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Abstract: While the Nyquist rate serves as a lower bound to sample a general bandlimited signal with no
information loss, the sub-Nyquist rate may also be sufficient for sampling and recovering signals under certain
circumstances. Previous works on sub-Nyquist sampling achieved dimensionality reduction mainly by transforming
the signal in certain ways. However, the underlying structure of the sub-Nyquist sampled signal has not yet been fully
exploited. In this paper, we study the fundamental limit and the method for recovering data from the sub-Nyquist
sample sequence of a linearly modulated baseband signal. In this context, the signal is not eligible for dimension
reduction, which makes the information loss in sub-Nyquist sampling inevitable and turns the recovery into an
under-determined linear problem. The performance limits and data recovery algorithms of two different sub-Nyquist
sampling schemes are studied. First, the minimum normalized Euclidean distances for the two sampling schemes
are calculated which indicate the performance upper bounds of each sampling scheme. Then, with the constraint of
a finite alphabet set of the transmitted symbols, a modified time-variant Viterbi algorithm is presented for efficient
data recovery from the sub-Nyquist samples. The simulated bit error rates (BERs) with different sub-Nyquist
sampling schemes are compared with both their theoretical limits and their Nyquist sampling counterparts, which
validates the excellent performance of the proposed data recovery algorithm.

Key words: Nyquist-Shannon sampling theorem; Sub-Nyquist sampling; Minimum Euclidean distance;
Under-determined linear problem; Time-variant Viterbi algorithm

https://doi.org/10.1631/FITEE.1900320 CLC number: TN911.72

1 Introduction

The Nyquist-Shannon sampling theorem estab-
lishes a sufficient condition for a sample rate that
permits a discrete sample sequence to capture all the
information of a bandlimited continuous-time sig-
nal. With a sampling rate of no less than twice the
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maximum frequency of the bandlimited signal, the
samples capture all the information and the original
analog signal can be perfectly reconstructed from
the samples. The lower bound of the sampling
rate, which equals twice the bandwidth, is called
the Nyquist rate. However, it is also possible to
sample and recover an analog signal with a certain
time and/or frequency structure at a sub-Nyquist
rate perfectly with no information loss. It is called
sub-Nyquist sampling (SNS), and it is an efficient
way to reduce the hardware cost on sampling, signal
processing, and storage.

Sub-Nyquist sampling has been widely studied
as one of the fundamental problems in signal pro-
cessing. Early works mainly focused on nonuniform
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sampling of the multiband signal with known fre-
quency support (Scoular and Fitzgerald, 1992;
Venkataramani and Bresler, 2001). Landau (1967)
showed that the average sampling rate of a multi-
band signal can be reduced to twice the occupied
bandwidth; that is, the “Landau rate,” which is typ-
ically far smaller than the corresponding Nyquist
rate, serves as the lower bound for sampling multi-
band signals.

Later, many researchers attempted to general-
ize the problem to multiband signals with unknown
spectral support (Feng and Bresler, 1996; Herley
and Wong, 1999). Multicoset sampling (Domínguez-
Jiménez et al., 2012) and the modulated wideband
converter (Mishali and Eldar, 2010) are two widely
used sub-Nyquist sampling methods for multiband
signals with unknown spectral support. Such a prob-
lem could be addressed well under a compressive
sensing framework in some specific cases such as cog-
nitive radio, where the spectral occupation of the
signal is unknown but sparse (Mishali and Eldar,
2009; Tropp et al., 2010; Sun et al., 2013). In such a
context, compressive sensing is introduced to sample
signals with a rate much lower than the Nyquist rate.
The sparsity of the signal in the frequency domain
guarantees adequate detection accuracy. Of course,
the multiband signal is not the only kind of signals
that can be perfectly sampled and reconstructed with
sub-Nyquist sampling. In the recent works from Lu
and Do (2008) and Mishali et al. (2011), a model for
the union of subspaces was proposed to reveal the
underlying structure of the signals for which sub-
Nyquist sampling works. Chen et al. (2013) stud-
ied the impact of sub-Nyquist sampling on channel
capacity.

On the other hand, the early studies and re-
cent revisits to faster-than-Nyquist signaling (Mazo,
1975; Mazo and Landau, 1988; Liveris and Georghi-
ades, 2003; Fan et al., 2017) revealed that there exists
some threshold of the signaling rate on the transmit-
ter side, which is beyond the Nyquist rate and is
called the “Mazo limit.” Within the limit, it is found
that the minimum Euclidean distance between the
transmitted signals does not decrease as the symbol
rate increases beyond the Nyquist rate. This finding
supports a potentially efficient signaling scheme to
approach the constrained channel capacity for future
communications (Anderson et al., 2013). What is
more, it inspires us to consider whether its dual prob-

lem, i.e., sub-Nyquist sampling on the receiver side,
has a similar property in information conservation.

