
1206 Wang et al. / Front Inform Technol Electron Eng 2020 21(8):1206-1216

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

HAM: adeep collaborative rankingmethod

incorporating textual information∗

Cheng-wei WANG1,3, Teng-fei ZHOU3, Chen CHEN1,3, Tian-lei HU1,3, Gang CHEN‡2,3

1The Key Laboratory of Big Data Intelligent Computing of Zhejiang Province, Hangzhou 310027, China
2State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310027, China

3College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China

E-mail: rr@zju.edu.cn; zhoutengfei@zju.edu.cn; cc33@zju.edu.cn; htl@zju.edu.cn; cg@zju.edu.cn

Received July 28, 2019; Revision accepted Dec. 20, 2019; Crosschecked July 13, 2020

Abstract: The recommendation task with a textual corpus aims to model customer preferences from both user
feedback and item textual descriptions. It is highly desirable to explore a very deep neural network to capture the
complicated nonlinear preferences. However, training a deeper recommender is not as effortless as simply adding
layers. A deeper recommender suffers from the gradient vanishing/exploding issue and cannot be easily trained by
gradient-based methods. Moreover, textual descriptions probably contain noisy word sequences. Directly extracting
feature vectors from them can harm the recommender’s performance. To overcome these difficulties, we propose a
new recommendation method named the HighwAy recoMmender (HAM). HAM explores a highway mechanism to
make gradient-based training methods stable. A multi-head attention mechanism is devised to automatically denoise
textual information. Moreover, a block coordinate descent method is devised to train a deep neural recommender.
Empirical studies show that the proposed method outperforms state-of-the-art methods significantly in terms of
accuracy.
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1 Introduction

Recommendation system (RS) is an important
application of artificial intelligence. It infers the
preferences of customers from historical feedback,
and then recommends personalized items to cus-
tomers (McLaughlin and Herlocker, 2004; Salakhut-
dinov and Mnih, 2007). An RS improves users’ satis-
faction with the e-commerce platform and brings ex-
tra profits to vendors (Linden et al., 2003). With the
development of e-commerce, millions and trillions of
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items are available online. In such circumstances, a
modern RS can assist customers in filtering out un-
wanted items. RS has become an indispensable part
of modern e-commerce platforms.

RSs have been comprehensively studied in re-
cent decades. The content-based RS adopts a
nearest-neighbor strategy that recommends simi-
lar users with similar items (Linden et al., 2003).
These simple methods have small generalization er-
rors. They are commonly used in the early cold-start
stage of an RS. With the accumulation of feedback
datasets, RSs based on matrix factorization outper-
form content-based methods substantially in terms
of accuracy (Srebro et al., 2004; Adomavicius and
Tuzhilin, 2005; Paterek, 2007). Recently, evidence
shows that customers’ preferences are highly non-
linear (Wang H et al., 2015). Thus, deep neural
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networks (DNNs), well known for their powerful
nonlinear modeling ability, have become mainstream
methods (Wang H et al., 2015; Devooght and Bersini,
2016). However, research on DNN-based methods is
far from finished. Two challenges still exist.

First, a DNN-based recommender can work only
with a shallow depth, which limits its expressive
power. Generally speaking, the depth of neural mod-
els perhaps plays the most crucial role in their suc-
cess (Mhaskar et al., 2017). The expressive power of
a neural network increases as its depth grows (Raghu
et al., 2017). Moreover, a deeper network usually en-
joys better generalization ability because of its over-
parameterization property (Neyshabur et al., 2017).
Thus, it is desirable to use very deep neural networks
to design an accurate recommender. However, the
optimization of deep networks is substantially more
difficult. Gradients of existing DNN-based RSs are
prone to vanishing or exploding when they are very
deep (Goodfellow et al., 2016). This makes gradient-
based methods unable to train an RS effectively.

