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Abstract: The multi-objective optimization problem has been encountered in numerous fields such as high-speed train head shape 
design, overlapping community detection, power dispatch, and unmanned aerial vehicle formation. To address such issues, current 
approaches focus mainly on problems with regular Pareto front rather than solving the irregular Pareto front. Considering this 
situation, we propose a many-objective evolutionary algorithm based on decomposition with dynamic resource allocation 
(MaOEA/D-DRA) for irregular optimization. The proposed algorithm can dynamically allocate computing resources to different 
search areas according to different shapes of the problem’s Pareto front. An evolutionary population and an external archive are 
used in the search process, and information extracted from the external archive is used to guide the evolutionary population to 
different search regions. The evolutionary population evolves with the Tchebycheff approach to decompose a problem into several 
subproblems, and all the subproblems are optimized in a collaborative manner. The external archive is updated with the method of 
shift-based density estimation. The proposed algorithm is compared with five state-of-the-art many-objective evolutionary algo-
rithms using a variety of test problems with irregular Pareto front. Experimental results show that the proposed algorithm out-
performs these five algorithms with respect to convergence speed and diversity of population members. By comparison with the 
weighted-sum approach and penalty-based boundary intersection approach, there is an improvement in performance after inte-
gration of the Tchebycheff approach into the proposed algorithm. 
 
Key words: Many-objective optimization problems; Irregular Pareto front; External archive; Dynamic resource allocation; 

Shift-based density estimation; Tchebycheff approach 
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1  Introduction 
 

In most real-life applications, such as high-speed 
train head shape design (Zhang L et al., 2017), over-
lapping community detection (Wen et al., 2017), 
power dispatch (Zeng and Sun, 2014), and unmanned 
aerial vehicle formation (Ruan and Duan, 2020), there 
are many optimization problems with more than one 
objective, known as multi-objective optimization 
problems (MOPs). Because these objectives often 
conflict with each other, no single solution satisfies all 
the objectives to achieve optimum values at the same 
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time. As a result, there exists a set of solutions, named 
Pareto optimal solutions, which presents trade-offs 
for the different objectives. An MOP can be stated as 
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where x is a decision variable vector, Ω is the 
nonempty decision variable space, F: Ω→ m con-
sists of m objective vectors, and  m is the objective 
space (Coello, 2006). Specifically, if an MOP has 
more than three objectives, it is called a many-  
objective optimization problem (MaOP) (Chand and 
Wagner, 2015; Li BD et al., 2015). 

Let a solution x1 dominate another solution x2 iff 
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A solution x* is said to be Pareto optimal if there 
exist no other feasible solutions that dominate it. The 
union of Pareto optimal solutions is called the Pareto 
set (PS), while the corresponding objective vector 
union is termed the Pareto front (PF) (Cai et al., 
2015). 

Multi-objective evolutionary algorithms (MOEAs) 
can obtain a set of solutions in a single run. Due to this 
population-based property, MOEAs are well suited 
for solving MOPs and have been predominant in 
dealing with MOPs over the past two decades, e.g., 
the improved strength Pareto evolutionary algorithm 
(SPEA2) (Zitzler et al., 2001), the improved Pareto 
envelope based selection algorithm (PSEA-II) (Corne 
et al., 2001), the nondominated sorting genetic algo-
rithm II (NSGA-II) (Deb et al., 2002), the indicator- 
based evolutionary algorithm (IBEA) (Zitzler and 
Künzli, 2004), the developed version of generalized 
differential evolution (GDE3) (Kukkonen and 
Lampinen, 2005), and multiple objective particle 
swarm optimization (MOPSO) (Coello and Lechuga, 
2002). However, along with the increasing number of 
objectives, there exists a large nondominated fraction 
of population, and evaluation of the diversity measure 
becomes computationally expensive. Due to the loss 
of selection pressure and the difficulties in maintain-
ing population diversity, MOEAs have experienced 
substantial difficulties in solving MaOPs (Purshouse 

and Fleming, 2007). Consequently, the many- 
objective evolutionary algorithm (MaOEA) is be-
coming an active research topic in evolutionary  
optimization. 

Deb and Jain (2014) followed the NSGA-II 
framework and proposed a reference-point-based 
MaOEA (NSGA-III), wherein a set of evenly dis-
tributed solutions is predefined to guarantee popula-
tion diversity and enhance the convergence speed of 
the algorithm. To solve single-, multiple-, and many- 
objective problems, Seada and Deb (2016) proposed a 
unified evolutionary algorithm U-NSGA-III, in which 
a new niching-based selection procedure is used to 
automatically degenerate to an efficient equivalent 
algorithm for each class. To automatically balance the 
convergence speed and the diversity of population 
members, Seada et al. (2019) proposed a multiphase 
many-objective evolutionary optimization algorithm 
B-NSGA-III based on the general outline of 
U-NSGA-III. Zhang HP and Hui (2019) proposed a 
cooperative bat-searching algorithm (MOCBA), 
which is extended from a single-objective optimizer 
to a many-objective optimizer using the balanceable 
fitness estimation methods to balance diversity and 
convergence. An MOEA based on decomposition 
(MOEA/D) decomposes an MOP into a number of 
single-objective optimization subproblems and then 
solves them using a cooperative approach (Zhang QF 
and Li, 2007). Considering the benefit of decomposi-
tion, MOEA/D can be used to solve both MOPs and 
MaOPs. A reference vector-guided evolutionary al-
gorithm (RVEA) for many-objective optimization 
partitions the objective space into a number of small 
subspaces with a set of reference vectors and eluci-
dates user preferences, to target a preferred subset of 
the whole PF (Cheng et al., 2016). RVEA also uses an 
adaptation strategy of reference vectors in solving 
problems where the objective functions are not nor-
malized well. Li K et al. (2015) proposed a many- 
objective optimization evolutionary algorithm based 
on dominance and decomposition (MOEA/DD), 
which exploits the merits offered by both the domi-
nance and decomposition approaches to balance the 
convergence speed and the diversity during the evo-
lutionary process. He ZN and Yen (2016) presented 
an MaOEA with objective space reduction and di-
versity improvement (MaOEA-R&D), which lever-
ages a novel design of two stages. The whole  
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population first quickly approaches a small number of 
boundary points near the true PF, and then a diversity 
improvement strategy is used to make these solutions 
well spread and distributed. Moreover, many other 
algorithms, such as bi-goal dominance (Li MQ et al., 
2015), L-optimality (Zou et al., 2008), fuzzy domi-
nance (Wang GP and Jiang, 2007), reference point 
based dominance (RP-dominance) (Elarbi et al., 
2018), grid-based EA (GrEA) (Yang et al., 2013), and 
knee point driven EA (KnEA) (Zhang XY et al., 2015) 
focus on modifying the dominance relationship to 
increase the selection pressure toward the PF. 

Despite the fact that most existing MaOEAs can 
be used to solve MaOPs, they are considered mainly 
with the problems of regular PF. In contrast, to solve 
the problems with irregular PF, it is difficult to reach 
satisfaction with these algorithms. We provide an 
example. Fig. 1 shows the final populations obtained 
by NSGA-III for two widely used MaOPs, DTLZ4 
(Deb et al., 2005) and IDTLZ1 (Jain and Deb, 2014) 
with eight objectives. DTLZ4 has a regular PF, while 
the PF of IDTLZ1 is irregular. NSGA-III achieves an 
even distribution for DTLZ4. In comparison, the 
distribution of NSGA-III for IDTLZ1 is poor. This is 
because the irregular shape of the PF is disconnected, 
inverted, and mostly degenerate, which increases the 
difficulty in approaching the true PF. 

To improve the performance of MaOEAs in 
terms of solving MaOPs with irregular PF, an MOEA 
with an enhanced inverted generational distance in-
dicator has been proposed for better versatility with 
different objective numbers and PF shapes (Tian et al., 
2018). This proposed MOEA uses an adaptation 
method to adjust a set of reference points based on the 
indicator contributions of candidate solutions in an 
external archive (EA). Liu et al. (2017) proposed a 
reference points based MaOEA, in which a series of 
reference points with good performance is continu-
ously generated according to the current population to 
guide the population evolution. An MOEA has been 
proposed to solve constrained MaOPs (Jain and Deb, 
2014), which adopts an adaptive method that adds and 
deletes reference points depending on the crowding of 
candidates on different parts of the current nondom-
inated front. Although these reference point adapta-
tion methods have achieved significantly better per-
formance for some MaOPs with irregular PF, they 
cannot effectively approach the true PFs with both 
high convergence speed and good diversity.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Cai et al. (2015) proposed an EA-guided MOEA 

based on decomposition (EAG-MOEA/D). It uses an 
EA to guide the dynamic allocation of computational 
resources among subproblems. The method of dy-
namic resource allocation (DRA) can be used to de-
cide which search regions should be searched at each 
generation. EAG-MOEA/D works well on combina-
torial MOPs with two or three objectives. 

Due to its ability of guiding the dynamic alloca-
tion of computational resources among subproblems, 
DRA has a distinctive advantage in solving MOPs 
with irregular PF. However, similar to other MOEAs, 
as the number of objective functions increases, 
EAG-MOEA/D also faces the loss of selection pres-
sure and population diversity, which may deteriorate 
its performance for MaOPs with irregular PF. 