The above problem of sub-Nyquist sampling of
a general signal is a fundamental problem in signal
processing. Unlike sub-Nyquist sampling in com-
pressive sensing, sub-Nyquist sampling of a general
signal without a special structure usually results in
an under-determined linear problem, which is not
sparse. Furthermore, it brings about energy loss as
a result of the reduction of the number of available
samples, which may in turn degrade the performance
of data recovery. In this study, we take a closer look
at the fundamental aspects of this problem. Specif-
ically, we study the performance limit and the data
recovery algorithm for data recovery from the sub-
Nyquist sample sequence of a general baseband sig-
nal, which is linearly modulated with symbols from
a finite alphabet. In the studied system, the trans-
mitter transmits symbols at the Nyquist rate, while
the receiver samples the received signal uniformly
at a sub-Nyquist rate. Unlike sub-Nyquist sampling
in compressive sensing, the general baseband signal
is sparse neither in the time domain nor in the fre-
quency domain. As a result, its degree of freedom
is not reducible. We consider two practical sub-
Nyquist sampling schemes, i.e., direct sub-Nyquist
sampling (DSNS) and filtered sub-Nyquist sampling
(FSNS). The former directly samples the modulated
signal at some sub-Nyquist rate, while the latter
conducts the sampling after a perfect anti-aliasing
low-pass filtering. For both sampling schemes, the
impacts of sub-Nyquist sampling on the error per-
formance in data recovery are investigated, and a
practical algorithm to resolve the very challenging
data recovery problem is proposed.

The main contributions of our work can be sum-
marized as follows:

1. The fundamental performance limit of data
recovery of a sub-Nyquist sampling system for gen-
eral linearly modulated baseband signals is investi-
gated. The minimum Euclidean distances between
two different sample sequences for both DSNS and
FSNS are derived as the indicators of the upper
bounds of data recovery performances. The derived
minimum Euclidean distances are proportional to
the sampling rates within certain thresholds, and
thus provide a bound of the performance loss re-
sulting from sub-Nyquist sampling.

2. A low-complexity but efficient time-variant
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Viterbi detection algorithm is proposed to recover
data from the sub-Nyquist sampled data sequence.
As the original signal is a general linearly modu-
lated signal which lacks any inherent sparsity, data
recovery is an under-determined problem. Using the
constraint of a finite alphabet of transmitted sym-
bols and the priori knowledgement of the intrinsic
interference structure of the sample sequence, the al-
gorithm can reliably recover the data. Its bit error
rate (BER) performance is simulated and compared
with the theoretical limits and its Nyquist sampling
counterpart, which validates the algorithm’s excel-
lent performance.

2 System model

In this study, we focus on the sub-Nyquist sam-
pling problem for a linearly modulated baseband sig-
nal with the constraint of a finite symbol set.

As shown in Fig. 1, at the transmitter, the trans-
mitted symbols {um} are selected from a finite al-
phabet set and sent with period T . The transmitted
symbol sequence

∑
m umσ(t − mT ) is then filtered

with a pulse shaping filter g(t) to limit the band-
width. The transmitted signal can be denoted as

x(t) =
√
Es

∑

m

umg(t−mT ), (1)

where Es is the average symbol energy.
Here, we assume that binary phase shift keying

(BPSK) modulation and the sinc pulse shaping filter
are used. Then, um ∈ {+1,−1} and the signal is

x(t) =

√
Es

T

∑

m

um sinc
(

t

T
−m

)

. (2)

Pulse shaping AWGN Matched filtering
g(t) η(t) h(t)

x(t) y(t) yM(t)um
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Fig. 1 System model. Reprinted from Luo and Zhang
(2019), Copyright 2019, with permission from IEEE

The signal is bandlimited to [−π/T,π/T ] and its
spectrum is

X(ω) =
√
EsT

(
∑

m

um e−jωmT

)

R
(
− π

T
,
π

T

)
,

(3)
where R(−π/T, π/T ) is the box function that equals
1 when ω ∈ (−π/T, π/T ) and 0 otherwise. To
demonstrate the spectrum change in the sampling
process, we show the spectrum in Fig. 2a with a tri-
angle, which is not the actual shape of the spectrum
but can show the spectral overlapping clearly.

The signal is transmitted over an additive white
Gaussian noise (AWGN) channel. So, the received
signal is y(t) = x(t) + η0(t), where η0(t) is AWGN
with power spectral density N0/2.

At the receiver, the received signal is first
matched filtered with the sinc filter as

yM(t) = y(t) ∗
(
1

T
sinc

(
t

T

))

= x(t) + η(t), (4)

where η(t) denotes the bandlimited Gaussian with
spectral density N0/2 within its bandwidth. The
bandlimited transmitted signal x(t) has no change
but the noise becomes bandlimited.