Second, it is difficult to effectively incorporate
textual information into a neural recommender be-
cause of data noise and the document’s multi-topic
property. In practice, user feedback is extremely
sparse (Grčar et al., 2005). RSs that are trained
only from feedback data usually have inferior accu-
racy because of information insufficiency. To handle
this issue, many researchers exhibited that textual
information, such as movie plots and item descrip-
tions, is a valuable complement to feedback data.
Informative feature vectors can be extracted from
the textual data to boost recommendation perfor-
mance. Nevertheless, designing a textual encoder is
a challenging task. Textual information usually con-
tains noisy sub-sequences. Ignoring such a fact would
make neural networks overfit into noise, which leads
to performance degradation (Wang H et al., 2016).
Moreover, a document usually involves multiple top-
ics. A neural encoder unaware of these characteris-
tics cannot fully exploit textual information.

To overcome the above difficulties, we propose
a new recommendation method named the High-
wAy recoMmender (HAM). HAM tackles the gradi-
ent vanishing/exploding issue from both architecture
construction and algorithm design perspectives. We
integrate highway networks (Srivastava et al., 2015)
in HAM to extract deep features. The highway net-
works use skip-connections and gating mechanisms

to regulate the information flow. Through such regu-
lation, gradients can flow across several neural layers
without attenuation. Furthermore, we propose a new
training method based on block coordinate descent
(BCD). BCD is capable of decomposing a highly cou-
pled deep network training problem into several in-
dependent subproblems on shallow networks. By
such reduction, the unstable backward propagation
of gradients can be avoided. In addition, HAM ex-
plores the multi-head attention mechanism to deal
with the noisy document and model multiple topics.
HAM learns to assign large weights to relevant parts
of a document and give small weights to irrelevant
ones. Then, it generates the feature vector by aver-
aging each textual part. In this manner, the noisy
word sequences are filtered out from the extracted
features. By concentrating on different textual seg-
ments, each attention head can be interpreted as a
semantic vector of topics.

In summary, the contributions of our paper are
listed as follows:

1. We design a new neural recommendation
framework based on the highway network to stabilize
the gradient flow of a deep recommender.

2. We propose a novel BCD method to train the
deeper recommender effectively.

3. A multi-head attention encoder is designed to
exploit textual information to enhance recommenda-
tion performance.

2 Related work

State-of-the-art recommendation methods can
be roughly divided into matrix factorization (MF)
based methods and DNN-based methods. MF-based
methods work by decomposing the user-item inter-
actions into the product of latent vectors. Salakhut-
dinov and Mnih (2007) reinterpreted MF as a la-
tent probabilistic model and used statistical infer-
ence to train the model. Koren (2008) improved
MF by incorporating neighborhood information into
the scoring function. Koren et al. (2009) proposed
a temporal extension for MF and showed that MF
has promising performance in the Netflix prize task
(Bennett and Lanning, 2007). Rendle et al. (2009)
proposed the seminal Bayesian personal ranking
(BPR) method to predict personalized ranking us-
ing users’ implicit feedback.

DNN-based methods try to characterize
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nonlinearity in a user-item relationship via neural
architectures. Salakhutdinov et al. (2007) proposed
a restricted Boltzmann machine to mine users’ pref-
erences. Strub and Mary (2015) showed that a stack
denoising auto-encoder has robust recommendation
performance for a noisy feedback dataset. Devooght
and Bersini (2016) used a recurrent neural network
(RNN) to model the temporal dynamics of user pref-
erences. He et al. (2017) modeled user ratings by
a deep forward network. Cai et al. (2018) proposed
an adversarial personalized ranking approach to en-
hance the BPR method. Note that none of the above
neural recommenders encompasses a gradient stabi-
lization module. Their gradients are prone to van-
ishing or exploding as the number of layers increases.
This makes them untrainable when their depths are
large.