In this study, an MaOEA based on decomposi-
tion with DRA (MaOEA/D-DRA) is proposed for 
irregular optimization. The contributions of this paper 
can be summarized as follows: 

NSGA-III on 8-objective DTLZ4
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Fig. 1  Illustration of final populations obtained by NSGA-
III on DTLZ4 (a) and IDTLZ1 (b) with eight objectives 
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1. We find that although most existing MaOEAs 
can be used to solve MaOPs, they are considered 
mainly for problems of regular PF. In contrast to the 
problems with irregular PF, these algorithms find it 
difficult to reach satisfaction. 

2. We introduce a new method of DRA to solve 
MaOPs with irregular PF (MaDRA), in which there 
are two populations during the evolutionary process, 
namely, evolutionary population (EP) and external 
archive (EA). EP uses the Tchebycheff approach to 
decompose an MaOP into several subproblems for 
evolution, and EA adopts a method of shift-based 
density estimation (SDE) (Li MQ et al., 2014) for 
updating, which enables the proposed MaOEA/ 
D-DRA to solve MaOPs. 

3. We conduct experiments to compare the pro-
posed algorithm with five state-of-the-art MaOEAs 
using a variety of test problems with irregular PF; 
experimental results show that MaOEA/D-DRA 
outperforms the other algorithms in most test prob-
lems. To verify the effectiveness of the Tchebycheff 
approach in the decomposing process, experimental 
studies are conducted to compare the integration of 
the Tchebycheff approach into the proposed algorithm 
with two widely used decomposition approaches, 
namely, the weighted-sum approach and the penalty- 
based boundary intersection approach. Experimental 
results show that the Tchebycheff approach has better 
performance than these two decomposition ap-
proaches in terms of both convergence speed and 
diversity.  

 
 

2  Related work 
 

Decomposition is a well-known strategy in tra-
ditional multi-objective optimization. As a classical 
MOEA based on decomposition, MOEA/D decom-
poses an MOP into several single-objective subprob-
lems with a scalarizing method; here, each solution 
corresponds to a weight vector (Zhang QF and Li, 
2007), and all the subproblems are optimized in a 
collaborative manner. Each subproblem has an opti-
mal solution with respect to a nondominated solution 
of MOP. During the evolutionary process, for each 
subproblem, two solutions are randomly selected as 
parents from its neighboring subproblems, and a new 
solution is generated using genetic operations. For the 

current subproblem and its neighboring subproblems, 
if the new solution performs better, the current solu-
tion is replaced with the new one, so a good solution 
can survive at multiple subproblems. 

Since MOEA/D shows good performance in 
solving MOPs, decomposition-based MOEAs have 
attracted significant attention from researchers. Li H 
and Zhang (2009) followed the MOEA/D framework 
and proposed a new version of MOEA/D based on 
differential evolution (MOEA/D-DE), which is de-
signed for MOPs with complicated Pareto set shapes. 
Zhang QF et al. (2010) presented an MOEA/D with 
the Gaussian stochastic process model, named 
MOEA/D-EGO, for dealing with expensive MOPs. 
Qi et al. (2014) have proposed an improved MOEA/D 
with adaptive weight vector adjustment (MOEA/ 
D-AWA). Based on the geometric relationship be-
tween the weight vectors and the optimal solutions 
under the Tchebycheff approach, the weight vector 
can adaptively adjust in the evolution process. To 
solve MaOPs, Asafuddoula et al. (2015) proposed an 
improved decomposition-based EA, termed I-DBEA, 
where the balance between diversity and convergence 
speed is maintained using a simple preemptive dis-
tance comparison scheme. To solve MOPs and 
MaOPs with more flexibility, a new variant of 
MOEA/D with sorting and selection was presented  
by Cai et al. (2017) (MOEA/D-SAS), in which  
decomposition-based-sorting (DBS) and angle-based- 
selection (ABS) are used for the balance between 
convergence and diversity. To improve the diversity 
and reduce the sensitivity to the shapes of Pareto 
fronts, Cai et al. (2018) proposed a constrained de-
composition with grids (CDG-MOEA), because the 
grids have the inherent property of reflecting the in-
formation of neighborhood structures of the solutions. 
Wang TC and Ting (2018) presented a fitness- 
inheritance-assisted MOEA/D using the covariance 
matrix adaptation evolution strategy, termed MOEA/ 
D-FICMAES, for complex MOPs, where fitness in-
heritance is adopted to reduce the computational cost 
and information sharing facilitates communication 
and utilization of offspring information among dif-
ferent subproblems. To solve the constrained MOPs, 
Zhu et al. (2019) proposed a constrained version of 
MOEA/D with two types of weight vectors (MOEA/ 
D-TW): the solutions associated with the conver-
gence weight vectors are renewed according to only 
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the aggregation function, while the ones associated 
with diversity weight vectors are updated by consid-
ering both the aggregation function and the overall 
constraint violation. 

EAG-MOEA/D is a variant of MOEA/D (Cai et 
al., 2015), designed for combinational optimization. 
In EAG-MOEA/D, DRA is proposed to guide the 
population for evolution. It maintains an evolutionary 
population EP and an external archive EA. EP adopts 
the weighted-sum approach to decompose an MOP 
into N single-objective optimization subproblems 
following the main framework of decomposition. EA 
is used to guide the dynamic allocation of computa-
tional resources among subproblems. Specifically, at 
the end of each generation k, EP is updated with N 
new solutions. Thereafter, the newly generated solu-
tions are combined with EA, and the NSGA-II sorting 
approach is used to select the top N better solutions to 
update EA. We call a new solution successful if it 
enters EA, and record the number of successful solu-
tions generated by subproblem i at each generation k 
as si,k, where G is the current generation, and L is the 
number of previous learning generations. 
 

1

, ,

G

i G i k
k G L

S s .


 

                         (3) 

 

The probability of selecting subproblem i at each 
generation G>L–1 is defined as 
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Di,G is the proportion of successful solutions 
generated by subproblem i over L. Here, ε=0.002 is 
used to ensure that all the Di,G’s are larger than 0. 

The framework of DRA is shown in Fig. 2; EP 
and EA complement each other. On one hand, with 
the help of EA, EP uses the decomposition approach 
for evolution. On the other hand, EA uses the new 
solutions generated from EP for updating. Therefore, 
EAG-MOEA/D can dynamically allocate computa-
tional resources to different subproblems. 

There have been numerous studies on MOEAs 
based on decomposition for various test functions and 
real-world problems (Santiago et al., 2014; Trivedi et 
al., 2017), which constitute a research direction of 
great value. 

 
 

3  The proposed algorithm 
 

We propose an MaOEA based on decomposition 
with DRA for irregular optimization. In the proposed 
MaOEA/D-DRA, MaDRA is designed for solving 
MaOPs with irregular PF. Compared with DRA in 
EAG-MOEA/D, the main differences of MaDRA are 
the updating method of EA and the decomposition 
approach of EP. 

3.1  Updating method of EA 

EAG-MOEA/D uses DRA to guide the solutions 
to some special regions during the evolutionary pro-
cess. EA adopts the NSGA-II sorting approach for 
updating, and it works well for MOPs with two or 
three objectives. Since MaOEA/D-DRA is focused on 
solving MaOPs that have more than three objectives, 
the NSGA-II sorting approach is not suitable due to a 
large number of nondominated solutions in EA. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2  Illustration of the framework of dynamic resource allocation (DRA) 
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Li MQ et al. (2014) proposed an SDE for Pareto- 
based algorithms in many-objective optimization. 
SDE considers both convergence speed and diversity 
for MaOPs, and it can be applied to any specific 
density estimator without additional parameters. Due 
to the robust performance and simple implementation 
of SDE, we use this method in MaOEA/D-DRA for 
MaOPs with irregular PF. 

SDE estimates the convergence of the solution 
by adjusting the relative positions of other solutions in 
the population. The new density D′(p, P) of solution p 
in population P can be defined as follows: 

 

 1 2 1( , ) dist( , ), dist( , ), ..., dist( , ) ,ND' P D   p p q p q p q

(6) 
 

where dist(p, qi′) denotes the similarity degree be-
tween solutions p and qi′, N is the size of P, and qi′ is 
the shifted version of solution qi (qiP and qi≠p), 
which is formulated as follows: 
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where m is the number of objectives, and p(j), qi(j), and 

( )i j'q  denote the jth objective values of solutions p, qi, 

and qi′, respectively. 
In solving MaOPs with SDE, only solutions with 

both high convergence speed and good diversity have 
a low crowding degree. Solutions with either poor 
convergence speed or poor diversity have a high 
crowding degree. Consequently, SDE can reflect the 
convergence speed and diversity of the whole popu-
lation during the evolutionary process. 

3.2  Decomposition approach of EP 

During the population evolutionary process, the 
optimal solution of the whole population in each 
generation plays an important role in speeding up the 
convergence of the algorithm. However, for simplic-
ity, EAG-MOEA/D adopts the weighted-sum ap-
proach for decomposition, in which the optimal solu-
tion is not involved. In addition, EAG-MOEA/D is 
designed for solving discrete variable combinational 
optimization problems with two or three objectives, 
whereas MaOEA/D-DRA is designed for solving 
MaOPs with continuous variables. Therefore, in 
MaOEA/D-DRA, the weighted-sum approach is re-

placed by the Tchebycheff approach (Zhang QF and 
Li, 2007), which uses the optimal solution as a ref-
erence point to promote the algorithm’s convergence 
performance. The Tchebycheff approach works as the 
following. 