When the filtered signal is sampled with the
Nyquist rate 1/T , the samples are orthogonal as

yn,O = yM(t)|t=nT =

√
Es

T
un + ηn,O, (5)

where ηn,O for all n’s are independent and identically
distributed as ηn,O ∼ N(0, N0/2). The spectrum of
the Nyquist sampled waveform

∑
n yn,O δ(t − nT )

can be demonstrated as Fig. 2b, where δ(t) is the
unit impulse function. Spectrum X(ω) is replicated
with interval 2π/T and there exists no spectrum
overlapping.

If the filtered signal is directly sampled with the
sub-Nyquist rate τ/T , where τ < 1, the samples are
the linear combinations of the transmitted symbols
as

yn,D = [x(t) + η(t)]|t=nT/τ

=

√
Es

T

∑

m

um sinc
(n

τ
−m

)
+ ηn,D.

(6)

Sub-Nyquist sampling without pre-filtering is called
direct sub-Nyquist sampling in this study. The
spectrum of the direct sub-Nyquist sampled wave-
form

∑
n yn,D δ(t − nT/τ) can be demonstrated as
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Fig. 2 Comparison of the spectra of the original signal (a), Nyquist sampled signal (b), DSNS signal (c), and
FSNS signal (d). Reprinted from Luo and Zhang (2019), Copyright 2019, with permission from IEEE

shown in Fig. 2c. Spectra X(ω) overlap on the high-
frequency end.

To avoid spectral overlapping, a low-pass filter is
often added before sampling. The sub-Nyquist sam-
pling with pre-filtering is called filtered sub-Nyquist
sampling in this study. Suppose the ideal low-pass
filter τ/T · sinc(tτ/T ) is used. Then the low-pass
filtered signal is

yF(t) = [x(t) + η(t)] ∗
(
τ

T
· sinc

(
tτ

T

))

=

√
Es

T
τ
∑

m

um sinc
( τ

T
t−mτ

)
+ ηF(t),

(7)
where ηF(t) is the bandlimited Gaussian noise
with a plain power density N0/2 within its band
[−πτ/T, πτ/T ]. The spectrum of the signal without
noise is the low-pass filtered X(ω) as

XF(ω) = X(ω)R
(
−πτ

T
,
πτ

T

)
, (8)

where R(−πτ/T, πτ/T ) is the box function that
equals 1 when ω ∈ (−πτ/T, πτ/T ) and 0 otherwise.

When the filtered signal yF(t) is uniformly sam-
pled with intervals of T/τ , the samples are

yn,F = yF(t)|t=nT/τ

=

√
Es

T
τ
∑

m

um sinc(n−mτ ) + ηn,F,
(9)

where ηn,F for all n’s are independent and identically
distributed as N(0, N0/2). The spectrum of the
sampled signal

∑
m yn δ(t− nT/τ) is the repetition

of XF(ω) with intervals 2πτ/T (Fig. 2d). There is
no overlapping as a result of low-pass filtering.

3 Minimum Euclidean distance

Pairwise error probability (PEP) is the error
probability that when signal u1 is transmitted, the
receiver detects the distorted version u2 instead of
u1. Suppose y1 and y2 are the noiseless sample
sequences corresponding to the transmitted symbol
sequences u1 and u2 respectively, and y is the sam-
ple sequence with noise when u1 is transmitted. A
detection error occurs when y is closer to y2 than to
y1, that is,

P (u1 → u2|y) = P (d2(y,y1) > d2(y,y2)). (10)

As a result, the error probability above depends on
the noise power normalized Euclidean distance be-
tween y1 and y2. The PEP of the system depends
on the minimum normalized Euclidean distance for
all possible u1’s and u2’s.

In this section, the minimum noise power nor-
malized Euclidean distances of DSNS and FSNS un-
der different sampling rates are derived. Compared
to the minimum distance with Nyquist sampling,
the derived minimum Euclidean distances of DSNS
and FSNS show how the detection performances de-
grade with the decreasing sampling rates beyond the
Nyquist rate.

In Nyquist sampling, DSNS, and FSNS, the
samples are linear combinations of the transmitted
symbols. For a linear system, the Euclidean distance
between y1 and y2 is the function of the error pattern
e = u1 − u2:

d2 = |y1 − y2|2 = |Hx1 −Hx2|2 = |He|2. (11)

The difference between the sample sequences,
which is defined as ye

.
= y1 − y2 = He, is
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equivalent to the sample sequence corresponding to
the transmitted symbol sequence e. Calculating the
minimum Euclidean distance is to search over all pos-
sible nonzero e’s to find min

e
d2 = min

e
|He|2. With

this fact, we can calculate the minimum normalized
Euclidean distances for DSNS and FSNS with BPSK
modulation and sinc pulse shaping.

