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Abstract: We study how to achieve the state consensus of a whole multi-agent system after adding some new
agent groups dynamically in the original multi-agent system. We analyze the feasibility of dynamically adding agent
groups under different forms of network topologies that are currently common, and obtain four feasible schemes in
theory, including one scheme that is the best in actual industrial production. Then, we carry out dynamic modeling
of multi-agent systems for the best scheme. Impulsive control theory and Lyapunov stability theory are used to
analyze the conditions so that the whole multi-agent system with dynamic join characteristics can achieve state
consensus. Finally, we provide a numerical example to verify the practicality and validity of the theory.

Key words: Multi-agent system; Network topology; Impulsive input; Dynamic join characteristics; State
consensus

https://doi.org/10.1631/FITEE.2000062 CLC number: TP273

1 Introduction

In the past 20 years, multi-agent systems have
attracted increasing attention. Usually, a multi-
agent system consists of several agents, each of which
has its own dynamic model. These agents are con-
nected to each other through a network, and can
communicate with their neighbors. After communi-
cation and control between the agents, the whole
multi-agent system can work together efficiently.
We call this collaborative working. As a special
case of collaborative working of multi-agent systems,
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state consensus of multi-agent systems has attracted
greater interest. State consensus means that each
agent needs to converge to the same state through
a shared communication network. Studying state
consensus, many scholars have proposed several dy-
namic models of multi-agent systems. Linear and
nonlinear models are popular dynamic models. The
linear models are simpler, and the nonlinear mod-
els are more complex but are closer to the actual
industrial applications. Zhang Y and Tian (2014),
Wang ZM et al. (2016), and Shi et al. (2019) studied
mainly the state consensus of multi-agent systems
based on linear models. Huang J et al. (2017), Han
and Li (2018), Yuan et al. (2018), Wu et al. (2019),
Ye and Su (2019), Zhang WB et al. (2019), and
Huang C et al. (2020) studied mainly multi-agent
systems based on nonlinear models. Since all agents
need to communicate with each other, it is necessary
to establish communication networks between them.
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In the current study of communication networks
of multi-agent systems, the research commonly in-
volves fixed topology networks, switched topology
networks, directed networks, and undirected net-
works. Fixed topology networks mean that com-
munication connections between agents are always
unchanged during the evolution of multi-agent sys-
tems. This method is simple and practical. Shang
(2012), Xie and Wang (2012), and Lee and Bhat-
tacharya (2016) studied mainly the state consensus
of multi-agent systems with fixed topology networks.
Switched topology networks mean that there are sev-
eral modes of communication connections in the evo-
lution process, and that communication connections
of multi-agent systems will change from one mode
to another according to some certain control rules.
Jiang et al. (2010), Zhai and Yang (2014), Li CJ
and Liu (2018a, 2018b), Lu et al. (2019), and Wen
GH and Zheng (2019) studied mainly the state con-
sensus with switched topology networks. Directed
networks involve the direction of information trans-
mission in the process of communication between
agents. Wang H et al. (2018, 2019), Cheng et al.
(2019), and Xu et al. (2019) studied mainly the state
consensus based on directed networks. Undirected
networks mean that information exchange between
agents is directionless; that is, the information on
each communication connection can be transmitted
bidirectionally. Wang S and Xie (2012), Luo and
Cao (2015), and Cao and Sun (2016) studied mainly
the state consensus based on undirected networks.

Currently, scholars usually consider two imple-
mentation methods of average consensus and leader-
following consensus. Average consensus means that
after effective control, states of all agents will con-
verge to the average value, and over time, the states
of all agents will remain in consensus. The method of
leader-following consensus usually selects an agent as
the leader, and after effective control, the states of
all agents will remain in consensus with the state
of the leader. Hao and Chen (2012), Wang XM
et al. (2018), Wang AJ et al. (2019), and Zheng
et al. (2019) studied mainly the average consensus.
Zhou and Liao (2014), Zou et al. (2019), Li YL et al.
(2019), Wen GG et al. (2019), and Zhu et al. (2019)
studied mainly the leader-following consensus.