The original MOP is decomposed into N sub-
problems, which are optimized in a cooperative 
manner. Specifically, the objective function of the jth 
subproblem is 
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where {λ1, λ2, …, λN} is a set of evenly spread weight 

vectors, T
1 2=( , , ..., ) ,j j j j

m  λ  and 1 2=( , , ..., )* * * *
mz z zz  

is the reference point, i.e., min{ ( ) }*
i iz f |  x x  for 

each i=1, 2, …, m. 
For each j=1, 2, …, N, let B(j) be the neighbor-

hood set of weight vector λj, which contains λj’s sev-
eral closest weight vectors in {λ1, λ2, …, λN} in terms 
of the Euclidean distance. 

3.3  Framework of MaOEA/D-DRA 

At each generation, MaOEA/D-DRA maintains 
the following: 

1. an evolutionary population EP={x1, x2, …, 
xN}, where xi is the current solution to the ith  
subproblem, 

2. z=(z1, z2, …, zm)T, where zi is the best solution 
found so far for objective i, and 

3. an EA, which has N solutions selected by 
SDE. 

MaOEA/D-DRA works as follows: 
Step 1 (initialization): initialize EP, EA, and z. 
Step 2 (new solution generation): generate a set 

of N new solutions, Y, with genetic operators and 
MaDRA. 

Step 3 (update): update EP, z, and EA. 
Step 4 (termination): if the maximum number of 

function evaluations is satisfied, output EA; other-
wise, go to step 2. 

In step 1, an initial population EP={x1, x2, …, xN} 
is generated by randomly sampling from the decision 
variable space Ω. For simplicity, EA is initialized to 
be EP. The reference point z=(z1, z2, …, zm)T is ini-
tialized by setting zj=min1≤i≤Nfj(x

i). 
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In step 2, according to MaDRA, a subproblem is 
selected based on the selection probability; then, two 
parent solutions are randomly selected from its 
neighbors and an offspring is generated with genetic 
operators. Note that a subproblem may be selected 
more than once at one generation. 

In step 3, EP, z, and EA are updated with Y. For 
EP, if the new solution yj of subproblem i performs 
better than neighbors xk with respect to the aggregated 
function of subproblem k, xk will be replaced with yj. 
For z, zl is replaced with the value of the new solution 
yj if fl(y

j) performs better than zl. Lastly, for EA, the 
combined population Z is obtained by merging EA 
and Y, and then the best N solutions are selected from 
Z to construct a new EA using SDE. 

In step 4, if the maximum number of function 
evaluations is reached, the process stops and EA is 
outputted. Otherwise, go to step 2. Algorithm 1 gives 
the pseudocode. 

 

Algorithm 1    MaOEA/D-DRA 
Input: an MaOP with irregular PF; maximum number of 
function evaluations; number of subproblems, N; population 
size of EP and EA; a uniform spread of N weight vectors: λ1, 
λ2, …, λN; number of weight vectors in the neighborhood of 
each subproblem, T. 
Output: EA. 

Step 1: initialization 
Generate an initial population EP={x1, x2, …, xN} by 

randomly sampling from Ω. 
Set EA=EP. 
Compute the Euclidean distance between any two of the 

weight vectors and work out the T closest weight vectors to 
each weight vector. For each i=1, 2, …, N, set B(i)={i1, i2, …, 

iT}, where 1 2, , ..., Ti i iλ λ λ  are the T closest weight vectors to λi. 

Initialize z=(z1, z2, …, zm)T by setting zj=min1≤i≤Nfj(x
i). 

Step 2: new solution generation 
For all j{1, 2, …, N} do 
Select subproblem i for search according to Eq. (4). 
Randomly select two indexes k and l from B(i), and then 

generate a new solution yj from xk and xl for subproblem i by 
genetic operators. 

End for 
Step 3: update 
For all j{1, 2, …, N} do 
Update of neighboring solutions: if yj is generated from 

subproblem i, for each index kB(i), if g(yj|λk, z)≤g(xk|λk, z), set 
xk=yj. 

Update of z: for each l=1, 2, …, m, if fl(y
j)<zl, set zl=fl(y

j). 
End for 
Update of EA: obtain Z=EAY; select the best N solu-

tions from Z to replace EA using SDE. 

Step 4: termination 
If the maximum number of function evaluations is 

reached, stop and output EA; otherwise, go to step 2.  

3.4  Computational complexity of MaOEA/D-DRA 

To analyze the computational complexity of 
MaOEA/D-DRA, the main steps in one generation in 
the main loop of Algorithm 1 are considered. Apart 
from the generation of the new solution in step 2, the 
main computational cost results from the initialization 
in step 1 and update in step 3. 

As shown in Algorithm 1, the initialization of 
step 1 consists of two components: computing of the 
Euclidean distance and initialization of z. The com-
putational complexity of the computing of the Eu-
clidean distance is O(N2), where N is the population 
size. The computational complexity of the initializa-
tion of z is O(N·m), where m is the objective number. 
In addition, the update of step 3 consists of three 
components: updating of neighboring solutions, up-
dating of z, and updating of EA. The computational 
complexity of updating of neighboring solutions is 
O(N·m·T), where T is the number of the neighbor 
weight vectors of each subproblem. The computa-
tional complexities of z update and EA update are 
O(N·m) and O(N2·m), respectively. 

In conclusion, since T≤N, the overall computa-
tional complexity of MaOEA/D-DRA within one 
generation is O(N2·m), which indicates that MaOEA/ 
D-DRA is computationally efficient. 
 
 
4  Experimental results and analysis 

 
In this section, we compare MaOEA/D-DRA 

with five state-of-the-art MaOEAs, namely NSGA- 
III, MOEA/D, RVEA, MOEA/DD, and MaOEA- 
R&D. NSGA-III is a variant of NSGA-II, which is a 
classical Pareto dominance-based MOEA. MOEA/D, 
RVEA, and MaOEA-R&D are popular decomposi-
tion-based MaOEAs, whereas MOEA/DD is an 
MaOEA based on both dominance and decomposition. 
In addition, the three widely used decomposition 
approaches, namely the Tchebycheff approach, 
weighted-sum approach, and penalty-based boundary 
intersection approach, are compared in the same al-
gorithmic framework. 
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4.1  Experimental settings 

In the experiments, 11 unconstrained test prob-
lems with irregular PF and one constrained test 
problem from four widely used test suites, namely 
DTLZ5–DTLZ7 (Deb et al., 2005), IDTLZ1, IDTLZ2, 
C1_DTLZ1 (Jain and Deb, 2014), WFG1–WFG3 
(Huband et al., 2006), MaF2, MaF4, and MaF13 
(Cheng et al., 2018) have been used, as recommended 
by Tian et al. (2018); the relevant settings are given in 
Table 1. Each algorithm is run 30 times for each test 
problem independently, and the mean and standard 
deviation of each metric are recorded. The Wilcoxon 
rank-sum test with a significance level of 0.05 is used 
to compare the results obtained by MaOEA/D-DRA 
and the five compared algorithms, where the symbols 
“+,” “–,” and “≈” denote that the result obtained by 
another algorithm is significantly better, significantly 
worse, and statistically similar to that obtained by 
MaOEA/D-DRA, respectively. All the compared 
algorithms in this study are implemented on a 
MATLAB platform named PlatEMO (Tian et al., 
2017). The details of the experimental settings are 
given in the following. 

Reference points: As recommended by Deb and 
Jain (2014), uniformly distributed reference points 
with two layers are adopted in all the compared al-
gorithms. Table 2 lists the number of reference points 
for varying numbers of objectives, where φ1 and φ2 
are the numbers controlling the number of weight 
vectors along the boundary of the Pareto front and 
inside it, respectively. To ensure a fair comparison, 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the population size of each compared algorithm is set 
to the same as the number of reference points. 

Genetic operators: In all the compared algo-
rithms, simulated binary crossover (SBX) (Tian et al., 
2018) and polynomial mutation (Deb and Goyal, 
1996) are adopted to create offspring solutions. The 
distribution indexes of both SBX and polynomial 
mutation are set to 20. The crossover probability and 
mutation are set to 1.0 and 1/D, respectively, where D 
denotes the number of decision variables. 