As for BPSK modulation, the elements in the
error pattern e = u1−u2 have three possible values:
2, −2, and 0. Define half of the error pattern as b =
1

2
e, the elements of which satisfy bm ∈ {1,−1, 0}.

To calculate the Euclidean distance between two
distinct sample sequences, the following lemma is
first introduced:
Lemma 1 Suppose that x(t) is a continuous-time
signal which is sampled uniformly with interval T ,
and the corresponding sample sequence is {xn}. De-
note the spectrum of x(t) as XC(jω). The total en-
ergy of the sample sequence can be calculated by
integrating its power spectrum as

∑

n

|xn|2= 1

2πT

∫

2π/T

∣
∣
∣
∣
∣

∑

k

XC

(

j

(

ω− 2πk

T

))∣∣
∣
∣
∣

2

dω.

(12)
Proof Denote the discrete Fourier transform of
the sample sequence {xn} as XD(e

jω). According
to Parseval’s theorem for discrete-time signals, the
total energy of all the samples {xn} is equal to the
integration of its power spectrum over one period:

∞∑

n=−∞

∣
∣x2

n

∣
∣ =

1

2π

∫ π

−π

∣
∣XD

(
ejω

)∣
∣2 dω. (13)

The relationship between XD
(
ejω

)
and XC(ω) is

XD

(
ejω

)
=

1

T

+∞∑

n=−∞
XC

(
ω

T
− 2πn

T

)

. (14)

Combining Eqs. (13) and (14), Eq. (12) is proved.
For Nyquist sampling in Eq. (5), obviously the

minimum Euclidean distance occurs when there is
only one nonzero element in b, and the minimum
normalized distance is d2O,min = 8Es/N0. In the fol-
lowing, we present two basic results for the minimum
Euclidean distances of the DSNS and FSNS systems,
respectively.
Theorem 1 The minimum normalized Euclidean
distance between two distinct sample sequences in
DSNS with respect to that in the Nyquist sampling

(orthogonal transmission) case is given by

min
b

d2D
d2O,min

= min
bm∈{±1,0}

{∫ τ1

0

∣
∣
∣
∑

m
bme−jπωm

∣
∣
∣
2

dω

+
1

2

∫ τ

τ1

∣
∣
∣
∑

m
bme−jπωm

(
1 + ej2πτm

)∣∣
∣
2

dω

}

.

(15)
Proof Obviously, the sample sequence and the
original transmitted data sequence constitute a lin-
ear system, with the transmitted data sequence as
input and the sample sequence as output. As a re-
sult, for two distinct original data sequences, the
difference between the two corresponding sample se-
quences is equal to the sample sequence correspond-
ing to the original data sequence of the error pattern
2b. Given the original transmitted symbol sequence
{2bm}, the total energy of the corresponding sam-
ples is calculated as the Euclidean distance between
sample sequences.

After matched filtering at the receiver, the
continuous-time signal before sampling is band-
limited to [−π/T, π/T ] as

XM(ω) =

{
2
√
EsT

∑

m
bme−jωmT , |ω| < π/T ,

0, otherwise,

(16)
where the noise is also bandlimited AWGN with a
two-sided spectral density of N0/2.

In DSNS, the signal is directly under-sampled
uniformly with time interval T/τ , which is larger
than its symbol interval T . Define the partition point
as τ1 = 2τ − 1. As shown in Fig. 2c, the higher
frequency bands beyond the partition point τ1π/T <

|ω| < π/T of the spectrum of the sampled signal
X(ω) will overlap, while the lower band |ω| < τ1π/T

stays the same as the spectrum of the original signal.
The spectrum of the discrete sample sequence can be
represented by the spectrum of the continuous-time
signal according to Eq. (14) as

XD

(
ejω

)
=

τ

T

+∞∑

n=−∞
XM

( τ

T
(ω − 2πn)

)
. (17)

The noise after sampling is no longer white. Its
power density is N0/2 in the lower band and N0

in the higher band. Thus, a noise whitening filter
should be used as

WD

(
ejω

)
=

{
1, |ω| < πτ1/τ,√
1/2, πτ1/τ < |ω| < π.

(18)
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After whitening filtering, the whitened noise has the
power of N0τ/(2T ) and the spectrum of the signal is
XD

(
ejω

) ·WD

(
ejω

)
.