The above methods have promising accuracy
when customers’ behavior data are sufficient. How-
ever, in many real-world scenarios, behavior data
are very sparse. To enrich training data, much re-
search incorporates text content data into the tra-
ditional recommendation data. Wang C and Blei
(2011) proposed the well-known collaborative topic
regression (CTR) method that seamlessly combines
MF with latent Dirichlet allocation (LDA). Gopalan
et al. (2014) proposed to use Poisson MF to model
both user clicks and the word count matrix. Wang
H et al. (2015) proposed collaborative deep learning
(CDL), which uses a stack denoising auto-encoder to
extract content features. Kim et al. (2016) showed
that the convolution network can generate informa-
tive content features. Bansal et al. (2016) introduced
the RNN to transform the text documents into fea-
ture vectors. Jin et al. (2018) proposed the long short
term memory (LSTM) topic MF (LTMF), which
combines LSTM and the topic modeling method to
understand textual information. Shoja and Tabrizi
(2019) developed an LDA-based attribute extractor
to filter out useful product information in reviews
and then built a deep neural network to transform
such information into feature vectors.

3 Preliminaries and notations

In this paper, we use bold capital letters A, B,
. . . to denote matrices. Matrix slicing is expressed
in a Numpy manner. We use A[i] to denote the
ith row of matrix A. A[i1, i2, . . . , ik] is a submatrix

of A containing A’s rows i1, i2, ..., ik. The size
of a set S is denoted by |S|. Some other notations
used in the paper are listed in Table 1. Assume
that user feedback D and item textual content C are
available for training an RS. The feedback dataset
D contains users’ historical choices. More precisely,
D = {(i, j, j′)|1 ≤ i ≤ m, j ∈ ρ+i , j

′ ∈ ρ−i }, where i

is a user, ρ+i consists of the user’s wanted items, and
ρ−i contains his/her unwanted products. The textual
content C = {docj}j=n

j=1 is a collection of documents
docj which describes item j in the text.

Table 1 Notations used in this paper

Variable Description

m Number of users
n Number of items
doc A textual document

nvocab Number of unique words
ndoc Length of a document
ω Word ID
P Embedding matrix of users
E Embedding matrix of words

WAk
Parameter of the kth attention head

WL Parameter of the last layer of encoder
Gl,Kl Parameters of the user’s deep transformer
G̃l, K̃l Parameters of the item’s deep transformer

H(·|G,K) Highway cell with parameters G and K

Enc(·|θe) Textual encoder with parameter θe

The recommendation problem can be formu-
lated as reconstructing the preference function
f(i, docj) of user i on item j from the available
dataset. Intuitively, the function f(i, docj) will give
higher values to a user’s wanted items and lower
scores to unwanted ones. Such intuition can be
formulated by the following area under the receiver
operating characteristic curve (AUC) maximization
problem:

max
θf

∑

(i,j,j′)

I{f(i, docj) > f(i, docj′ )}, (1)

where θf is the parameter set of function f(i, docj)

and I{condition} is the indicator function which
equals 1 if “condition” is true and 0 otherwise. How-
ever, problem (1) is a combinatorial optimization
problem that is computationally prohibitive to solve.
To reduce the computational cost, one can relax the
discrete function I{f(i, docj) > f(i, docj′)} via the
following smoothing function (Rendle et al., 2009):

lnσ(f(i, docj)− f(i, docj′ )) � l(i, j, j′), (2)
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with σ(·) being the sigmoid function. By such relax-
ation, the recommendation task can be recast as the
following minimization problem:

min
θf

− 1

|D|
∑

(i,j,j′)

l(i, j, j′) � Lrank(θf ). (3)

4 Architecture of the scoring function

To model the nonlinear correlation between a
user and an item, we devise a deep neural network
to parameterize the function f(·, ·). We depict the
neural architecture in Fig. 1. The architecture has
four modules: embedding module, content encoder,
deep transformer, and scoring producer.

4.1 Embedding module

The embedding layer maps users and words into
low-dimensional latent spaces. More precisely, let
P ∈ R

m×d and E ∈ R
nvocab×d be users’ embedding

matrix and words’ embedding matrix, respectively,
with m being the number of users, nvocab the vocab-
ulary size, and d the model dimension. The embed-
ding vectors of user i and word ω are P [i] and E[ω],
respectively.