Specific parameter setting: For NSGA-III and 
MaOEA-R&D, there is no additional parameter to be 
specified. For MOEA/D, the size of the neighborhood 
T is specified as 10% of the population size, and the 
Tchebycheff approach is selected as the aggregation 
function. For RVEA, the penalty parameter α and the 
frequency of reference point adaption fr are set to 2 
and 0.1, respectively. For MOEA/DD, T is set to the 
same value as in MOEA/D, and the neighborhood 
selection probability δ is set to 0.9. For the proposed 
MaOEA/D-DRA, T is set to the same value as in 
MOEA/D and MOEA/DD, and L is set to 8. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Settings of the number of objectives, the number of decision variables, the maximum number of function eval-
uations, and the features of Pareto front for each test problem 

Problem M D E Pareto front 

DTLZ5, DTLZ6 5, 8, 10 M−1+10 52 500, 78 000, 11 5000 Mostly degenerate 

DTLZ7 5, 8, 10 M−1+20 21 000, 31 200, 46 000 Disconnected 

IDTLZ1 5, 8, 10 M−1+5 52 500, 78 000, 11 5000 Inverted 

IDTLZ2 5, 8, 10 M−1+10 21 000, 31 200, 46 000 Inverted 

C1_DTLZ1 5, 8, 10 M−1+10 52 500, 78 000, 11 5000 Constrained problem 

WFG1 5, 8, 10 M−1+10 52 500, 78 000, 11 5000 Sharp tails 

WFG2 5, 8, 10 M−1+10 52 500, 78 000, 11 5000 Disconnected 

WFG3 5, 8, 10 M−1+10 21 000, 31 200, 46 000 Mostly degenerate 

MaF2 5, 8, 10 M−1+10 52 500, 78 000, 11 5000 Disconnected 

MaF4 5, 8, 10 M−1+10 52 500, 78 000, 11 5000 Inverted 

MaF13 5, 8, 10 5 52 500, 78 000, 11 5000 Degenerate 

M: number of objectives; D: number of decision variables; E: maximum number of function evaluations 

 

Table 2  Settings of the number of reference points for 
each number of objectives 

Number of  
objectives 

(φ1, φ2) 
Number of  

reference points 
5 (4, 3) 105 
8 (3, 2) 156 

10 (3, 1) 230 

φ1 and φ2 are the numbers of weight vectors along the boundary of the 
Pareto front and inside it, respectively 
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4.2  Performance metrics 

To make an empirical comparison between the 
solution sets of different algorithms, two widely used 
performance metrics are adopted to measure the so-
lution sets in terms of both convergence speed and 
diversity. 

The first performance indicator used is the in-
verted generational distance (IGD) (Zhou et al., 2006). 
It measures the average distance from a set of evenly 
distributed reference points P* in PF to the set of 
nondominated solutions Ω found by MaOEAs. It can 
be formulated as follows: 
 

dis( , )
IGD( , ) ,

** P
*

P
| P |


   x

x
              (9) 

 
where dis(x, Ω) is the minimum Euclidean distance 
between x and points in Ω, and |P*| denotes the size of 
P*. For the experiments in this study, roughly 10 000 
uniformly distributed points are selected from the PF 
to form P* by Das and Dennis (1998)’s approach. The 
set Ω with smaller IGD values is better. 

The second performance indicator applied in this 
study is the hypervolume (HV) (He et al., 2017). In 
contrast to IGD, larger HV values mean better quality. 
Generally speaking, the HV value of a solution set Ω 
is formulated as the area covered by Ω with regard to 
a set of predefined reference points P* in the objective 
space: 

 

 HV( , ) ( , ) ,* *P H P                (10) 

where 




( , ) , :

                     ( ) , 1, 2, , ,

* *

i i i

H P Z | P P

f z r i ... m

     

  

z x r

x
    (11) 

 
and λ is the Lebesgue measure with 
 

  ( , )
( , ) 1 ( )d ,m **
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H PP
H P z z


                (12) 

 
where 

( , )
1 *H P

 is the characteristic function of  

H(Ω, P*). 

4.3  Comparisons of MaOPs with irregular PF 

Table 3 gives the IGD values obtained by the six 
algorithms over 30 independent runs for the 36 in-

stances of 12 test problems, with the best results being 
highlighted. In general, MaOEA/D-DRA signifi-
cantly outperforms the five other algorithms. On one 
hand, MaOEA/D-DRA shows the best performance in 
20 of 36 instances, with the best results obtained by 
NSGA-III, MOEA/D, RVEA, MOEA/DD, and 
MaOEA-R&D being 3, 7, 0, 3, and 3, respectively. On 
the other hand, compared with all the five other al-
gorithms, MaOEA/D-DRA has achieved more than 
25 significantly better results. 

Table 4 summarizes the statistical results of the 
HV values obtained by the six algorithms over 30 
independent runs for the 36 instances of the 12 test 
problems, where the best results are highlighted. In 
general, MaOEA/D-DRA has achieved the best per-
formance in 16 of 36 instances, and the best results 
obtained by NSGA-III, MOEA/D, RVEA, MOEA/ 
DD, and MaOEA-R&D are 8, 7, 4, 1, and 0, respec-
tively. Compared with NSGA-III, MOEA/D, RVEA, 
MOEA/DD, and MaOEA-R&D, the numbers of sig-
nificantly better results obtained by MaOEA/D-DRA 
are 20, 26, 26, 24, and 31, respectively, while the 
numbers of significantly worse results obtained  
by MaOEA/D-DRA are only 12, 6, 7, 9, and 2,  
respectively. 

From the above discussions, MaOEA/D-DRA 
significantly outperforms all the five other algorithms 
in terms of both convergence speed and diversity. 
This is because MaDRA can guide the solutions to 
some special regions according to the shape of the 
irregular PF during the evolutionary process. 

Note that, for constrained problem C1_DTLZ1, 
MaOEA/D-DRA does not obtain the optimal value in 
all the three test instances. In terms of the IGD value, 
NSGA-III, RVEA, and MOEA/DD perform better 
than MaOEA/D-DRA in all the three instances. 
Compared with MOEA/D, MaOEA/D-DRA obtains 
significantly better results in all the three test in-
stances. Compared with MaOEA-R&D, MaOEA/ 
D-DRA obtains two significantly better results and 
one statistically similar result. In terms of the HV 
value, RVEA and MOEA/DD perform better than 
MaOEA/D-DRA in all the three instances. Compared 
with NSGA-III, MaOEA/D-DRA obtains two signif-
icantly worse results and one statistically similar 
result. Compared with MOEA/D and MaOEA-R&D, 
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Table 3  IGD results of MaOEA/D-DRA and five other algorithms in 36 test instances 

Problem M 
IGD 

NSGA-III MOEA/D RVEA MOEA/DD MaOEA-R&D MaOEA/D-DRA

DTLZ5 

 

5 
1.5355e–1 

 (7.20e–2)  

3.4676e–2 

 (8.99e–4) +

4.0564e–1 

 (5.93e–2) 

9.9241e–2 

 (1.34e–2) 

7.4209e–1 

 (2.66e–8)  

6.7229e–2 

 (8.25e–3) 

8 
2.4557e–1 

 (8.06e–2)  

4.3631e–2 

 (3.84e–3) +

3.8414e–1 

 (5.44e–2) 

1.5326e–1 

 (1.85e–2) 

7.4205e–1 

 (2.12e–4)  

1.3701e–1 

 (3.05e–2) 

10 
3.1546e–1 

 (7.33e–2)  

4.8327e–2 

 (4.25e–3) +

2.3049e–1 

 (2.17e–2) 
1.2067e–1 

 (5.77e–3) ≈

7.4209e–1 

 (3.25e–8)  

1.1945e–1 

 (1.75e–2) 

DTLZ6 

 

5 
3.3480e–1 

 (1.82e–1)  

3.2975e–2 

 (2.43e–3) +

2.6525e–1 

 (5.00e–2) 

1.0130e–1 

 (1.13e–2) 

8.9463e–1 

 (9.12e–1)  

9.0757e–2 

 (1.57e–2) 

8 
5.9784e–1 

 (3.19e–1)  

3.5465e–2 

 (5.15e–3) +

2.9097e–1 

 (5.06e–2) 

1.6927e–1 

 (2.79e–2) 

8.6616e–1 

 (1.27e+0)  

1.4337e–1 

 (2.99e–2) 

10 
2.8277e+0 

 (1.36e+0)  

4.4143e–2 

 (9.44e–4) +

1.7661e–1 

 (3.40e–2) 
1.1576e–1 

 (6.45e–4) ≈

7.2180e–1 

 (7.11e–2)  

1.2049e–1 

 (1.80e–2) 

DTLZ7 

 

5 
3.4488e–1 

(2.67e–2)  

6.1481e–1 

(6.62e–2)  

4.7679e–1 

(2.42e–2)  

2.9096e+0 

(3.47e–1)  

1.0536e+0 

(4.92e–1)  

3.2191e–1 

(4.32e–2) 

8 
9.3899e–1 

(8.88e–2)  

1.1122e+0 

(2.29e–1)  

1.3464e+0 

(2.73e–1)  

1.6944e+0 

(4.80e–1)  

1.4547e+0 

(2.87e–1)  

7.6641e–1 

(3.40e–2) 

10 
1.3719e+0 

(1.96e–1)  

1.6324e+0 

(5.92e–1)  

2.0265e+0 

(6.33e–1)  

2.2232e+0 

(4.54e–1)  

1.9864e+0 

(3.54e–1)  

1.0055e+0 

(1.09e–1) 

IDTLZ1 

 

5 
1.0322e–1 

(8.12e–3)  

7.6672e–2 

(1.59e–3)  

1.8852e–1 

(2.13e–2)  

1.4780e–1 

(5.76e–3)  

2.3172e–1 

(2.40e–2)  

7.0119e–2 

(7.83e–4) 

8 
1.3131e–1 

(6.98e–3)  

1.2024e–1 

(8.92e–4)  

2.5781e–1 

(2.48e–2)  

2.1602e–1 

(1.25e–2)  

2.8432e–1 

(2.56e–2)  

1.1130e–1 

(8.20e–4) 

10 
1.4219e–1 

(3.11e–3)  

1.4130e–1 

(2.57e–3)  

2.7651e–1 

(4.23e–2)  

1.8161e–1 

(1.42e–2)  

2.8721e–1 

(2.20e–2)  

1.2592e–1 

(4.15e–3) 

IDTLZ2 

 