With whitened noise, the energy of the sam-
ple sequence ye normalized by the noise power can
be calculated according to Parseval’s theorem in
Eq. (13) as

∑
n |yn,e|2

N0τ/(2T )
=

T

πN0τ

∫

2π

∣
∣XD

(
ejω

) ·WD

(
ejω

)∣
∣2dω

=
8Es

N0

[∫ τ1

0

∣
∣
∣
∑

m
bme−jπωm

∣
∣
∣
2

dω

+
1

2

∫ τ

τ1

∣
∣
∣
∑

m
bme−jπωm

(
1 + ej2πτm

)∣∣
∣
2

dω

]

.

(19)
Compared to the minimum Euclidean distance

8Es/N0 of orthogonal transmission, the normalized
Euclidean distance of DSNS is given by

d2D
d2O,min

=

∫ τ1

0

∣
∣
∣
∑

m
bme−jπωm

∣
∣
∣
2

dω

+
1

2

∫ τ

τ1

∣
∣
∣
∑

m
bme−jπωm

(
1 + ej2πτm

)∣∣
∣
2

dω.

(20)
In Eq. (20), the first term comes from the lower-
frequency band where there is no overlapping, and
the second term comes from the overlapping higher-
frequency band. The minimum of the normalized
Euclidean distance of DSNS in Eq. (20) is obtained
by searching all nonzero b’s.

Similarly, we have the following result for the
FSNS system:
Theorem 2 The minimum normalized Euclidean
distance of FSNS with respect to that of the Nyquist
sampling (orthogonal transmission) case is given by

min
b

d2F
d2O,min

= min
bm∈{±1,0}

∫ τ

0

∣
∣
∣
∑

m
bme−jπmω

∣
∣
∣
2

dω.

(21)
Proof In FSNS, the received signal is first matched
filtered and then low-pass filtered with an ideal low-
pass filter τ/T · sinc (tτ/T ). The spectrum of the
signal after low-pass filtering is

XF(ω) =

{
2
√
EsT

∑

m
bme−jωmT , |ω| < τπ/T ,

0, otherwise.

(22)
Then the low-pass filtered signal is sampled with in-
terval T/τ . As shown in Fig. 2d, there is no overlap-
ping in the frequency domain of the sampled signal.

Besides, the sampled noise remains to be AWGN
with a power spectrum density of N0/2.

Normalized by the noise power N0τ/(2T ), the
total energy of the sample sequence can be calculated
according to Eq. (12) as

∑
n |yn,e|2

N0τ/(2T )

=
1

πN0

∫

2πτ/T

∣
∣
∣
∣
∣

∑

k

XF

(

j

(

ω − 2πτk

T

))∣∣
∣
∣
∣

2

dω

=
8Es

N0

∫ τ

0

∣
∣
∣
∑

m
bme−jπmω

∣
∣
∣
2

dω.

(23)

Compared to the minimum Euclidean distance
8Es/N0 of Nyquist sampling, the normalized dis-
tance of FSNS is

d2F
d2O,min

=

∫ τ

0

∣
∣
∣
∑

m
bme−jπmω

∣
∣
∣
2

dω. (24)

The minimum of the normalized Euclidean distance
of FSNS in Eq. (24) is obtained by searching all
nonzero b’s.

We search the sequence b for the minimum Eu-
clidean distances d2D,min � min

b
d2D and d2F,min �

min
b

d2F under different sampling rates τ/T . The
upper bounds and minimum normalized Euclidean
distances d2D,min/d

2
O,min and d2F,min/d

2
O,min versus τ

are shown in Fig. 3. We can see that at the same
sampling rate, the minimum normalized Euclidean
distance of DSNS is much lower than that of FSNS,
indicating the negative effect of frequency overlap-
ping in DSNS on the performance.
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Fig. 3 Minimum of the normalized distance of two dis-
tinct sample sequences in DSNS and FSNS. Reprinted
from Luo and Zhang (2019), Copyright 2019, with
permission from IEEE
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Based on the above two theorems and also as in-
dicated by the curves in Fig. 3, we have the following
two important observations:
Theorem 3 For FSNS, the minimum normalized
Euclidean distance satisfies d2F,min/d

2
O,min = τ when

the sampling rate decreases below the Nyquist rate
within the range τ ∈ [0.802, 1], and it is less than τ

when τ < 0.802.
Proof The equation for the minimum normalized
Euclidean distance of FSNS in Theorem 2 is similar
to the minimum normalized Euclidean distance of
faster-than-Nyquist (FTN) signaling in Mazo (1975).
For BPSK modulation and sinc pulse shaping, the
minimum Euclidean distance of FTN signaling with
symbol rate 1/(τT ) is

min
b

d2FTN = min
bm∈{±1,0}

1

τ

∫ τ

0

∣
∣
∣
∑

m
bme−jπmω

∣
∣
∣
2

dω.