4.2 Content encoder

The content encoder extracts feature vectors
from textual documents. Let doc = {ωi}i=ndoc

i=1 be

Multi-head attention

ω1User

Embedding

Encoder

Linear

HWCell

HWCell

HWCell

HWCell

HWCell

HWCell

Transformer

Scoring producer

f(u,doc)

ω2 ω3 ω4

Fig. 1 Architecture of the HighwAy recoMmender
(HAM)

a textual document of some items. Let E[doc] ∈
R

ndoc×d be formed by stacking embedding vectors
of word ωi horizontally. The content encoder takes
E[doc] as input and outputs the feature vector of
doc. The content encoder has two layers. The lower
layer is the multi-head attention mechanism, which
represents doc by multiple semantic vectors. The kth

attention head is formulated as follows:

headk=(E[doc])
T
softmax(E[doc]WAk

WT
Ak

query),

(4)
where WAk

∈ R
d×l aligns the kth head to a specific

topic, softmax(·) is the softmax function, and

query =

∑
ω∈docE[w]

ndoc
. (5)

It has been validated by much research
(Chorowski et al., 2015; Vaswani et al., 2017) that
attention signals can assign larger values to the rel-
evant parts of a sequence and smaller values to the
irrelevant parts. This property helps our encoder
concentrate on the informative part of the textual
document while ignoring the noise. Each attention
head of the encoder focuses on representing one part
of the semantic information in its textual content.
This helps the encoder understand different topics in
the content.

In the upper layer, we use a dense linear layer
followed by dropout units to summarize the attention
heads headk into the feature vector of doc. In precise
terms, the feature vector is given by the following
equation:

Ouput = Dropout(Concate([headk]
K
k=1)WL), (6)

where Dropout(·) is the dropout operator,
Concate(·) concatenates vectors headk into a matrix
of size K × d with K being the number of attention
heads. For brevity, in what follows, we denote the
content encoder by Enc(E[doc]|θe) with θe being a
parameter set including WAk

and WL.

4.3 Deep transformer

The deep transformer enhances the expressive
power of lower-layer neural features. To stabilize the
gradient flow, our transformer regulates the informa-
tion flow through the gating mechanism. Specifically,
the transformer is a stack of highway cells. Denote
a cell by H(x|G,K), where x ∈ R

d is the input
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and G,K are the cell parameters. The cell can be
computed by the following equation:
{
g = σ(Gx),

H(x|G,K) = g � x+ (1 − g)� tanh(Kx),

(7)
where σ(·) is the element-wise sigmoid function and
� is the element-wise multiplication operator. The
term g acts as an information gate. When g = 0,
the highway cell cuts off the skip-connection and be-
comes a feed-forward unit; when g = 1, the highway
cell blocks the result of the feed-forward unit and de-
generates into an identity map. Thus, the highway
cell can be viewed as a smooth interpolation between
a nonlinear cell and an identity map. Stacking L lay-
ers of highway cells, we obtain the transformer. We
summarize the computing process of the deep trans-
former in Algorithm 1.

Algorithm 1 Transformer(x|{Gl,Kl}Ll=1)
1: h0 = x

2: for l = 1 to L do
3: g = σ(Glhl−1)

4: hl = g ∗ hl−1 + (1− g) ∗ tanh(Klhl−1)

5: end for
6: return hL

4.4 Scoring producer

The scoring producer produces the score
f(i, docj) of user i and item j. Given that f(i, docj)
reflects the correlation between user i and item j, we
formulate the score as the inner product between the
user deep feature ui and the item deep feature vj :

f(i, docj) = uT
i vj . (8)

The deep features are generated by applying
the deep transformer to low-level embedding vectors,
that is,
⎧
⎨

⎩
ui=Transformer

(
P [i] | {Gl,Kl}Ll=1

)
,

vj=Transformer
(
Enc(E[doc]|θe) | {G̃l, K̃l}Ll=1

)
,

(9)
where edocj is the output of document docj .