As a key part of multi-agent systems, the com-
munication control protocol can be realized by vari-
ous algorithms. In these algorithms, impulsive con-

trol is effective. Impulsive control theory is usually
used in the stability control of nonlinear and linear
systems. At present, many scholars are studying the
impulsive control theory. Huang TW et al. (2012),
Wang X et al. (2014), Li YM et al. (2015), Sesekin
and Nepp (2015), Li XD et al. (2017), Hu and Zhu
(2018), and Liu et al. (2019) studied the control of
nonlinear systems by some impulsive inputs. Geng
and Duan (2007), Schoukens et al. (2018), Shahrrava
(2018), Wang JR et al. (2018), and Wang YQ et al.
(2019) studied the effect of impulsive control on lin-
ear systems. From the above studies, we can see that
the time of impulse occurrence can be fixed or vari-
able, and that even the existence of an impulse time
window is considered. The intensity of impulses can
be infinite in theory or be saturated. Therefore, im-
pulsive control is a flexible control method, and has
become a research hotspot.
Definition 1 (Dynamic join characteristics) The
multi-agent systems with dynamic join characteris-
tics mean that some agent groups work first, and
then as time goes on, some new agent groups can
randomly join. The new agent groups can communi-
cate with the existing agent groups, but cannot affect
the evolution states of the existing agent groups or
the time for the existing agent groups to achieve state
consensus.

We will make several combinations of the aver-
age consensus, leader-following consensus, directed
networks, undirected networks, and impulsive con-
trol. We will analyze the feasibility of these combina-
tions in multi-agent systems with dynamic join char-
acteristics. We will discuss whether the four cases of
average consensus with undirected networks, leader-
following consensus with undirected networks, aver-
age consensus with directed networks, and leader-
following consensus with directed networks support
the dynamic join characteristics of multi-agent sys-
tems. We analyze the above four cases in detail and
obtain four feasible schemes including the best one.
We will establish the topology model of the commu-
nication network and the dynamic model of multi-
agent systems based on the best scheme. Then, the
dynamic model is analyzed by Lyapunov stability
theory. The sufficient and necessary conditions of
state consensus are obtained.

The main contributions of this paper are as
follows:

1. To the best of our knowledge, we have
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given the definition of dynamic join characteristics
of multi-agent systems for the first time. It broadens
the thinking and research scope of achieving state
consensus in multi-agent systems.

2. Through analysis, we find a best scheme to
support the state consensus of multi-agent systems
with dynamic join characteristics from some com-
mon network topologies. This best scheme not only
has theoretical value, but also integrates the concept
of actual industrial production, and has high engi-
neering significance.

3. Based on the best scheme, we establish a dy-
namic model of multi-agent systems and obtain some
sufficient conditions of state consensus.

4. We give a numerical example through Mat-
lab program to verify the practicality and validity of
theoretical results.

2 Preliminaries

In this section, we will provide some notations,
algebraic graph theories, and common dynamics
models of multi-agent systems.

Notations: We use R, R+, Rn×n, and N
+ to rep-

resent the set of real numbers, the set of positive real
numbers, the set of n × n real matrices, and the set
of positive integers, respectively. We denote n ∈ N

+.
λM(Ω) represents the maximum eigenvalue of matrix
Ω, and λm(Ω) represents the smallest eigenvalue
of matrix Ω. diag(a1, a2, · · · , an) stands for an n-
dimensional diagonal matrix. | · | and ‖·‖ represent
the absolute value and Euclidean norm, respectively.
In represents the n-dimensional identity matrix. xk,
xki, and xki(t) represent the kth agent group, the ith

agent in the kth agent group, and the state of the ith

agent in the kth agent group at time t, respectively,
where k, i ∈ N

+ and t = 0 or t ∈ R
+.

Algebraic graph theories: Throughout this pa-
per, communication networks are based on algebraic
graph theories. Let G=(ν, ε) denote a connected
graph with the set of nodes ν = {1, 2, · · · , n} and
the set of edges ε ⊆ ν × ν. A = [aij ] ∈ R

n×n de-
notes the weighted adjacency matrix of the graph
G with nonnegative elements, where aii = 0 and
aij ≥ 0 (i �= j).

