization (BCNN-FPFC), the WER
degradation is very small and negligible (almost the
same over three test sets), and this is very promis-
ing and further demonstrates the effectiveness of the
proposed method.

6.5 Other investigations on binary neural
networks

The training curves for the different models and
different optimization approaches are compared in
Figs. 1 and 2, for DNN and CNN, respectively. There
is a large degradation in the basic binary DNN or
CNN, while the basic BDNN/BCNN converges much
slower than the normal full precision deep models. In
contrast, training binary neural networks with soft
labels from a teacher model can converge much faster
and achieve a better accuracy.

The weight parameter distribution is then com-
pared for FPDNN and BDNN. The histogram dis-
tributions of FPDNN and BDNN are illustrated in
Figs. 3 and 4, respectively. For the full precision
DNN, most of the parameters are close to 0 (more
than 80.0% parameters are within [−0.1, 0.1]). The
same property on DNN sparseness was observed
in Yu et al. (2012). For the proposed binary DNN,
the distribution is changed. Note that the tempo-
rary floating-point parameters are stored in BDNN
training as described in Section 4, so the statistics

Number of training epochs (107 speech frames per epoch)
0 5 10 15 20

0

1

2

3

4

5

6

7

C
ro

ss
 e

nt
ro

py
 lo

ss

FPDNN TR FPDNN CV
BDNN TR BDNN CV

BDNN-TS TR
BDNN-TS CV

Fig. 1 Training curve comparison of different DNNs
References to color refer to the online version of this figure.
FPDNN: full precision DNN; BDNN: binary DNN; BDNN-
TS: binary DNN with the knowledge distillation from the
FPDNN using teacher-student learning; TR: results in the
training set; CV: results in the validation set

Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715 713

0
0

1

2

3

4

5 10 15 20

C
ro

ss
 e

nt
ro

py
 lo

ss

FPCNN TR FPCNN CV
BCNN TR BCNN CV

BCNN-TS TR
BCNN-TS CV

Number of training epochs (107 speech frames per epoch)

Fig. 2 Training curve comparison of different CNNs
References to color refer to the online version of this figure.
FPCNN: full precision CNN; BCNN: binary CNN; BCNN-
TS: binary CNN with knowledge distillation from the full
precision very deep CNN using teacher-student learning;
TR: results in the training set; CV: results in the validation
set

–1.0 1.0–0.5 0.50
Weight value

0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

of
 v

al
ue

s
ly

in
g

in
 e

ac
h

bi
n

Fig. 3 Histogram of the weight values of a full preci-
sion DNN (FPDNN)

0.15

0.10

0.05

–1.0 1.0–0.5 0.50
Weight value

0Fr
ac

tio
n

of
 v

al
ue

s
ly

in
g

in
 e

ac
h

bi
n

Fig. 4 Histogram of the weight values of a binary
DNN (BDNN)

are performed on the finally optimized model before
implementing binarization operation. There are still
many parameters around 0, but the percentage is
significantly decreased (fewer than 30.0% of param-
eters are within [−0.1, 0.1]). In contrast, more than
30.0% of parameters are close to −1.0 or 1.0. This
observation also matches the optimization criterion
in binary neural networks.

7 Conclusions and future work

To better deploy deep models on low-power
embedded devices with limited computational re-
sources, we have introduced binary neural networks
for acoustic modeling in automatic speech recogni-
tion. With binary weights and activations during
the inference, binary matrix multiplication provides
a 5–7 times speedup over highly optimized floating-
point matrix multiplication on modern CPUs and
GPUs. This benefit results in a 3–4 times speedup
for model inference in real scenarios. Different types
of binary neural networks, including DNNs, CNNs,
and VDCNNs, have been developed and compared
for speech recognition. In addition, knowledge dis-
tillation from full precision deep models to binary
models has been explored to further boost the per-
formance of binary neural networks. Experiments on
the standard Switchboard telephone speech recogni-
tion task showed that the proposed binary neural
networks approach obtains considerable acceleration
on model inference, while the binary DNN or binary
CNN constrains the accuracy degradation to within
15.0%, compared to the normal full precision DNN
or CNN. Particularly, for the binary CNN with bina-
rization only on the convolutional layers, the WER
degradation is very small and almost negligible with
the proposed approach, which is very promising.