5 Parameter inference

According to the framework of multi-task learn-
ing (Ruder, 2017), training a deep network from mul-

tiple learning tasks can improve the network’s gen-
eralization ability. Intuitively, learning word embed-
dings from the textual corpus is a natural choice for
an auxiliary task. Given the textual corpus {docj}
and a word ω, several surrounding words of ω are
selected as context c. We denote the set containing
all such word context pairs as “pairs.” The word em-
bedding task can be formulated as the following MF
problem (Levy and Goldberg, 2014):

min
C,E

∑

(c,ω)∈pairs

(
(C[c])

T
E[ω]− PMI(c, ω)

)2

|pairs|
︸ ︷︷ ︸

Lembd(C,E)

, (10)

where C is the context embedding matrix. Note
that PMI(c, ω) is the pointwise mutual information
defined as follows:

PMI(c, ω) = ln

( |pairs|#(c, ω)

#(c)#(ω)

)
, (11)

where #(c, ω) is the number of occurrences of the
context-word pair, #(c) is the number of occurrences
of context c, and #(ω) is the frequency of word ω.
Training an RS and word embedding simultaneously
can be formulated as the following composite objec-
tive minimization problem:

min
θf ,C

Lrank(θf ) + λLembd(C,E), (12)

where λ > 0 is a regularization parameter, and θf is
the parameter set of neural network f(·, ·).

To further stabilize the gradient flow, we design
a BCD method to solve the optimization problem
(12). Problem (12) can be rewritten as the follow-
ing constrained minimization problem according to
Eqs. (3), (8), (9), and (12):

min
θopt

− 1

N

∑

(i,j,j′)

lnσ
(
(PL[i])

T(QL[j]−QL[j
′])
)

+ λLembd(C,E)

s.t.
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pl[i] = H(Pl−1[i]|Gl,Kl), i ≤ m, 1 ≤ l ≤ L,

Ql[j] = H(Ql−1[j]|G̃l, K̃l), j ≤ n, 1 ≤ l ≤ L,

P0 = P ,

Q0[j] = Enc(E[doc]|θe), j ≤ n,

(13)
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where θopt includes embedding matrices P and E,
intermediate matrices {Pl,Ql}l=L

l=1 , parameters of
transformers {Gl,Kl, G̃l, K̃l}Ll=1, and parameters of
encoders θenc. Using the constraints as a penalty,
the minimization problem (13) is converted to the
following unconstrained optimization problem:

min
θopt

− 1

N

∑

(i,j,j′)

lnσ
(
(PL[i])

T(QL[j]−QL[j
′])
)

︸ ︷︷ ︸
LO(PL,QL)

+ λLembd(C,E) +

L∑

l=1

{
γ

m
‖Pl −Hl(Pl−1)‖2

︸ ︷︷ ︸
LH(l)(Pl,Pl−1,Gl,Kl)

+
γ

n
‖Ql − H̃l(Ql−1)‖2

︸ ︷︷ ︸
LH(l)(Ql,Ql−1,G̃l,K̃l)

}
+

γ

m
‖P0 − P ‖2

︸ ︷︷ ︸
LS(P0,P )

+
γ

n
‖Q0 −Q−Eθe({docj})‖2

︸ ︷︷ ︸
LE(Q0,Q,Edocj

,θe)

,

(14)
where Hl(Pl−1) is obtained by stacking vectors
H(Pl−1[i]|Gl,Kl) into a matrix of size m × d, and
Eθe({docj}) is a matrix of size n × d obtained by
stacking vectors Enc(E[doc]|θe). We solve the opti-
mization problem (14) through Algorithm 2, which
optimizes the objective with respect to one block of
variables while fixing the remaining ones.

6 Experiments

We conducted extensive experiments on bench-
mark datasets. We used the following state-of-the-
art methods as baselines:

1. CML + Skip-Thought (CMLST)
We combined the collaborative filtering method

CML (Hsieh et al., 2017) with the textual encoder
Skip-Thought (Kiros et al., 2015) to learn from the
feedback dataset and textual corpus.

2. CRAE (Wang H et al., 2016)
CRAE is a combination of Bayesian MF and

RNN. The Bayesian MF module models user feed-
back. The Bayesian RNN module extracts feature
vectors from the textual corpus.