If G is an undirected graph without multiple
edges and self-loops, we specify that all the elements
of matrix A contain only 0 or 1. If nodes i and j are
connected, aij = 1; otherwise, aij = 0. The degree of

node i is defined by deg(i) =
n∑

j=1

aij (i = 1, 2, · · · , n).
Let matrix D = diag(deg(1), deg(2), · · · , deg(n)) be
a diagonal matrix, and define it as the degree matrix
of graph G. Then, the Laplacian matrix L is defined
as L = D −A.

If G is a directed graph without multiple edges
and self-loops, an edge rooted at node i and ended
at node j is denoted by (i, j). Denote aij = 1 if
(i, j) ∈ ε; otherwise, aij = 0. We say that node j is
a neighbor of node i if (i, j) ∈ ε. The out-degree of

node i is defined as deg(i) =
n∑

j=1

aij (i = 1, 2, · · · , n).
Let D = diag(deg(1), deg(2), · · · , deg(n)) represent
the degree matrix of the directed graph G. The
Laplacian matrix L is defined as L = D − A. In
a directed graph, a sequence of successive edges in
the form of (i, l), (l,m), · · · , (k, j) is a directed path
from node i to node j. If there is a node (We call it
a root node) in a directed graph that can reach all
the other nodes in the graph through some directed
paths, then we say that the directed graph has a
spanning tree.

When we involve several agent groups, each
agent group has its own communication network.
Suppose that the communication network topology
of the kth agent group isGk. Then we useAk = [akij ]

to represent its weighted adjacency matrix. Dk and
Lk = Dk − Ak represent the degree matrix of Gk

and the Laplacian matrix of Gk, respectively.
Common dynamics models of multi-agent sys-

tems: Generally, the establishment of dynamics
models of multi-agent systems is usually restricted
by multiple factors. Different means of controlling
inputs and different schemes of achieving state con-
sensus will result in a difference of dynamics mod-
els. In the schemes of multi-agent systems to achieve
state consensus, this study involves average consen-
sus and leader-following consensus. In the control
inputs of multi-agent systems, impulsive theory is
introduced. The common dynamics model of multi-
agent systems can be described as

ẋki(t) = �(t, xki(t)) + uki(t), (1)

where xki(t) is the state value of agent i in the kth

agent group at time t and �(t, xki(t)) is a function
with t and xki(t) as variables. uki(t) is the control
input of agent i in the kth agent group at time t, and
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can be defined as

uki(t) =

∞∑

m=1

fk

( ∑

kj∈Ξki

akij [xki(t)− xkj(t)]

+ bki[xki(t)− x0(t)]

)

δ(t− tkm), (2)

where fk is the impulse strength to the kth agent
group, Ξki represents the set of neighbor nodes of
agent i in the kth agent group, and x0(t) is the state
value of a leader agent. Let bki be the weight of the
edge from the leader agent to the ith agent in the
kth agent group, and bki > 0 if and only if there is
an edge from the leader agent to agent i in the kth

agent group. As is normally considered to be the
case, when there is an edge from the leader agent
to agent i in the kth agent group, bki = 1 will be
directly defined in this study. bki = 0 means that
there is no connection edge between the leader agent
and agent i in the kth agent group. Clearly, if all
the agents in the kth agent group have no leader
agent, then bki = 0 (i = 1, 2, · · · ). We denote δ(·) a
Dirac function. The non-negative real number tkm
represents the time when the impulse occurs, and
its detailed definition can vary with the impulsive
control strategy, which we will define in detail later in
this paper. We can also call uki(t) a control protocol.
Assumption 1 Continuous nonlinear function
ϕ : R → R satisfies the Lipschitz condition:

|ϕ(x1)− ϕ(x2)| ≤ l|x1 − x2|, (3)

where l is the Lipschitz constant.

3 Feasibility of several schemes

Some currently common network topologies are
not suitable for the implementation of state consen-
sus of multi-agent systems with dynamic join char-
acteristics. In this section, we will analyze the net-
work topologies and find out several implementation
schemes suitable for the dynamic join characteristics.