Currently, the proposed binary neural networks
have been evaluated only on existing hardware,
which were originally designed and highly optimized
for normal numerical calculation. It is reasonable to
speculate that the acceleration will be much larger
if there are new hardware platforms specifically de-
signed for binarization operation. Therefore, further
implementation of binary neural networks on such
specifically designed hardware would be valuable for
future research. Moreover, integrating the proposed
binarization with model sparseness reconstruction
and implementing binarization on the recurrent neu-
ral networks (e.g., LSTM-RNN) are other interesting
topics which will be conducted in our future work.

References
Bengio Y, Léonard N, Courville A, 2013. Estimating or

propagating gradients through stochastic neurons for
conditional computation.
https://arxiv.org/abs/1308.3432

Bi MX, Qian YM, Yu K, 2015. Very deep convolutional
neural networks for LVCSR. 16th Annual Conf of Int
Speech Communication Association, p.3259-3263.

714 Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715

Chen ZH, Zhuang YM, Qian YM, et al., 2017. Phone
synchronous speech recognition with CTC lattices.
IEEE/ACM Trans Audio Speech Lang Process, 25(1):
90-101. https://doi.org/10.1109/TASLP.2016.2625459

Chen ZH, Luitjens J, Xu HN, et al., 2018a. A GPU-based
WFST decoder with exact lattice generation.
https://arxiv.org/abs/1804.03243

Chen ZH, Liu Q, Li H, et al., 2018b. On modular training
of neural acoustics-to-word model for LVCSR. IEEE
Int Conf on Acoustics, Speech, and Signal Processing,
p.4754-4758.
https://doi.org/10.1109/ICASSP.2018.8461361

Chen ZH, Droppo J, Li JY, et al., 2018c. Progressive
joint modeling in unsupervised single-channel over-
lapped speech recognition. IEEE/ACM Trans Audio
Speech Lang Process, 26(1):184-196.
https://doi.org/10.1109/TASLP.2017.2765834

Collobert R, Kavukcuoglu K, Farabet C, 2011. Torch7:
a Matlab-like environment for machine learning.
BigLearn NIPS Workshop.

Courbariaux M, Hubara I, Soudry D, et al., 2016. Binarized
neural networks: training deep neural networks with
weights and activations constrained to +1 or −1.
https://arxiv.org/abs/1602.02830

Dahl GE, Yu D, Deng L, et al., 2012. Context-dependent
pre-trained deep neural networks for large-vocabulary
speech recognition. IEEE Trans Audio Speech Lang
Process, 20(1):30-42.
https://doi.org/10.1109/tasl.2011.2134090

Denil M, Shakibi B, Dinh L, et al., 2013. Predicting pa-
rameters in deep learning. 26th Int Conf on Neural
Information Processing Systems, p.2148-2156.

Duchi J, Hazan E, Singer Y, 2011. Adaptive subgradient
methods for online learning and stochastic optimization.
J Mach Learn Res, 12:2121-2159.

Goto K, van de Geijn RA, 2008. Anatomy of high-
performance matrix multiplication. ACM Trans Math
Softw, 34(3), Article 12.
https://doi.org/10.1145/1356052.1356053

Gupta S, Agrawal A, Gopalakrishnan K, et al., 2015. Deep
learning with limited numerical precision. Proc 32nd

Int Conf on Machine Learning, p.1737-1746.
Hammarlund P, Martinez AJ, Bajwa AA, et al., 2014.

Haswell: the fourth-generation Intel core processor.
IEEE Micro, 34(2):6-20.
https://doi.org/10.1109/MM.2014.10

Han S, Pool J, Tran J, et al., 2015. Learning both weights
and connections for efficient neural network. Proc 28th

Int Conf on Neural Information Processing Systems,
p.1135-1143.