3. CDL (Wang H et al., 2015)
CDL is a probabilistic graphics model that en-

compasses a collaborative filtering module with a
probabilistic auto-encoder.

Algorithm 2 Block coordinate descent for an RS
Require: λ, γ, T, η

1: θopt = RandomInitialization()
2: for k = 1 to T do

// Compute stochastic approximations of losses
3: Randomly sample a tuple (i, j, j′) from D

4: Randomly sample a user u from {1, 2, . . . ,m}
5: Randomly sample an item v from {1, 2, . . . , n}
6: L̂O = − ln σ

(
(PL[i])

T(QL[j] −QL[j
′])

)

7: L̂O = L̂O + γ‖PL[i]−HL(PL−1[i])‖2
8: L̂O = L̂O + γ‖QL[j]− H̃L(QL−1[j])‖2/2
9: L̂O = L̂O + γ‖QL[j

′]− H̃L(QL−1[j
′])‖2/2

10: for l = L to 1 do
11: L̂H(l) = γ‖Pl[u]−Hl(Pl−1[u])‖2
12: L̂H̃(l) = γ‖Ql[v]− H̃l(Ql−1[v])‖2
13: end for
14: pairs = GenerateContextWordPairs(docv)
15: L̂embd=

∑

(c,ω)∈pairs

(
C[c]TE[ω]−PMI(c, ω)

)2
/|pairs|

16: L̂E = γ‖Q0[v]−Q[v]− Enc(E[docv]|θe)‖2
// Compute stochastic gradients

17: gradPL[i]=∂L̂O/∂PL[i], gradQL[j]=∂L̂O/∂QL[j],

gradQL[j′] = ∂L̂O/∂QL[j
′]

18: gradGL
=∂L̂H(L)/∂GL, gradKL

=∂L̂H(L)/∂Kl

19: gradG̃L
=∂L̂H̃(L)/∂G̃L, gradK̃L

=∂L̂H̃(L)/∂K̃l

20: for l = L− 1 to 1 do
21: gradPl[u]

= ∂(L̂H(l) + L̂H(l+1))/∂Pl[u]

22: gradQl[v]
= ∂(L̂H̃(l) + L̂H̃(l+1))/∂Ql[v]

23: gradGl
=∂L̂H(l)/∂Gl, gradKl

=∂L̂H(l)/∂Kl

24: gradG̃l
=∂L̂H̃(l)/∂G̃l, gradK̃l

=∂L̂H̃(l)/∂K̃l

25: end for
26: gradθe

= ∂L̂E/∂θe
27: W = {w|w ∈ pairs}, C = {c|c ∈ pairs}
28: gradE[W ] = ∂(L̂E + λL̂embd)/∂E[W ]

29: gradC[C] = λL̂embd/∂C[C]

// Update parameters
30: PL[i] −= η gradPL[i], QL[j] −= η gradQL[j],

QL[j
′] −= η gradQL[j′]

31: G̃L −= gradG̃L
, K̃L −= gradK̃L

32: GL −= η gradGL
, KL −= gradKL

33: for l = L− 1 to 1 do
34: Pl[u] −= η gradPl[u]

, Ql[v] −= η gradQl[v]

35: Gl −= η gradGl
, Kl −= gradKl

36: G̃l −= η gradG̃l
, K̃l −= gradK̃l

37: end for
38: θe −= η gradθe

39: E[W ] −= η gradE[W ], C[C] −= η gradC[C]

40: P [u] = P0[u]

41: Q[v] = Q0[v]− Enc(Edocv |θe)
42: end for
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4. CDAE (Wu et al., 2016)
CDAE models user feedback with a stack de-

noising auto-encoder.
5. CTR (Wang C and Blei, 2011)
CTR combines MF and probabilistic topic mod-

eling to produce a content-based recommendation.
All baselines and the proposed method HAM

were run on the same machine with i7-5930K CPU,
64-GB RAM, and one TITAN Xp GPU.