This section involves the combination analysis
of directed networks, undirected networks, average
consensus, and leader-following consensus.

3.1 Average consensus with undirected net-
works

In this subsection, we will consider whether the
combination of average consensus and undirected

networks can support the implementation of state
consensus of multi-agent systems with dynamic join
characteristics. Fig. 1 shows a dynamic joining topol-
ogy of multi-agent systems based on average consen-
sus with undirected networks.
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Fig. 1 Dynamic joining topology of multi-agent sys-
tems based on average consensus with undirected
networks

At time tk, we assume that the kth agent group
has started working. At time tk+1, we dynamically
join the (k + 1)th agent group, and communications
between all the agents are based on an undirected
network. From Fig. 1, we can see that there is an
undirected edge ε1 between agent xk3 in the kth agent
group and agent x(k+1)2 in the (k+1)th agent group.

Case 1: At time tk+1, agents in the kth agent
group have not achieved state consensus. Since
agent xk3 in the kth agent group and agent x(k+1)2

in the (k + 1)th agent group are connected by
ε1, it can be seen from Eqs. (1) and (2) and
Fig. 1 that the kth and (k + 1)th agent groups
will affect each other due to the existence of∞∑

m=1
fk

(
∑

kj∈Ξki

akij [xki(t)−xkj(t)]

)

,
∞∑

m=1
fk(xk3(t) −

x(k+1)2(t)),
∞∑

m=1
fk+1(x(k+1)2(t) − xk3(t)), and

∞∑

m=1
fk+1

(
∑

(k+1)j∈Ξ(k+1)i

a(k+1)ij [x(k+1)i(t)−x(k+1)j(t)]

)

.

This may delay the time when the kth agent group
achieves state consensus. In extreme cases, more
and more other agent groups are continuously
added, and the newly added agent groups will be
connected with the existing ones through several
undirected edges. Then, the newly added agent
groups may always delay the time when the existing
agent groups achieve state consensus. Therefore,
this situation does not conform to the feasibility and
efficiency principles of actual industrial production.

Case 2: At time tk+1, agents in the kth agent
group have achieved state consensus. Since agent
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xk3 in the kth agent group and agent x(k+1)2 in the
(k + 1)th agent group are connected by an undi-
rected edge ε1, it can be seen from Eqs. (1) and
(2) and Fig. 1 that the state of the (k + 1)th agent
group will affect that of the kth agent group due to

the existence of
∞∑

m=1
fk

(
∑

kj∈Ξki

akij [xki(t)− xkj(t)]

)

and
∞∑

m=1
fk(xk3(t)−x(k+1)2(t)). This will lead to the

states not having consensus again in the kth agent
group, which obviously does not conform to the needs
of actual industrial production.

Therefore, the scheme of “average consensus
with undirected networks” is not suitable for the
state consensus study of multi-agent systems with
dynamic join characteristics.

3.2 Average consensus with directed networks

In this subsection, we will consider whether the
combination of average consensus and directed net-
works can support the implementation. Fig. 2 shows
a dynamic joining topology of multi-agent systems
based on average consensus with directed networks.

At time tk, we assume that the kth agent group
has started working. At time tk+1, we dynamically
join the (k + 1)th agent group, and communication
between these agents is based on a directed network.
From Fig. 2, we can see that there is a directed edge
ε1 (or ε2 or ε3) between agent xk3 in the kth agent
group and agent x(k+1)2 in the (k+1)th agent group.

Case 1: The directed edge connecting agent xk3

in the kth agent group to agent x(k+1)2 in the (k+1)th

agent group is ε1, and ε1 is bidirectional. Since the
kth and (k+1)th agent groups can affect each other,
this scheme is similar to the scheme of “average con-
sensus with undirected network” and is not feasible.

Case 2: The directed edge connecting agent xk3
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Fig. 2 Dynamic joining topology of multi-agent
systems based on average consensus with directed
networks

in the kth agent group to agent x(k+1)2 in the (k+1)th

agent group is ε2, and ε2 is one-way. The information
can be sent only from agent x(k+1)2 in the (k + 1)th

agent group to agent xk3 in the kth agent group. In
this situation, the (k + 1)th agent group will affect
the kth agent group. This scheme is also similar
to the scheme of “average consensus with undirected
network” and is not feasible.