(25)
Comparing the Euclidean distance of the FTN sig-
naling above with the minimum Euclidean distance
of FSNS with a sampling rate τ/T in Eq. (21) yields

d2F,min

d2FTN,min

= τ. (26)

The minimum Euclidean distance of FTN sig-
naling in Eq. (25) was calculated in Mazo and Lan-
dau (1988) and Hajela (1990). It is obtained by
searching the possible error patterns b. To reduce
the search complexity, several constraints such as
patterns and the number of nonzero blocks, are made
to b. FTN signaling has a limit on the signaling rate
called the Mazo limit. When increasing the signaling
rate within the Mazo limit, the minimum normal-
ized Euclidean distance between two different sig-
nals will not decrease as the signaling rate increases.
For BPSK and sinc pulse shaping, the Mazo limit is
τ = 0.802.

Based on the relationship between FTN and
FSNS in Eq. (26), the minimum normalized Eu-
clidean distance of FSNS is equal to τ within the
Mazo limit τ ∈ (0.802, 1], and will drop below τ as
the sampling rate decreases beyond the Mazo limit.
Theorem 4 For DSNS, the minimum normalized
Euclidean distance satisfies d2D,min/d

2
O,min = 2τ − 1

when τ ∈ [0.855, 1], and it is less than 2τ − 1 when
τ < 0.855.
Proof As shown in Eq. (20), the normalized Eu-
clidean distance for DSNS is composed of two terms,
the first term from the non-overlapping frequency

band and the second term from the overlapping fre-
quency band. The first part

∫ τ1
0

∣
∣
∑

m bme−jπωm
∣
∣2dω

is the same as the Euclidean distance of FSNS, ex-
cept that the integral limit is τ1 = 2τ − 1 instead of
τ . According to Theorem 3, the minimum value of
the first term is no more than 2τ − 1.

Next, if we choose the error pattern b =

[. . . 0 . . . 0 − 1 0 . . . 0 . . .] with the mth el-
ement as nonzero, the non-overlapping part of the
Euclidean distance in Eq. (20) just equals 2τ −1. By
choosing the position m to satisfy 2τm = 2k + 1,
where k is an arbitrary integer, the overlapping part
turns out to be zero. Thus, the minimum Euclidean
distance for DSNS is 2τ − 1.

When the sampling rate τ begins to decrease
from 1, the minimum distance remains as 2τ − 1,
corresponding to some error pattern b with only one
nonzero element at some position. The minimum
sampling rate τ at which the minimum distance re-
mains as 2τ − 1 can also be obtained by search. The
combinatorial complexity for search can be greatly
reduced by considering only those b that make the
second part no more than 2τ − 1 since the minimum
distance never exceeds 2τ − 1. The minimum sam-
pling rate for keeping the linear distance 2τ − 1 is
τ = 0.855.

In conclusion, the upper bound of the minimum
Euclidean distance decreases proportionally to the
sampling rate within some thresholds for both FSNS
and DSNS.

4 Time-variant Viterbi algorithm for
data recovery

4.1 Challenges in data recovery

As shown in Eqs. (6) and (9), the sub-Nyquist
sampling forms an under-determined linear system
which has a time-variant system impulse response.
With BPSK modulation, the transmitted symbols
are constrained to be chosen from {+1,−1}. So, the
data recovery problem from the sub-Nyquist sampled
sequences in Eqs. (6) and (9) can be formulated as

min
u∈{+1,−1}M

‖y −Hu‖2, (27)

where ‖·‖2 denotes the �2 norm of a vector, and H

is the equivalent channel response matrix which is of
full row rank with size N ×M .
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As an under-determined problem that has more
inputs than outputs, linear equalization methods are
incapable for data recovery in this case. The conven-
tional sparsity detection algorithms, such as Bases
Pursuit and the greedy algorithm used in compressed
sensing, are also unable to work since there is no
sparsity in the sampled signal. Although in the-
ory, the complicated maximum likelihood sequence
detection approach (Goldsmith, 2005) may be ap-
plicable, the computational complexity becomes too
high in practice because the search space becomes
extremely large as the data length increases and, to
make matters worse, a much severer inter-symbol in-
terference (ISI) arises when the sampling is not at
the Nyquist rate.