5 
2.5657e–1 

(1.56e–2)  

2.2640e–1 

(1.39e–3)  

3.2925e–1 

(2.13e–2)  

2.5239e–1 

(7.99e–3)  

6.8831e–1 

(5.32e–3)  

2.1889e–1 

(4.87e–3) 

8 
4.7460e–1 

(1.40e–2)  

3.4820e–1 

(1.21e–3) + 

6.1128e–1 

(5.03e–3)  

6.4481e–1 

(1.59e–2)  

8.4950e–1 

(2.22e–2)  

3.6913e–1 

(4.36e–3) 

10 
5.7976e–1 

(1.28e–2)  

4.4032e–1 

(3.26e–3)  

6.6866e–1 

(4.15e–3)  

6.8035e–1 

(5.22e–3)  

8.7233e–1 

(2.33e–2)  

4.2794e–1 

(4.01e–3) 

C1_DTLZ1 

5 
7.1629e–2 

 (1.25e–2) + 

1.1496e–1 

 (1.88e–2) 
8.2626e–2 

 (2.64e–2) +

6.7300e–2 

 (1.06e–2) +

2.5223e–1 

 (6.48e–2)  

9.3873e–2 

 (2.23e–2) 

8 
1.0773e–1 

 (1.84e–2) + 

1.7782e–1 

 (1.50e–2) 
1.1274e–1 

 (2.24e–2) +

9.3142e–2 

 (5.07e–3) +

2.6794e–1 

 (0.00e+0) ≈ 

1.4100e–1 

 (1.54e–2) 

10 
1.2468e–1 

 (9.02e–3) + 

2.0402e–1 

 (1.88e–2) 
1.2834e–1 

 (7.64e–3) +

1.1998e–1 

 (7.20e–3) +

2.9173e–1 

 (3.72e–2)  

1.7481e–1 

 (2.44e–2) 

WFG1 

 

5 
7.2693e–1 

(7.34e–2)  

1.5733e+0 

(7.06e–2)  

6.5620e–1 

(8.94e–2)  

1.3809e+0 

(1.54e–1)  

1.4961e+0 

(2.76e–1)  

5.9809e–1 

(5.72e–2) 

8 
1.0710e+0 

(7.11e–2) ≈ 

2.1841e+0 

(1.18e–1)  

1.1600e+0 

(1.05e–1)  

1.8228e+0 

(2.16e–1)  

2.1933e+0 

(4.50e–1)  

1.0789e+0 

(1.01e–1) 

10 
1.2235e+0 

(6.24e–2) + 

2.5327e+0 

(2.01e–1)  

1.3886e+0 

(6.98e–2) + 

1.6030e+0 

(1.64e–1) ≈ 

2.3942e+0 

(6.04e–1)  

1.5928e+0 

(3.93e–1) 

To be continued
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MaOEA/D-DRA obtains two significantly better 
results and one statistically similar result. Therefore, 
MaOEA/D-DRA does not perform well in the  
constrained problem C1_DTLZ1. In terms of con-
straint optimization, MaOEA/D-DRA still needs  
improvement. 

To intuitively compare the performance of the 
algorithms, we select three algorithms with different 
shapes of the irregular PF with 5, 8, and 10 objectives, 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
namely 5-objective IDTLZ1, 8-objective DTLZ7,  
and 10-objective MaF4. Figs. 3–5 plot the parallel 
coordinates of the nondominated fronts on 
5-objective IDTLZ1, 8-objective DTLZ7, and 
10-objective MaF4, obtained by each algorithm with 
the median IGD value in 30 runs. It is evident from 
these figures that MaOEA/D-DRA can better ap-
proach the true irregular PF than all the five other 
algorithms. 

Table 3 

Problem M 
IGD 

NSGA-III MOEA/D RVEA MOEA/DD MaOEA-R&D MaOEA/D-DRA

WFG2 

5 
8.0846e–1 
(3.73e–2) + 

1.7030e+0 
(1.01e–1) 

1.9206e+0 
(4.91e–1) 

4.0022e+0 
(3.50e–1) 

7.3105e–1 
(6.53e–2) + 

1.2829e+0 
(1.46e–1) 

8 
2.0962e+0 
(1.34e+0) + 

3.2781e+0 
(1.05e+0) 

4.2415e+0 
(7.39e–1) 

7.4947e+0 
(5.23e–2) 

1.6293e+0 
(1.67e–1) + 

2.5180e+0 
(5.79e–1) 

10 
5.1014e+0 
(2.22e+0)  

4.3140e+0 
(2.69e+0) 

8.4774e+0 
(2.14e+0) 

1.4897e+1 
(3.44e–1) 

2.1743e+0 
(2.43e–1) + 

4.1714e+0 
(1.03e+0) 

WFG3 

5 
7.2221e–1 
(1.17e–1)  

1.4402e+0 
(5.99e–2) 

7.7959e–1 
(2.39e–1) 

9.4212e–1 
(5.46e–2) 

1.8679e+0 
(8.97e–1)  

5.3937e–1 
(7.17e–2) 

8 
1.0728e+0 
(2.98e–1)  

2.5978e+0 
(8.40e–2) 

2.4303e+0 
(7.83e–1) 

2.0496e+0 
(6.69e–2) 

2.1729e+0 
(5.47e–1)  

7.4950e–1 
(1.08e–1) 

10 
8.5996e–1 
(1.33e–1) ≈ 

3.2714e+0 
(4.76e–1) 

4.0896e+0 
(1.10e+0) 

2.7644e+0 
(8.56e–2) 

2.8920e+0 
(8.17e–1)  

8.6920e–1 
(1.22e–1) 

MaF2 

5 
1.3040e–1 
(3.00e–3)  

1.3503e–1 
(1.00e–3) 

1.2652e–1 
(1.50e–3) 

1.4116e–1 
(1.62e–2) 

4.9489e–1 
(3.97e–2)  

1.1677e–1 
(2.05e–3) 

8 
2.2543e–1 
(4.54e–2)  

2.7974e–1 
(1.44e–2) 

2.4236e–1 
(8.14e–2) 

2.0562e–1 
(9.96e–3) 

7.9523e–1 
(9.55e–2)  

1.6103e–1 
(3.08e–3) 

10 
2.2442e–1 
(2.74e–2)  

3.1540e–1 
(4.62e–2) 

3.6527e–1 
(1.81e–1) 

2.3384e–1 
(3.98e–2) 

8.2642e–1 
(4.08e–2)  

1.7244e–1 
(3.27e–3) 

MaF4 

5 
5.3251e+0 
(9.36e+0)  

4.3805e+0 
(1.79e–1) 

5.6736e+0 
(1.55e+0) 

7.0828e+0 
(7.09e–1) 

1.6111e+1 
(2.00e+0)  

2.7955e+0 
(1.65e–1) 

8 
2.9783e+1 
(2.03e+0)  

3.2395e+1 
(1.23e+0) 

5.7492e+1 
(2.12e+1) 

9.5144e+1 
(4.86e+0) 

1.4507e+2 
(2.51e+1)  

2.1480e+1 
(1.30e+0) 

10 
1.0512e+2 
(6.12e+0)  

1.3365e+2 
(5.60e+0) 

1.9735e+2 
(4.40e+1) 

4.0066e+2 
(1.68e+1) 

5.0274e+2 
(1.17e+2)  

7.8675e+1 
(3.34e+0) 

MaF13 

5 
2.3862e–1 
(2.59e–2)  

1.8886e–1 
(2.56e–2) 

6.2602e–1 
(9.80e–2) 

2.3012e–1 
(2.48e–2) 

9.1158e–1 
(1.60e–1)  

1.3036e–1 
(1.43e–2) 

8 
2.5845e–1 
(3.28e–2)  

2.5187e–1 
(2.58e–2) 

7.2472e–1 
(1.94e–1) 

3.8653e–1 
(3.28e–2) 

1.0503e+0 
(3.29e–1)  

1.3739e–1 
(2.38e–2) 

10 
2.5174e–1 
(2.27e–2)  

3.6981e–1 
(4.66e–2) 

9.1294e–1 
(2.60e–1) 

2.9730e–1 
(2.97e–2) 

1.2567e+0 
(3.26e–1)  

1.3345e–1 
(1.24e–2) 

+//≈ 6/28/2 7/29/0 4/32/0 3/30/3 3/32/1  

M: number of objectives. The best result in each row is highlighted in bold 
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Table 4  HV results of MaOEA/D-DRA and five other algorithms in 36 test instances 

Problem M 
HV 

NSGA-III MOEA/D RVEA MOEA/DD MaOEA-R&D MaOEA/D-DRA

DTLZ5 
 

5 
6.0772e–3 

 (1.75e–3)  
8.6141e–3 

 (2.71e–5) +
6.4779e–3 

 (1.91e–5) 
7.6871e–3 

 (2.07e–4) 
6.4705e–3 

 (4.64e–9)  
8.0417e–3 
 (1.62e–4) 

8 
1.7190e–5 

 (5.65e–7) + 
1.8882e–5 

 (4.88e–8) +
1.6817e–5 

 (4.13e–9) 
1.7787e–5 

 (1.11e–7) +
1.6821e–5 

 (3.58e–11)  
1.7100e–5 
 (2.14e–7) 