Case 3: The directed edge connecting agent xk3

in the kth agent group to agent x(k+1)2 in the (k+1)th

agent group is ε3, and ε3 is one-way. The informa-
tion can be sent only from agent xk3 in the kth agent
group to agent x(k+1)2 in the (k + 1)th agent group.
In this situation, the kth agent group will affect the
(k+ 1)th agent group, and the (k+ 1)th agent group
will not affect the kth agent group. Similarly, the
(k+2)th agent group, (k+3)th agent group, (k+4)th

agent group, and so on, can be added dynamically in
sequence. As long as the newly added agent groups
are connected to the existing agent groups in the
manner of the directed edge ε3, through effective
control, all agent groups will be able to achieve state
consensus, and the newly added agent groups will
not delay the time when the existing agent groups
achieve state consensus. However, in the actual in-
dustrial application, there are still some problems in
this situation. For example, if the kth and (k + 1)th

agent groups already exist, then we dynamically add
the (k + 2)th agent group. We could connect just
the newly added (k + 2)th agent group to the exist-
ing kth agent group in the manner of the directed
edge ε3, or we could connect just the newly added
(k + 2)th agent group to the existing (k + 1)th agent
group in the manner of the directed edge ε3, or we
could connect the newly added (k+2)th agent group
to both the kth and (k + 1)th agent groups in the
manner of the directed edge ε3. Then, we need to
formulate a rule to specify the specific connection
mode between the newly added agent groups and
the existing ones. This is cumbersome. Another ob-
vious disadvantage of this situation is that the newly
added agent groups will have communication edges
with the existing agent groups. As a large number of
newly added agent groups are added, there will be a
communication burden on the existing agent groups,
and this will be a serious problem in the actual in-
dustrial situation. Based on the above analysis, we
know that this situation is feasible in theory, but it
is not suitable for actual industrial production.
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3.3 Leader-following consensus with undi-
rected networks

In this subsection, we will consider whether the
combination of leader-following consensus with undi-
rected networks can support the implementation we
are seeking for.

Case 1: Fig. 3 shows a dynamic joining topol-
ogy of multi-agent systems based on leader-following
consensus with undirected networks.

At time t0, we assume that the leader agent has
started working. At time tk, we dynamically join
the kth agent group. At time tk+1, we dynamically
join the (k + 1)th agent group. From Fig. 3, we can
see that the leader agent is connected to the kth and
(k + 1)th agent groups by directed edges ε1 and ε2,
respectively. The direction of information transfor-
mation on ε1 is from the leader agent to the kth agent
group, and the direction of information transforma-
tion on ε2 is from the leader agent to the (k + 1)th

agent group. All the other agents are connected to
each other by the undirected edges. Agent xk1 in the
kth agent group and agent x(k+1)2 in the (k + 1)th

agent group are connected by the undirected edge ε3.
In this way, the (k + 1)th agent group will affect the
kth agent group, which is similar to the scheme of
“average consensus with undirected network” men-
tioned above, and is suitable for actual industrial
production.

Case 2: Fig. 4 shows another dynamic joining
topology based on leader-following consensus with
undirected networks.

At time t0, we assume that the leader agent has
started working. At time tk, we dynamically join
the kth agent group. At time tk+1, we dynamically
join the (k + 1)th agent group. From Fig. 4, we can
see that the leader agent is connected to the kth and
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Fig. 3 Dynamic joining topology of multi-agent sys-
tems based on leader-following consensus with undi-
rected networks