Han S, Kang JL, Mao HZ, et al., 2017. ESE: efficient speech
recognition engine with sparse LSTM on FPGA. Proc
ACM/SIGDA Int Symp on Field-Programmable Gate
Arrays, p.75-84.
https://doi.org/10.1145/3020078.3021745

He TX, Fan YC, Qian YM, et al., 2014. Reshaping deep
neural network for fast decoding by node-pruning. Proc
IEEE Int Conf on Acoustics, Speech, and Signal Pro-
cessing, p.245-249.
https://doi.org/10.1109/ICASSP.2014.6853595

Hinton G, Deng L, Yu D, et al., 2012. Deep neural networks
for acoustic modeling in speech recognition: the shared
views of four research groups. IEEE Signal Process
Mag, 29(6):82-97.
https://doi.org/10.1109/msp.2012.2205597

Hinton G, Vinyals O, Dean J, 2015. Distilling the knowledge
in a neural network.
https://arxiv.org/abs/1503.02531

Hubara I, Courbariaux M, Soudry D, et al., 2016. Quantized
neural networks: training neural networks with low pre-
cision weights and activations.
https://arxiv.org/abs/1609.07061

Ioffe S, Szegedy C, 2015. Batch normalization: accelerating
deep network training by reducing internal covariate
shift. 32nd Int Conf on Machine Learning, p.448-456.

Jaitly N, Nguyen P, Senior A, et al., 2012. Application
of pretrained deep neural networks to large vocabulary
speech recognition. Proc 13th Annual Conf of the Int
Speech Communication Association.

Kingma D, Ba J, 2014. Adam: a method for stochastic
optimization. https://arxiv.org/abs/1412.6980

Li JY, Seltzer ML, Wang X, et al., 2017. Large-scale domain
adaptation via teacher-student learning. Proc 18th An-
nual Conf of Int Speech Communication Association,
p.2386-2390.
https://doi.org/10.21437/Interspeech.2017-519

Low TM, Igual FD, Smith TM, et al., 2016. Analytical
modeling is enough for high-performance BLIS. ACM
Trans Math Softw, 43(2), Article 12.
https://doi.org/10.1145/2925987

Lu L, Renals S, 2017. Small-footprint highway deep neural
networks for speech recognition. IEEE/ACM Trans
Audio Speech Lang Process, 25(7):1502-1511.
https://doi.org/10.1109/TASLP.2017.2698723

Lu L, Guo M, Renals S, 2017. Knowledge distillation for
small-footprint highway networks. Proc IEEE Int Conf
on Acoustics, Speech and Signal Processing, p.4820-
4824. https://doi.org/10.1109/ICASSP.2017.7953072

Mohamed AR, Dahl GE, Hinton GE, 2012. Acoustic mod-
eling using deep belief networks. IEEE Trans Audio
Speech Lang Process, 20(1):14-22.
https://doi.org/10.1109/TASL.2011.2109382

Novikov A, Podoprikhin D, Osokin A, et al., 2015. Tensoriz-
ing neural networks. Advances in Neural Information
Processing Systems, p.442-450.

Povey D, Ghoshal A, Boulianne G, et al., 2011. The Kaldi
speech recognition toolkit. Proc IEEE Workshop on
Automatic Speech Recognition and Understanding.

Qian YM, Woodland PC, 2016. Very deep convolutional
neural networks for robust speech recognition. Proc
IEEE Spoken Language Technology Workshop, p.481-
488. https://doi.org/10.1109/SLT.2016.7846307

Qian YM, He TX, Deng W, et al., 2015. Automatic model
redundancy reduction for fast back-propagation for deep
neural networks in speech recognition. Proc Int Joint
Conf on Neural Networks, p.1-6.
https://doi.org/10.1109/IJCNN.2015.7280335

Qian YM, Bi MX, Tan T, et al., 2016. Very deep convo-
lutional neural networks for noise robust speech recog-
nition. IEEE/ACM Trans Audio Speech Lang Process,
24(12):2263-2276.
https://doi.org/10.1109/TASLP.2016.2602884