10 
3.4705e–8 

 (2.12e–8)  
6.0378e–8 

 (1.99e–10) +
5.5708e–8 

 (5.01e–10) 
5.8209e–8 

 (2.04e–10) +
5.6218e–8 

 (5.08e–14)  
5.6548e–8 
 (2.49e–10) 

DTLZ6 

5 
4.7538e–3 

 (2.84e–3)  
8.6268e–3 

 (2.51e–5) +
6.7674e–3 

 (3.94e–4) 
7.7310e–3 

 (1.57e–4) ≈
5.4048e–3 

 (2.19e–3)  
7.7973e–3 
 (2.59e–4) 

8 
9.2253e–6 

 (8.10e–6)  
1.8943e–5 

 (6.26e–8) +
1.6649e–5 

 (3.06e–6) ≈
1.7725e–5 

 (4.23e–8) +
1.0313e–5 

 (8.13e–6)  
1.7025e–5 
 (1.64e–7) 

10 
1.8739e–9 

 (1.03e–8)  
6.0327e–8 

 (1.98e–10) +
5.5834e–8 

 (5.25e–9) ≈
5.8258e–8 

 (1.47e–10) +
5.1783e–8 

 (1.44e–8)  
5.6530e–8 
 (2.46e–10) 

DTLZ7 

5 
1.9128e+0 
(6.88e–2) ≈ 

1.4795e+0 
(1.68e–1)  

1.7082e+0 
(1.28e–1)  

7.9961e–1 
(3.90e–3)  

1.4692e+0 
(9.89e–2)  

1.9345e+0 
(7.84e–2) 

8 
1.6172e+0 
(1.94e–1) + 

3.9241e–1 
(4.96e–1)  

1.6423e+0 
(2.08e–1) + 

2.9310e–1 
(3.40e–1) ≈ 

5.4074e–1 
(1.60e–1) + 

4.7545e–1 
(2.17e–1) 

10 
1.7749e+0 
(9.83e–2) + 

1.0321e–1 
(1.20e–1)  

1.5293e+0 
(1.74e–1) + 

1.6093e–2 
(8.15e–2)  

1.3884e–1 
(7.20e–2) ≈ 

2.2034e–1 
(2.48e–1) 

IDTLZ1 

5 
2.4744e–4 
(6.22e–5)  

4.0466e–4 
(1.82e–5)  

7.2734e–5 
(2.90e–5)  

1.1355e–4 
(1.49e–5)  

5.1261e–5 
(1.17e–5)  

4.6325e–4 
(1.66e–5) 

8 
1.9669e–7 
(3.63e–8) + 

1.2832e–7 
(3.68e–8)  

1.1613e–8 
(5.69e–9)  

3.9065e–8 
(1.02e–8)  

7.8311e–9 
(3.08e–9)  

1.6440e–7 
(2.83e–8) 

10 
1.2892e–9 

(6.72e–11) + 
6.3786e–10 
(1.55e–9) ≈ 

3.4615e–11 
(2.74e–11) ≈

3.4811e–10 
(8.42e–11) ≈

1.9658e–11 
(7.47e–12) ≈ 

7.8369e–10 
(1.20e–9) 

IDTLZ2 

5 
9.6717e–2 
(6.56e–3)  

9.7968e–2 
(2.45e–3)  

1.2519e–1 
(1.26e–2)  

1.2109e–1 
(8.48e–3)  

4.5015e–2 
(2.07e–3)  

1.7200e–1 
(3.73e–3) 

8 
3.3012e–3 
(7.35e–4)  

4.3478e–4 
(4.99e–5)  

3.1234e–3 
(2.93e–4)  

2.8098e–3 
(4.26e–4)  

1.3516e–3 
(4.01e–4)  

5.1181e–3 
(5.20e–4) 

10 
5.7321e–4 
(4.57e–5) + 

7.2393e–6 
(3.77e–6)  

5.1337e–4 
(3.53e–5) + 

5.6072e–4 
(2.46e–5) + 

7.2551e–5 
(3.19e–5)  

2.3708e–4 
(6.48e–5) 

C1_DTLZ1 

5 
4.3435e–2 

 (2.81e–3) ≈ 
4.1329e–2 

 (2.96e–3) ≈
4.6356e–2 

 (1.65e–3) +
4.4491e–2 

 (2.56e–3) +
2.2888e–2 

 (7.61e–3)  
4.2046e–2 
 (3.42e–3) 

8 
7.5565e–3 

 (5.93e–4) + 
7.1082e–3 

 (3.19e–4) 
8.0786e–3 

 (1.21e–4) +
7.7700e–3 

 (2.39e–4) +
4.9780e–3 

 (0.00e+0) ≈ 
7.3339e–3 
 (4.52e–4) 

10 
2.3521e–3 

 (1.05e–4) + 
1.9862e–3 

 (1.19e–4) 
2.4800e–3 

 (2.54e–5) +
2.4190e–3 

 (5.80e–5) +
1.2138e–3 

 (2.84e–4)  
2.3034e–3 
 (7.20e–5) 

WFG1 

5 
4.8129e+3 
(2.62e+2)  

5.9884e+3 
(1.08e+1)  

4.9659e+3 
(2.83e+2)  

3.3045e+3 
(3.76e+2)  

2.8856e+3 
(7.61e+2)  

6.0270e+3 
(3.32e+0) 

8 
1.6981e+7 
(1.06e+6)  

2.0544e+7 
(5.97e+5)  

1.8633e+7 
(1.36e+6)  

1.3427e+7 
(1.68e+6)  

8.4707e+6 
(3.49e+6)  

2.0663e+7 
(3.42e+5) 

10 
7.5787e+9 
(3.96e+8) ≈ 

6.5019e+9 
(1.21e+9)  

8.3719e+9 
(4.96e+8) + 

8.4044e+9 
(3.61e+8) + 

3.6322e+9 
(1.60e+9)  

7.6010e+9 
(9.31e+8) 

WFG2 

5 
6.1285e+3 
(9.07e+0) + 

5.9563e+3 
(6.61e+1)  

6.0262e+3 
(3.30e+1)  

5.9933e+3 
(4.33e+1)  

5.9043e+3 
(5.28e+1)  

6.1186e+3 
(1.73e+1) 

8 
2.1978e+7 
(4.72e+4)  

2.1936e+7 
(7.44e+4)  

2.1663e+7 
(1.01e+5)  

2.1153e+7 
(1.35e+5)  

2.1149e+7 
(5.45e+5)  

2.2024e+7 
(3.92e+4) 

10 
9.6034e+9 
(1.76e+7) ≈ 

9.5054e+9 
(7.56e+7)  

9.4851e+9 
(4.54e+7)  

9.2114e+9 
(9.79e+7)  

9.3028e+9 
(2.12e+8)  

9.6043e+9 
(1.41e+7) 

To be continued
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4.4  Impact of different decomposition approaches  

In this subsection, we compare the Tchebycheff 
approach with the weighted-sum and penalty-based 
boundary intersection approaches. For fair compari-
sons, the Tchebycheff approach is replaced by the 
weighted-sum approach and penalty-based boundary 
intersection approach only in the decomposition 
process, while the other parts of MaOEA/D-DRA are 
retained. For simplicity, MaOEA/D-DRA with the 
weighted-sum approach is hereafter denoted as 
WS-MaOEA/D-DRA, MaOEA/D-DRA with the 
penalty-based boundary intersection approach is 
hereafter denoted as PBI-MaOEA/D-DRA. Tables 5 
and 6 show the IGD and HV values, respectively, 
obtained by MaOEA/D-DRA, WS-MaOEA/D-DRA, 
and PBI-MaOEA/D-DRA over 30 independent runs 
in the 36 instances of the 12 test problems, where the 
best results are highlighted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the IGD value, MaOEA/D-DRA shows the 

best performance in 21 of the 36 instances, while the 
best result obtained by WS-MaOEA/D-DRA is only 8, 
and the best result obtained by PBI-MaOEA/D-DRA 
is only 7. Compared with WS-MaOEA/D-DRA and 
PBI-MaOEA/D-DRA, the numbers of significantly 
better results obtained by MaOEA/D-DRA are 25 and 
27, respectively, while the number of significantly 
worse results obtained by MaOEA/D-DRA is 6 for 
both. 