(k + 1)th agent groups by directed edges ε1 and ε2,
respectively. The direction of information transfor-
mation on ε1 is from the leader agent to the kth

agent group. The direction of information transfor-
mation on ε2 is from the leader agent to the (k+1)th

agent group. All the other agents are connected to
each other by undirected edges, and there is no con-
nected communication edges between the kth and
(k + 1)th agent groups. In this way, the kth and
(k+1)th agent groups will not affect each other, and
they are affected only by the leader agent. After a
period of effective communication control, they can
achieve state consensus with the leader agent. If this
scheme is adopted, the newly added agent groups
will not delay the time for the existing agent groups
to achieve state consensus or destroy the state con-
sensus of the existing agent groups. We know that
there are no communication connections between
each agent group; that is, each agent group has com-
munication connections only with the leader agent,
and the other communication connections in each
agent group are only internal connections. So, this
situation avoids the communication burden between
each agent group, and agents in different groups can
also avoid collisions. Based on the above analysis,
we basically do not need to strengthen the commu-
nication skills of the agents in each agent group. We
need to strengthen only the communication skills of
the leader agent, because the leader agent will com-
municate with all the agent groups. In this way, we
avoid enhancing the communication skills of all agent
groups, which will greatly reduce the communication
burden and the production cost. Furthermore, the
adoption of this scheme has the advantage of uni-
fied form for the state consensus problem of a sin-
gle group and multiple groups. It meets the “KISS”
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Fig. 4 Another dynamic joining topology of multi-
agent systems based on leader-following consensus
with undirected networks
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(Keep It Simple, Stupid) principle in actual indus-
trial production. Therefore, we take this scheme as
the best one.

3.4 Leader-following consensus with directed
networks

In this subsection, we will consider whether the
combination of leader-following consensus with di-
rected networks can support the implementation of
state consensus of multi-agent systems with dynamic
join characteristics.

Case 1: Fig. 5 shows a dynamic joining topol-
ogy of multi-agent systems based on leader-following
consensus with directed networks.

At time t0, we assume that the leader agent
has started working. At time tk, we dynamically
join the kth agent group. At time tk+1, we dynam-
ically join the (k + 1)th agent group. From Fig. 5,
we can see that the leader agent is connected to the
kth and (k + 1)th agent groups by directed edges ε1
and ε2, respectively. The direction of information
transformation on ε1 is from the leader agent to the
kth agent group, and the direction of information
transformation on ε2 is from the leader agent to the
(k+1)th agent group. The connected communication
edges of the kth and (k + 1)th agent groups are all
directed edges, and there are no connected commu-
nication edges between the kth and (k + 1)th agent
groups. We can see that this situation is similar to
case 2 in Section 3.3, except that the internal com-
munications of each agent group are directed edges.
So, this situation is feasible in theory. Because the
communication capability of the current communica-
tion equipment is relatively strong, the communica-
tion equipment generally supports one-to-many and
two-way communications. So, in actual industrial
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Fig. 5 Dynamic joining topology of multi-agent sys-
tems based on leader-following consensus with di-
rected networks

production, if directed communication is adopted,
the communication capability of the communication
equipment cannot be maximized. Therefore, we do
not consider this situation as a best one.

Case 2: Fig. 6 shows another dynamic joining
topology based on leader-following consensus with
directed networks.

As can be seen from Fig. 6, this situation is
basically the same as that in Fig. 5, except that there
is a directed edge ε3, ε4, or ε5 between the kth and
(k + 1)th agent groups in Fig. 6.

Through the previous analysis in this study, it is
clear that if there is a directed edge ε3 or ε4 between
the kth and (k + 1)th agent groups, since the state
of the (k + 1)th agent group will affect that of the
kth agent group, it does not meet the requirements
of this study.

If the connected communication edge between
the kth and (k + 1)th agent groups is the directed
edge ε5, since the (k + 1)th agent group will not af-
fect the state of the kth agent group, it meets the
requirements in theory. In this situation, when the
(k+2)th agent group, (k+3)th agent group, (k+4)th

agent group, and so on, are added dynamically in se-
quence, there are many directed edges between all
the agent groups. This is similar to case 3 in Sec-
tion 3.2 and increases the communication burden of
all agent groups. Similarly, since the communication
between all agent groups of directed communication
is adopted for the method, the communication ca-
pability of the communication equipment cannot be
maximized. So, it is not a best scheme in actual
industrial production.