Qian and Xiang / Front Inform Technol Electron Eng 2019 20(5):701-715 715

Rastegari M, Ordonez V, Redmon J, et al., 2016. XNOR-
Net: ImageNet classification using binary convolutional
neural networks. Proc 14th European Conf on Com-
puter Vision, p.525-542.
https://doi.org/10.1007/978-3-319-46493-0_32

Sainath TN, Mohamed AR, Kingsbury B, et al., 2013. Deep
convolutional neural networks for LVCSR. Proc IEEE
Int Conf on Acoustics, Speech and Signal Processing,
p.8614-8618.
https://doi.org/10.1109/ICASSP.2013.6639347

Sak H, Senior A, Beaufays F, 2014. Long short-term memory
recurrent neural network architectures for large scale
acoustic modeling. Proc 15th Annual Conf of Int Speech
Communication Association, p.338-342.

Saon G, Kurata G, Sercu T, et al., 2017. English conver-
sational telephone speech recognition by humans and
machines. https://arxiv.org/abs/1703.02136

Sercu T, Puhrsch C, Kingsbury B, et al., 2016. Very deep
multilingual convolutional neural networks for LVCSR.
Proc IEEE Int Conf on Acoustics, Speech, and Signal
Processing, p.4955-4959.
https://doi.org/10.1109/icassp.2016.7472620

Wang YQ, Li JY, Gong YF, 2015. Small-footprint high-
performance deep neural network-based speech recogni-
tion using split-VQ. Proc IEEE Int Conf on Acoustics,
Speech and Signal Processing, p.4984-4988.
https://doi.org/10.1109/ICASSP.2015.7178919

Xiong W, Droppo J, Huang X, et al., 2016. Achieving human

parity in conversational speech recognition.
https://arxiv.org/abs/1610.05256

Xiong W, Droppo J, Huang X, et al., 2017. The Microsoft
2016 conversational speech recognition system. Proc
IEEE Int Conf on Acoustics, Speech, and Signal Pro-
cessing, p.5255-5259.
https://doi.org/10.1109/icassp.2017.7953159

Xue J, Li JY, Gong YF, 2013. Restructuring of deep neural
network acoustic models with singular value decompo-
sition. Proc 14th Annual Conf of Int Speech Communi-
cation Association, p.2365-2369.

Young S, Evermann G, Gales M, et al., 2006. The HTK
Book. Cambridge University Engineering Department,
Cambridge, UK.

Yu D, Seide F, Li G, et al., 2012. Exploiting sparseness
in deep neural networks for large vocabulary speech
recognition. Proc IEEE Int Conf on Acoustics, Speech,
and Signal Processing, p.4409-4412.
https://doi.org/10.1109/ICASSP.2012.6288897

Yu D, Xiong W, Droppo J, et al., 2016. Deep convolutional
neural networks with layer-wise context expansion and
attention. Proc 17th Annual Conf of Int Speech Com-
munication Association, p.17-21.
https://doi.org/10.21437/Interspeech.2016-251

Zhou SC, Wu YX, Ni ZK, et al., 2016. DoReFa-Net: training
low bitwidth convolutional neural networks with low
bitwidth gradients. https://arxiv.org/abs/1606.06160

	Introduction
	Neural network based acoustic modeling
	Binary matrix multiplication
	Population count based binary matrix multiplication
	Binary matrix multiplication on CPU
	Binary matrix multiplication on GPU

	Binary neural networks for speech recognition
	Straight through estimator
	Optimization for fast inference
	Module reforming
	Module compacting

	Binarization on other advanced neural networks

	Knowledge distillation from full precision deep models to binary neural networks
	Experimental results
	Model description
	DNN
	CNN
	VDCNN

	Evaluation on binary DNN
	Using full precision weight matrix in the input layer
	Using batch normalization
	Using more hidden units in hidden layers

	Evaluation on binary CNN and VDCNN
	With/without binarization on fully connected layers
	Binary VDCNN

	Evaluation on knowledge distillation for binary neural networks
	Other investigations on binary neural networks

	Conclusions and future work