6.1 Benchmark datasets

We used the following datasets to evaluate the
performances of the different methods: CiteULike,
M1M, and M10M. The CiteULike dataset (Wang C
and Blei, 2011) is composed of user behavior of book-
marking research papers and their abstracts. M1M
and M10M (Liu et al., 2017) contain five-star ratings
of movies and textual documents recording movie
plots. Basic statistics on the datasets are listed in
Table 2. For these datasets, we treated every book-
marked paper (or rated movie) as “relevant.” For
each “relevant” user-item pair in all datasets, we sam-
pled NS items from unbookmarked papers (or un-
rated movies) to form “irrelevant” pairs. We dub NS

the negative sampling number (NS). The observed
data were partitioned into 80% for training with the
remaining 20% for testing.

6.2 Default hyperparameter settings

By default, a model’s dimension was set to
d = 256 for HAM. The depth of the transformer
of HAM was set to 50. The negative sampling num-
ber was set to NS = 6. The regularization parameter
λ was set to 0.2. γ was set to 0.3. Values of these
hyperparameters were selected by five-fold cross val-
idation. Parameters of baseline methods were set to
their default values.

6.3 Evaluation metrics

To evaluate the performance of the different
methods, we used the following measurements:

1. Area under the curve (AUC)
AUC reflects the performance of the recom-

mender by counting the portion of incorrectly or-
dered pairs. It is formulated as follows:

AUC =

∑
(i,j,j′)∈D′ I{f(i, docj) > f(i, docj′)}

|D′| ,

(15)
where D′ is the test set.

2. Recall@k

Recall@k is the proportion of relevant items
in the top-k recommendation list. It is defined as
follows:

Recall@k =
∑

i

|Yi ∩ Y k
i |

|Yi| , (16)

where Yi comprises the relevant items for user i and
Y k
i is the top-k recommendation list.

3. Precision@k

Precision@k is the fraction of relevant items
from the top-k recommendation list:

Precision@k =
∑

i

|Yi ∩ Y k
i |

k
. (17)

4. Mean average precision (MAP)
MAP is the mean value of Precision@k under

different k, where Precision@k is the accuracy of top-
k items in the recommendation list.

6.4 Accuracy comparison

In this subsection, we compared the accuracy
of HAM with those of the baseline methods. All
methods were tested five times. The average per-
formance and standard deviations are reported in
Table 3. We measured the ranking accuracy of the
involved methods in terms of AUC and MAP. Table 3
shows that HAM outperforms the baselines on both
AUC and MAP. This is because HAM is deeper and
has a more robust encoder of textual information.
In addition, we assessed the top-k recommendation
performance of the involved methods via Recall@k

and Precision@k. We report the means and standard
deviations of both Recall@5 and Precision@5 of the

Table 2 Statistics of the benchmark datasets

Dataset Number of users Number of items Number of feedbacks Average number of words

CiteULike 5551 16 980 210 504 204.9
M1M 6040 3861 996 045 82.19
M10M 13 975 10 681 1 962 580 84.66
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Table 3 Performance of the different methods on the collaborative ranking task

Method
AUC MAP

CiteULike M1M M10M CiteULike M1M M10M

CMLST 0.9313±0.003 0.9104±0.013 0.9370±0.013 0.1217±0.002 0.1881±0.004 0.1753±0.006
CRAE 0.9206±0.005 0.9157±0.023 0.9682±0.024 0.0580±0.007 0.1856±0.007 0.1585±0.005
CDL 0.9120±0.004 0.9188±0.023 0.9365±0.036 0.1124±0.003 0.1432±0.005 0.1547±0.004

CDAE 0.9348±0.003 0.9107±0.014 0.9366±0.017 0.1211±0.006 0.1630±0.002 0.1712±0.004
CTR 0.9043±0.007 0.9109±0.012 0.9211±0.021 0.0603±0.002 0.1008±0.009 0.1148±0.003
HAM 0.9406±0.002 0.9239±0.009 0.9671±0.010 0.1481±0.008 0.2332±0.004 0.2249±0.007