For the HV value, MaOEA/D-DRA has achieved 
the best performance in 14 of 36 instances, while the 
best results obtained by WS-MaOEA/D-DRA and 
PBI-MaOEA/D-DRA are 12 and 10, respectively. 
Compared with WS-MaOEA/D-DRA and PBI- 
MaOEA/D-DRA, the numbers of significantly better 
results obtained by MaOEA/D-DRA are 18 and 24, 
respectively, while the numbers of significantly worse 

Table 4 

Problem M 
HV 

NSGA-III MOEA/D RVEA MOEA/DD MaOEA-R&D MaOEA/D-DRA

WFG3 

5 
1.0486e+0 

(3.07e–1)  

9.9211e–1 

(2.26e–1)  

8.0637e–1 

(3.73e–1)  

6.5164e–1 

(2.69e–1)  

2.8132e–1 

(5.57e–1)  

1.5790e+0 
(2.87e–1) 

8 
2.4794e–4 

(7.34e–4)  

1.0001e–2 
(3.60e–3) ≈ 

0.0000e+0 

(0.00e+0)  

0.0000e+0 

(0.00e+0)  

0.0000e+0 

(0.00e+0)  

9.3936e–3 
(6.33e–3) 

10 
0.0000e+0 

(0.00e+0)  

1.9200e–5 
(1.15e–5) ≈ 

0.0000e+0 

(0.00e+0)  

0.0000e+0 

(0.00e+0)  

0.0000e+0 

(0.00e+0)  

2.7001e–5 
(1.67e–5) 

MaF2 

5 
4.1962e–2 

(1.27e–3)  

4.5000e–2 

(2.09e–4)  

4.0892e–2 

(5.04e–4)  

3.6084e–2 

(2.25e–3)  

1.0043e–2 

(1.14e–3)  

5.0573e–2 
(3.58e–4) 

8 
2.7468e–2 

(6.94e–4)  

2.5983e–2 

(2.89e–4)  

2.2292e–2 

(2.24e–3)  

2.3948e–2 

(7.13e–4)  

6.2090e–3 

(2.51e–3)  

2.9989e–2 
(4.11e–4) 

10 
7.6925e–3 

(2.19e–4)  

6.5276e–3 

(1.16e–4)  

5.7821e–3 

(1.58e–3)  

6.3221e–3 

(3.40e–4)  

1.5866e–3 

(2.29e–4)  

8.0826e–3 
(8.82e–5) 

MaF4 

5 
2.5952e+3 
(9.71e+2) + 

1.2499e+3 

(2.46e+2)  

3.5709e+2 

(2.02e+2)  

1.2148e+3 

(4.10e+2)  

3.4058e+2 

(3.67e+2)  

2.2155e+3 
(5.79e+2) 

8 
2.7851e+8 
(6.85e+7) + 

5.0962e+6 

(1.79e+6)  

1.4568e+6 

(7.99e+5)  

2.0693e+6 

(6.75e+5)  

1.6004e+7 

(2.45e+7)  

2.6243e+7 
(1.52e+7) 

10 
1.6948e+13 
(1.07e+12) + 

1.2906e+10 

(2.94e+10) 
9.3379e+9 

(6.71e+9)  

1.3915e+10 

(3.76e+9)  

3.6295e+12 
(5.01e+12) + 

1.0429e+11 
(4.90e+10) 

MaF13 

5 
3.2014e–1 

(2.16e–2)  

3.7407e–1 

(1.77e–2)  

2.1396e–1 

(7.02e–2)  

3.1758e–1 

(3.68e–2)  

1.5451e–1 

(2.49e–2)  

4.2545e–1 
(9.70e–3) 

8 
2.7436e–1 

(2.30e–2)  

2.8887e–1 

(1.33e–2)  

2.0022e–1 

(5.38e–2)  

1.4587e–1 

(3.38e–2)  

1.3083e–1 

(5.39e–2)  

3.5881e–1 
(7.37e–3) 

10 
2.2438e–1 

(5.94e–2)  

2.6754e–1 

(9.08e–3)  

2.2781e–1 

(5.30e–2)  

2.4270e–1 

(1.96e–2)  

1.3745e–1 

(6.87e–2)  

3.5999e–1 
(4.94e–3) 

+//≈ 12/20/4 6/26/4 7/26/3 9/24/3 2/31/3  

M: number of objectives. The best result in each row is highlighted in bold 
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Fig. 3  Illustration of parallel coordinates of the non-dominated fronts on 5-objective IDTLZ1, obtained by NSGA-III (a), 
MOEA/D (b), RVEA (c), MOEA/DD (d), MaOEA-R&D (e), and MaOEA/D-DRA (f) with the median IGD value in 
30 runs 

 

 

Fig. 4  Illustration of parallel coordinates of the non-dominated fronts on 8-objective DTLZ7, obtained by NSGA-III (a), 
MOEA/D (b), RVEA (c), MOEA/DD (d), MaOEA-R&D (e), and MaOEA/D-DRA (f) with the median IGD value in 
30 runs 
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results obtained by MaOEA/D-DRA are only 8 and 10, 
respectively.  

Overall, in terms of convergence speed and di-
versity, the solutions obtained by MaOEA/D-DRA are 
obviously better than those obtained by WS-MaOEA/ 
D-DRA and PBI-MaOEA/D-DRA. Thus, the Tche-
bycheff approach is more suitable than the weighted- 
sum approach and penalty-based boundary intersec-
tion approach in the decomposition process of MaOEA/ 
D-DRA for solving MaOPs with irregular PF. 

4.5  Sensitivity to the number of previous learning 
generations L in MaOEA/D-DRA 

In MaOEA/D-DRA, L is a parameter with a 
fixed value during the whole optimization process. In 
this subsection, three different values, i.e., 4, 8, and 12, 
are compared to study the sensitivity to L. For sim-
plicity, MaOEA/D-DRA with three different values of 
4, 8, and 12 are denoted as MaOEA/D-DRA-4, 
MaOEA/D-DRA-8, and MaOEA/D-DRA-12, re-
spectively. Tables 7 and 8 present the IGD and HV 
values obtained by MaOEA/D-DRA-4, MaOEA/ 
D-DRA-8, and MaOEA/D-DRA-12 over 30 inde-
pendent runs in the three instances of DTLZ5, re-
spectively, where the best results are highlighted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We observe that the results obtained by MaOEA/ 
D-DRA with three different values of L are statisti-
cally similar to each other for the values of both IGD 
and HV. Therefore, we can conclude that, in the three 
test instances of DTLZ5, the performance of MaOEA/ 
DRA is not sensitive to L. 

 
 

5  Conclusions and future work 
 

In this paper, we have proposed an MaOEA 
based on decomposition with DRA, termed MaOEA/ 
D-DRA. In MaOEA/D-DRA, a new DRA method is 
designed to solve MaOPs with irregular PF (MaDRA), 
where MaOP is decomposed into a number of single 
optimization subproblems with the Tchebycheff ap-
proach, and each subproblem is associated with a 
solution in an evolutionary population. The compu-
tational resources are allocated to different subprob-
lems dynamically based on the contribution of each 
subproblem to EA in the search process. Because the 
process involves solving MaOPs with more than three 
objectives, there is a large fraction of solutions in EA, 
so the method of SDE is used to update EA in the 
evolutionary process. 
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Fig. 5  Illustration of parallel coordinates of the non-dominated fronts on 10-objective MaF4, obtained by NSGA-III (a),
MOEA/D (b), RVEA (c), MOEA/DD (d), MaOEA-R&D (e), and MaOEA/D-DRA (f) with the median IGD value in 30 runs
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Table 5  IGD results of the Tchebycheff approach, weighted-sum approach, and penalty-based boundary intersection 
approach 

Problem M 
IGD 

WS-MaOEA/D-DRA PBI-MaOEA/D-DRA MaOEA/D-DRA 

DTLZ5 

5 1.4730e–1 (4.03e–2)  5.9574e–2 (8.42e–3) + 6.7229e–2 (8.25e–3) 

8 2.6416e–1 (7.56e–2)  6.6762e–2 (1.44e–2) + 1.3701e–1 (3.05e–2) 

10 2.5075e–1 (6.71e–2)  3.8660e–2 (1.13e–2) + 1.1945e–1 (1.75e–2) 

DTLZ6 

5 2.0870e–1 (6.23e–2)  6.7547e–2 (8.98e–3) + 9.0757e–2 (1.57e–2) 

8 2.9817e–1 (6.29e–2)  8.4188e–2 (2.75e–2) + 1.4337e–1 (2.99e–2) 

10 2.9852e–1 (6.96e–2)  4.2073e–2 (1.80e–2) + 1.2049e–1 (1.80e–2) 

DTLZ7 

5 4.1833e–1 (7.09e–2)  6.9303e–1 (1.34e–1)  3.2191e–1 (4.32e–2) 

8 7.3380e–1 (2.69e–2) + 1.6058e+0 (5.42e–1)  7.6641e–1 (3.40e–2) 

10 1.0188e+0 (1.01e–1) ≈ 2.3804e+0 (8.20e–1)  1.0055e+0 (1.09e–1) 

IDTLZ1 

5 1.2796e–1 (1.50e–2)  1.2824e–1 (4.02e–2)  7.0119e–2 (7.83e–4) 

8 1.4305e–1 (9.39e–3)  2.1996e–1 (2.84e–2)  1.1130e–1 (8.20e–4) 

10 1.4513e–1 (8.66e–3)  2.1279e–1 (1.79e–2)  1.2592e–1 (4.15e–3) 

IDTLZ2 

5 2.2373e–1 (3.17e–3)  2.6087e–1 (8.52e–3)  2.1889e–1 (4.87e–3) 

8 3.6103e–1 (3.31e–3) + 4.8066e–1 (1.16e–2)  3.6913e–1 (4.36e–3) 

10 4.2558e–1 (2.95e–3) + 5.6769e–1 (1.14e–2)  4.2794e–1 (4.01e–3) 

C1_DTLZ1 

5 1.7025e–1 (1.07e–2)  1.1737e–1 (3.35e–2)  9.3873e–2 (2.23e–2) 

8 2.2379e–1 (3.21e–2)  1.6215e–1 (1.21e–2)  1.4100e–1 (1.54e–2) 

10 2.5588e–1 (3.69e–2)  1.6497e–1 (4.61e–3) ≈ 1.7481e–1 (2.44e–2) 

WFG1 

5 1.0712e+0 (3.28e–1)  1.3687e+0 (2.30e–1)  5.9809e–1 (5.72e–2) 

8 2.0784e+0 (4.53e–1)  2.0766e+0 (3.51e–1)  1.0789e+0 (1.01e–1) 