In this section, we analyze mainly whether the
currently common network topologies of multi-agent
systems are suitable for the implementation we are
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Fig. 6 Another dynamic joining topology of multi-
agent systems based on leader-following consensus
with directed networks
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seeking for. Through the analysis in this section, we
know that case 3 in Section 3.2, case 2 in Section 3.3,
case 1 in Section 3.4, and case 2 with ε5 in Section 3.4
are all feasible in theory. Among the four feasible
schemes, case 2 in Section 3.3 can not only minimize
the communication burden between agent groups,
but also maximize the communication capability of
each agent. So, in actual industrial production, the
best scheme is case 2 in Section 3.3.

4 Problem formulation

Based on the scheme of case 2 in Section 3.3,
let k and i be two positive integers. Assume
that there are n (n ∈ N

+) agent groups and that
the kth (k ∈ [1, n]) agent group has Nk (Nk ∈ N

+)

agents. We use xki(t) to represent the state of the
ith (i ∈ [1, Nk]) agent in the kth agent group at time
t (t = 0 or t ∈ R

+). We use x0 to represent a leader
agent, and all other agent groups can obtain infor-
mation from the leader agent. We consider the com-
munication network topology of each agent group as
an undirected graph, and the dynamics of the leader
agent and all other agents is nonlinear. The dynam-
ics of the leader agent is described as follows:

ẋ0(t) = Hx0(t) + ϕ(x0(t)), (4)

where H ∈ R, and x0(t) ∈ R is the state of the
leader agent. ϕ(·) is a continuous nonlinear function
whose definition and properties have been given in
Assumption 1. We assume that the leader agent x0

starts working at t0.
Let �(t, xki(t)) = Hxki(t) + ϕ(xki(t)). Accord-

ing to the common dynamics model (1), the dynam-
ics of the ith agent in the kth agent group can be
described as follows:

ẋki(t) = Hxki(t) + ϕ(xki(t)) + uki(t), (5)

where k ∈ [1, n], i ∈ [1, Nk], xki(t) ∈ R is the state
of the ith agent in the kth agent group, and uki(t)

has been defined in Eq. (2). Although there are
many common forms of impulse at present, such as
event-based impulse, variable time impulse, and im-
pulse with time windows, considering that this study
is based mainly on dynamic join characteristics and
the KISS principle in actual industrial production,
we choose Eq. (2) as the control protocol. Of course,
some more complex control methods can be consid-
ered in further research. Therefore, the dynamics (5)

can be rewritten as

ẋki(t) =Hxki(t) + ϕ(xki(t))

+

∞∑

m=1

fk

( ∑

kj∈Ξki

akij [xki(t)− xkj(t)]

+ bki[xki(t)− x0(t)]

)

δ(t− tkm). (6)

Assume that the kth agent group is dynamically
joined at time tk, the (k + 1)th agent group is dy-
namically joined at time tk+1, the (k + 2)th agent
group is dynamically joined at time tk+2, and so
on. Clearly, 0 ≤ t0 ≤ tk ≤ tk+1 ≤ tk+2 ≤ · · · ≤
+∞. Assume that Δxki(tkm) = xki(t

+
km)−xki(t

−
km),

xki(tkm) = xki(t
+
km), xki(t

−
km) = lim

t→t−km

xki(t), and

xki(t
+
km) = lim

t→t+km

xki(t). Because the Dirac function

δ(·) has the property of
∫ a+Δ

a−Δ g(t)δ(t − a)dt = g(a)

for Δ �= 0, the dynamics (6) can be rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋki(t) = Hxki(t) + ϕ(xki(t)), t �= tkm,

Δxki(tkm) = fk

( ∑

kj∈Ξki

akij [xki(t
−
km)− xkj(t

−
km)]

+ bki[xki(t
−
km)− x0(t

−
km)]

)

, t = tkm,

(7)
where k ∈ [1, n] and i ∈ [1, Nk]. We use a periodic
control method to control each agent group, and let
T ∈ R

+ be the system control period. Let tkm =

tk +mT + T/2, where m = 0 or m ∈ N
+.