The Viterbi algorithm (VA) (Forney, 1973) is
a simplified realization of maximum likelihood se-
quence estimation. It can recover data from the out-
puts of an ISI channel with low computational com-
plexity. However, in the case of SNS and as far as VA
is concerned, the ISI structure varies from sample to
sample, so does the state space. Let us elaborate
more on these. Note that each output sample is
associated with either one or two dominating input
symbols (i.e., they constitute the principal compo-
nents of that sample), as indicated by the red dotted
lines in Fig. 4. As a matter of fact, the number of
dominating symbols changes every several samples,
which also makes the state transitions of the trel-
lis graph varying (see Fig. 4 for illustration). The
interferences contained in each sample come from

0.24 1

Symbols

Samples

0.24

0 0.94 0.50

−0.16 0.76 0.76 −0.16

0.50 0.94 0

Hn

Hn+1

Hn+2

Hn+3

yn yn+1 yn+2 yn+3

um um+1 um+2 um+3 um+4

Fig. 4 Structure of the time-variant inter-symbol in-
terference with τ = 0.8 and 2L = 2. Reprinted from
Luo and Zhang (2019), Copyright 2019, with permis-
sion from IEEE

the neighboring symbols after being weighted by the
equivalent channel impulse responses. As a result of
non-integer (fractional) sub-Nyquist sampling, the
equivalent channel impulse responses change from
sample to sample, as shown in Fig. 4, resulting in a
time-variant interference structure and a relatively
large and dynamic constraint length as well as state
space. Due to the above reasons, the conventional
VA does not apply to this case.

4.2 Algorithm description

Here, we propose an efficient time-variant VA to
recover data from the sub-Nyquist sampled sequence.

First, the overall equivalent channel impulse re-
sponse is truncated to reduce the number of states.
Let L be a tunable parameter denoting the number
of neighboring interfering symbols at each side of the
dominating symbol(s) associated with a sample af-
ter the truncation. The number of dominating sym-
bol(s) could be one or two as shown in Fig. 4; thus,
the length of the truncated impulse response is either
2L + 1 or 2L + 2. Obviously, the truncation length
L provides a tradeoff between the performance and
the computational complexity.

Next, the dynamic trellis graph is constructed,
over which the new VA is conducted. For truncated
impulse response with length 2L + 1, the constraint
length is normally 2L+ 1 (or equivalently the mem-
ory is 2L); thus, the resultant number of states is 22L.
When a new sample is obtained, the Euclidean mea-
sure is calculated along the paths which start from
the current states and go to the next states. Note
that for a certain sample that is associated with two
dominating symbols, the constraint length is 2L+2;
thus, there will be four branches (corresponding to
two unknown single-bit symbols) starting from each
of the current 22L states and ending to four of the
next 22L states (Fig. 5a).

Without loss of generality, let us take FSNS with
sampling rate τ = 0.8 for illustration. With the sam-
pling rate τ = 0.8 = 4/5, four samples are generated
within the duration of five symbols (Fig. 4). As de-
scribed above, each sample is associated to one or
two dominating symbols. As depicted in the up-
per dotted-line block in Fig. 4, each of the 1st, 2nd,
and 4th samples yn, yn+1, and yn+3 has one dom-
inating symbol, while the 3rd one yn+2 has two.
Alongside the dominating symbols of each sample,
there are two interfering symbols, one for each side.
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Fig. 5 The trellis graph (a) (reprinted from Luo and
Zhang (2019), Copyright 2019, with permission from
IEEE) and state transition (b) of a time-variant VA
with τ = 0.8 and 2L = 2. In (b), each term in the
form represents a trellis branch connecting the cur-
rent state and the next state, the inputs and outputs
denote the input symbol values and the predicted
sample values respectively, and the “×” in the form
stands for an impossible state transition

Therefore, here 2L = 2 and the number of states is
four. The truncated time-variant impulse responses
Hn, Hn+1, Hn+2, and Hn+3, for the four successive
samples yn, yn+1, yn+2, and yn+3, respectively, are
shown in Fig. 4. As a new sample comes, the VA de-
tector enters a new stage. At each stage, the first two
symbols constitute the current state space, shown as
the black disks. The other one or two white disks at
each stage correspond to the unknown input symbols
which lead to state transitions. Note that the state
transition of the third stage is different, at which
there are four branches starting from each of the
current four states and ending at the next four states
(Fig. 5a).

At each stage, the path metric is calculated as
follows. Given the current state and the correspond-

ing two symbols, each state transition corresponds
to one or two specific input symbols. All the above
symbols are summed up after being weighted by the
truncated channel coefficients to obtain the predicted
sample value. Then the square error between the
predicated sample value and the real sample value
serves as the branch metric. Finally, the path metric
can be achieved by accumulating the branch metrics
along that path. The calculation of the metrics for
each state of each stage is illustrated in Fig. 5b. Note
that at stage 3 the states are driven by two input
symbols and there are four next states for each cur-
rent state; thus, four symbols are used to predict the
sample value. At the other three stages, only three
symbols are used to obtain the prediction. Finally,
with the trellis dynamically growing, the path met-
ric calculation and decision-making are conducted in
the same way as in the conventional VA. The path
with the minimum accumulated metric survives and
the corresponding input symbols along that path will
be the final detection output.

Note that the computational complexity of the
time-variant VA is of the same order as that of the
conventional VA, with only a slight difference in the
treatment of the non-regular stages where there are
two dominating input symbols.