The best results are in bold

Table 4 Performance of the different methods on the top-k ranking task

Method
Recall@5 Precision@5

CiteULike M1M M10M CiteULike M1M M10M

CMLST 0.0937±0.002 0.0722±0.003 0.0667±0.013 0.1100±0.006 0.2291±0.004 0.1822±0.006
CRAE 0.0825±0.003 0.0731±0.003 0.0729±0.024 0.1308±0.004 0.3132±0.002 0.2260±0.007
CDL 0.0895±0.007 0.0758±0.006 0.0840±0.036 0.1404±0.006 0.3782±0.010 0.2773±0.008

CDAE 0.0925±0.004 0.0858±0.002 0.0767±0.017 0.1511±0.002 0.3680±0.009 0.2445±0.003
CTR 0.0363±0.001 0.0434±0.002 0.0520±0.013 0.0430±0.001 0.2059±0.003 0.1356±0.005
HAM 0.1151±0.002 0.0958±0.004 0.1038±0.010 0.1647±0.006 0.4142±0.006 0.3532±0.009

The best results are in bold

different methods in Table 4. From the table, we can
see that HAM has much better top-k recommenda-
tion accuracy than baseline methods. For general k,
Recall@k and Precision@k of the different methods
are displayed in Fig. 2. Fig. 2 shows that HAM con-
sistently outperforms baseline methods in terms of
both Recall@k and Precision@k, demonstrating that
recommendation accuracy can be improved when a
deeper network and a more robust encoder are used.

6.5 Performance under different model
dimensions

We empirically observed that the model dimen-
sion d greatly influences the involved methods’ rec-
ommendation precision. Thus, we examined the per-
formance of the involved methods under different set-
tings of model dimension. To see the parameters’ im-
pact, we report Recall@50 and Precision@50 of HAM
and baseline methods in Fig. 3. Fig. 3 demonstrates
that HAM has better accuracy under different set-
tings of hyperparameters. The results show that a
deeper neural structure can enhance recommenda-
tion performance regardless of model dimension.

7 Conclusions and future work

We have proposed a deep HighwAy recoM-
mender (HAM). HAM employs a highway mecha-

nism to make gradient-based solvers stable. To au-
tomatically denoise textual information, HAM has
been equipped with a multi-head attention architec-
ture. Furthermore, HAM uses a novel block coordi-
nate descent method to train its deep neural struc-
ture. Experimental results demonstrated that HAM
notably outperforms state-of-the-art methods. We
attribute the superior results to the following three
factors: First, the proposed network is deeper than
the baseline methods. A deeper network is more suit-
able for describing nonlinear preferences and gener-
alizes better than shallow models. Second, the pro-
posed block descent algorithm successfully trains the
deep model without gradient vanishing/exploding.
It is known that the backpropagation of a very deep
neural network suffers from vanishing/exploding gra-
dients. To avoid such backpropagation, the proposed
algorithm decomposes the highly coupled DNN mini-
mization problem into several loosely coupled single-
layer subproblems. Third, our method effectively in-
tegrates useful information contained in the textual
corpus by a multi-head attention mechanism.

In this paper, HAM focuses on the recommen-
dation task with textual side information available.
Other types of side information, such as photos,
videos, and social relations, are often accessible in
real-world tasks. They can help a recommender
better understand the user-item relationship and
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k k k

k k k

(a) (b) (c)

(d) (e) (f)

Fig. 2 Precision@k of the different methods under different choices of k with respect to benchmark datasets
CiteULike (a), M1M (b), and M10M (c), and Recall@k of the different methods under different choices of k

with respect to benchmark datasets CiteULike (d), M1M (e), and M10M (f)

(a) (b) (c)

(d) (e) (f)

Fig. 3 Precision@50 of the different methods under different choices of dimension with respect to benchmark
datasets CiteULike (a), M1M (b), and M10M (c), and Recall@50 of the different methods under different
choices of dimension with respect to benchmark datasets CiteULike (d), M1M (e), and M10M (f)
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are critical for improving recommendation accuracy.
In the future, we will investigate the influence of all
these information sources and further enhance the
performance of HAM.
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