10 2.3381e+0 (4.10e–1)  2.6750e+0 (1.92e–1)  1.5928e+0 (3.93e–1) 

WFG2 

5 1.2160e+0 (1.81e–1) ≈ 1.2997e+0 (2.24e–1) ≈ 1.2829e+0 (1.46e–1) 

8 2.9951e+0 (4.55e–1)  3.7285e+0 (4.64e–1)  2.5180e+0 (5.79e–1) 

10 3.8932e+0 (9.16e–1) ≈ 5.4506e+0 (5.42e–1)  4.1714e+0 (1.03e+0) 

WFG3 

5 5.5539e–1 (6.15e–2) ≈ 7.3240e–1 (8.66e–2)  5.3937e–1 (7.17e–2) 

8 7.9676e–1 (7.60e–2) ≈ 1.4592e+0 (1.37e–1)  7.4950e–1 (1.08e–1) 

10 1.0151e+0 (1.16e–1)  1.4872e+0 (6.68e–2)  8.6920e–1 (1.22e–1) 

MaF2 

5 1.1378e–1 (2.58e–3) + 1.1871e–1 (2.30e–3)  1.1677e–1 (2.05e–3) 

8 1.9600e–1 (1.36e–2)  1.6742e–1 (3.10e–3)  1.6103e–1 (3.08e–3) 

10 2.5239e–1 (1.73e–2)  1.9441e–1 (3.65e–3)  1.7244e–1 (3.27e–3) 

MaF4 

5 2.5827e+0 (8.51e–2) + 7.3668e+0 (8.36e–1)  2.7955e+0 (1.65e–1) 

8 2.2172e+1 (1.02e+0)  9.0864e+1 (5.37e+0)  2.1480e+1 (1.30e+0) 

10 7.4018e+1 (2.81e+0) + 3.3082e+2 (3.19e+1)  7.8675e+1 (3.34e+0) 

MaF13 

5 2.0682e–1 (8.18e–2)  1.3517e–1 (1.97e–2) ≈ 1.3036e–1 (1.43e–2) 

8 2.0557e–1 (3.24e–2)  2.3362e–1 (4.86e–2)  1.3739e–1 (2.38e–2) 

10 1.9602e–1 (3.21e–2)  2.4963e–1 (4.73e–2)  1.3345e–1 (1.24e–2) 

+//≈ 6/25/5 6/27/3  

M: number of objectives. The best result in each row is highlighted in bold 
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Table 6  HV results of the Tchebycheff approach, weighted-sum approach, and penalty-based boundary intersection 
approach 

Problem M 
HV 

WS-MaOEA/D-DRA PBI-MaOEA/D-DRA MaOEA/D-DRA 

DTLZ5 

5 7.3641e–3 (3.09e–4)  8.2108e–3 (1.55e–4) + 8.0417e–3 (1.62e–4) 

8 1.6981e–5 (2.72e–7)  1.7808e–5 (3.82e–7) + 1.7100e–5 (2.14e–7) 

10 5.6525e–8 (4.46e–10) ≈ 5.9029e–8 (7.52e–10) + 5.6548e–8 (2.49e–10) 

DTLZ6 

5 7.0512e–3 (4.43e–4)  8.1071e–3 (2.14e–4) + 7.7973e–3 (2.59e–4) 

8 1.6861e–5 (1.73e–7)  1.7724e–5 (5.33e–7) + 1.7025e–5 (1.64e–7) 

10 5.6302e–8 (3.11e–10)  5.8881e–8 (1.20e–9) + 5.6530e–8 (2.46e–10) 

DTLZ7 

5 1.8734e+0 (6.34e–2)  3.3698e–1 (4.94e–1)  1.9345e+0 (7.84e–2) 

8 8.9156e–1 (4.06e–1) + 2.3487e–3 (1.95e–3)  4.7545e–1 (2.17e–1) 

10 3.0498e–1 (2.94e–1) ≈ 2.8846e–4 (9.02e–4)  2.2034e–1 (2.48e–1) 

IDTLZ1 

5 2.3811e–4 (3.28e–5)  3.1171e–4 (1.18e–4)  4.6325e–4 (1.66e–5) 

8 1.0143e–7 (3.39e–8)  5.4653e–8 (3.34e–8)  1.6440e–7 (2.83e–8) 

10 1.8649e–10 (5.72e–10)  2.4008e–10 (1.00e–10) ≈ 7.8369e–10 (1.20e–9) 

IDTLZ2 

5 1.8698e–1 (1.92e–3) + 1.8780e–1 (1.87e–3) + 1.7200e–1 (3.73e–3) 

8 5.6597e–3 (3.01e–4) + 9.3738e–3 (3.00e–4) + 5.1181e–3 (5.20e–4) 

10 1.3830e–4 (4.27e–5)  9.0345e–4 (1.35e–4) + 2.3708e–4 (6.48e–5) 

C1_DTLZ1 

5 4.2248e–2 (1.21e–3) ≈ 3.7470e–2 (4.37e–3)  4.2046e–2 (3.42e–3) 

8 7.1830e–3 (2.14e–4) ≈ 6.1300e–3 (4.39e–4)  7.3341e–3 (4.52e–4) 

10 2.2014e–3 (7.98e–5)  1.9972e–3 (1.22e–4)  2.3034e–3 (7.20e–5) 

WFG1 

5 5.1404e+3 (5.77e+2)  5.6433e+3 (2.56e+2)  6.0270e+3 (3.32e+0) 

8 1.5214e+7 (2.24e+6)  1.9110e+7 (1.56e+6)  2.0663e+7 (3.42e+5) 

10 5.9908e+9 (1.15e+9)  6.9765e+9 (1.07e+9)  7.6010e+9 (9.31e+8) 

WFG2 

5 6.1179e+3 (1.39e+1) ≈ 5.8929e+3 (4.74e+1)  6.1186e+3 (1.73e+1) 

8 2.2037e+7 (2.47e+4) ≈ 2.1197e+7 (3.59e+5)  2.2024e+7 (3.92e+4) 

10 9.6078e+9 (1.27e+7) ≈ 9.3157e+9 (8.20e+7)  9.6043e+9 (1.41e+7) 

WFG3 

5 2.3026e+0 (2.08e–1) + 1.8482e–1 (2.99e–1)  1.5790e+0 (2.87e–1) 

8 1.8062e–2 (5.23e–3) + 0.0000e+0 (0.00e+0)  9.3936e–3 (6.33e–3) 

10 3.6877e–5 (1.63e–5) + 0.0000e+0 (0.00e+0)  2.7001e–5 (1.67e–5) 

MaF2 

5 4.5010e–2 (8.23e–4)  4.8698e–2 (3.25e–4)  5.0573e–2 (3.58e–4) 

8 2.7864e–2 (4.93e–4)  2.9891e–2 (3.19e–4) ≈ 2.9989e–2 (4.11e–4) 

10 7.8478e–3 (1.23e–4)  8.2163e–3 (6.96e–5) + 8.0826e–3 (8.82e–5) 

MaF4 

5 3.4734e+3 (3.26e+2) + 8.7420e+2 (4.47e+2)  2.2155e+3 (5.79e+2) 

8 4.6452e+7 (1.19e+7) + 1.0656e+6 (3.45e+5)  2.6243e+7 (1.52e+7) 

10 1.5231e+11 (1.26e+11) ≈ 1.3022e+10 (3.52e+9)  1.0429e+11 (4.90e+10) 

MaF13 

5 3.9381e–1 (6.95e–2)  4.0153e–1 (1.45e–2)  4.2545e–1 (9.70e–3) 

8 3.5848e–1 (8.66e–3) ≈ 3.0013e–1 (3.75e–2)  3.5881e–1 (7.37e–3) 

10 3.6187e–1 (6.64e–3) ≈ 2.9947e–1 (4.88e–2)  3.5999e–1 (4.94e–3) 

+//≈ 8/18/10 10/24/2  

M: number of objectives. The best result in each row is highlighted in bold 
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To assess the performance of MaOEA/D-DRA, 
empirical comparisons have been conducted by 
comparing MaOEA/D-DRA with five state-of-the-art 
MaOEAs, namely NSGA-III, MOEA/D, RVEA, 
MOEA/DD, and MaOEA-R&D, using widely used 
MaOP test problems with irregular PF. Two different 
metrics, namely IGD and HV, have been calculated 
and compared among all the algorithms. The Wil-
coxon rank-sum tests were conducted to show statis-
tically significant differences between all the algo-
rithms. Based on the numerical results, MaOEA/ 
D-DRA is superior to the five algorithms compared 
generally. 

In addition, the effectiveness of the Tchebycheff 
approach is proved by comparison with the weighted- 
sum approach and penalty-based boundary intersec-
tion approach in the same algorithmic framework. In 
terms of IGD and HV, the results of Wilcoxon 
rank-sum tests showed that the Tchebycheff approach 
outperforms the two other decomposition methods as 
a whole. 

MaOEA/D-DRA has shown competitive per-
formance in the studied MaOPs with irregular PF. 
However, MaOEA/D-DRA does not perform well on 
the constrained problem C1_DTLZ1. Therefore, in-
vestigations into application of MaOEA/D-DRA for 
the constrained MaOPs is one future line of work. 
Furthermore, real-life applications of MaOEA/ 
D-DRA need to be investigated. 
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