4.3 Simulation results

In this subsection, the bit error rate (BER) per-
formances of the above time-variant VA detection
algorithm for both the DSNS and FSNS systems are
simulated. The simulation results are then compared
with both their theoretical limits and the bench-
marks of their Nyquist sampling counterparts.

Suppose the block length of the transmitted
symbols is M = 200. At a sampling rate τ , the
number of samples is N = �τ · M	 (� 	 represents
the rounding up operation). The equivalent chan-
nel impulse response is truncated to length 2L+1 or
2L+2, where L is first set to four. Figs. 6 and 7 show
the performance curves of BER versus the sampling
rate in DSNS and FSNS with sinc pulse shaping,
respectively. Compared to the case of Nyquist sam-
pling, the BER performance for both SNS systems
degrades as the sampling rate decreases. FSNS al-
ways has a lower BER than DSNS probably at the
same sampling rate because FSNS has anti-aliasing
filtering.

For DSNS with τ = 0.9, 0.8, and 0.7, the square
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normalized Euclidean distances are d2 = 0.8, 0.5,
and 0.1, respectively, while for FSNS with τ = 0.9,
0.8, and 0.7, the square normalized Euclidean dis-
tances are d2 = 0.9, 0.8, and 0.5, respectively. Com-
paring the theoretical performance and the simulated
BERs in Figs. 6 and 7, there is a trend that the BER
performance approaches the theoretical limit as the
sampling rate increases. However, there are gaps
between the theoretical performances and the sim-
ulated ones. On one hand, the truncation of the
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Fig. 6 BER of DSNS with sinc pulse shaping.
Reprinted from Luo and Zhang (2019), Copyright
2019, with permission from IEEE. The solid lines
show the simulated BERs, and the dotted lines are
the theoretical BERs calculated based on the mini-
mum normalized Euclidean distances in Fig. 3

equivalent channel impulse response degrades the
performance, especially when the signal-to-noise ra-
tio (SNR) becomes high. On the other hand, the per-
formance loss is due to the non-optimality of time-
variant VA detection.

Next we show the impact of the truncation of
the channel impulse response, which causes addi-
tional interference and degrades the performance.
Fig. 8 presents the BER performances of FSNS with
truncation length 2L + 1 = 5, 7, 9, with sinc pulse
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Fig. 7 BER of FSNS with sinc pulse shaping.
Reprinted from Luo and Zhang (2019), Copyright
2019, with permission from IEEE. The solid lines
show the simulated BERs, and the dotted lines are
the theoretical BERs calculated based on the mini-
mum normalized Euclidean distances in Fig. 3
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shaping and sampling rate τ = 0.9 and 0.8. We
can see that the effect of truncation is more obvi-
ous when the SNR becomes higher. As the trun-
cation length increases, the residual interference is
reduced and the error floor decreases as well, and
more importantly, the BER performance gradually
approaches the theoretical limit given by the mini-
mum Euclidean distance.

To alleviate the negative effect of truncation,
we test the performance when the root raised co-
sine (RRC) filter, instead of the sinc pulse filter,
is used for shaping. In the case of RRC shaping,
the ISI decays more rapidly, so that the truncation
length can be much smaller than that of sinc pulse
shaping, which greatly reduces the computational
complexity. Fig. 9 shows the BER of DSNS and
FSNS with RRC shaping with roll-off factor α = 0.3

and single-side truncation length L = 3. There is
no error floor in the observation window caused by
the truncation. With alleviated effect of truncation,
it shows the good performance of the time-variant
Viterbi algorithm.
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Fig. 9 BER of DSNS and FSNS with RRC pulse shap-
ing. Reprinted from Luo and Zhang (2019), Copy-
right 2019, with permission from IEEE

5 Conclusions

In this paper, the sub-Nyquist sampling of a
linearly modulated baseband signal has been inves-
tigated. While FTN signaling increases the symbol
rate beyond the Nyquist rate at the transmitter, SNS
reduces the sampling rate below the Nyquist rate at
the receiver. Direct SNS and low-pass filtered SNS

have been proposed. The performance loss has been
estimated by the minimum Euclidean distances of
the sample sequences for DSNS and FSNS. While
DSNS suffers from frequency overlapping, FSNS has
better performance due to its anti-aliasing filtering.
For FSNS with BPSK modulation and sinc pulse
shaping, the minimum distance remains proportional
to the sampling rate within the τ = 0.802 limit,
and it drops more rapidly beyond this limit. The
Viterbi algorithm is adapted for detection in this
under-determined time-variant linear system. The
proposed time-variant Viterbi algorithm is able to
recover the transmitted signal from the sub-Nyquist
samples, and its performance approaches the theo-
retical limit as its truncation length grows.
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