Let the state error of the ith agent in the
kth agent group be eki(t) = xki(t) − x0(t), and
let the state error of the kth agent group be
ek(t) = [ek1(t), ek2(t), · · · , ekNk

(t)]T. We can obtain
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ėki(t) = Heki(t) + ϕ(xki(t))− ϕ(x0(t)), t �= tkm,

Δeki(tkm) = fk

( ∑

kj∈Ξki

akij [xki(t
−
km)− xkj(t

−
km)]

+ bki[xki(t
−
km)− x0(t

−
km)]

)

, t = tkm.

(8)
The error system is
⎧
⎪⎨

⎪⎩

ėk(t) = (INk
⊗H)ek(t)

+ Ψk(xk(t), x0(t)), t �= tkm,

ek(tkm) = [INk
+ fk(Lk +Bk)]ek(t

−
km), t = tkm,

(9)
where Bk = diag(bk1, bk2 · · · , bkNk

)∈RNk×Nk and
Ψk(xk(t), x0(t)) = [ϕ(xk1(t))−ϕ(x0(t)), ϕ(xk2(t))−
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ϕ(x0(t)), · · · , ϕ(xkNk
(t)) − ϕ(x0(t))]

T (k ∈ [1, n]).
The communication network topology of the kth

agent group is Gk, and Lk represents the Laplacian
matrix of Gk.
Definition 2 For system (7), the system can
achieve state consensus under control protocol (2)
when

lim
t→+∞ |xki(t)− x0(t)| = 0, k ∈ [1, n], i ∈ [1, Nk].

(10)

5 Main results

In this section, theoretical analysis is provided
for the state consensus problem of multi-agent sys-
tems with dynamic join characteristics under impul-
sive control.
Theorem 1 Suppose that there exists a positive
constant ηk > 0 (k ∈ [1, n]). If the following inequal-
ities hold:

(1) INk
⊗ (2HHH + 2l − ηk) ≤ 0,

(2) lnλk + ηkT < 0,
where λk = λM{[INk

+fk(Lk+Bk)]
T[INk

+fk(Lk+

Bk)]}, then the multi-agent system (7) can achieve
state consensus under control protocol (2).
Proof First, we can construct the following Lya-
punov function for error system (9):

Vk(ek(t)) = eTk (t)ek(t). (11)

If t ∈ (
tk +mT, tk +mT + T/2

)
, we have

V̇k(ek(t)) =2eTk (t)ėk(t)

=2eTk (t)[(INk
⊗H)ek(t)

+ Ψk(xk(t), x0(t))]

=2eTk (t)(INk
⊗H)ek(t)

+ 2eTk (t)Ψk(xk(t), x0(t))

≤2eTk (t)(INk
⊗H)ek(t) + 2eTk (t)lek(t)

≤eTk (t)[INk
⊗ (2H + 2l)]ek(t)

≤ηkVk(ek(t))

+ eTk (t)[INk
⊗ (2H + 2l − ηk)]ek(t)

≤ηkVk(ek(t)).

So,

Vk(ek(t)) ≤ Vk(ek((tk+mT )+))exp[ηk(t−tk−mT )].

(12)

If t = tkm, that is t = tk +mT + T/2, we have

Vk(ek(tkm)) =eTk (tkm)ek(tkm)

={[INk
+ fk(Lk +Bk)]ek(t

−
km)}T

· {[INk
+ fk(Lk +Bk)]ek(t

−
km)}

=eTk (t
−
km)[INk

+ fk(Lk +Bk)]
T

· [INk
+ fk(Lk +Bk)]ek(t

−
km)

≤λkVk(ek(t
−
km)), (13)

where λk = λM{[INk
+fk(Lk+Bk)]

T[INk
+fk(Lk+

Bk)]}.
If t ∈ (t+km, tk + (m+ 1)T ], similarly, we have

V̇k(ek(t)) ≤ ηkVk(ek(t)).

So,

Vk(ek(t)) ≤Vk(ek(t
+
km))exp[ηk(t− t+km)]

≤Vk(ek((tk +mT + T/2)+))

· exp[ηk
(
t− tk −mT − T/2

)]
. (14)

We can do the following mathematical induction
through inequalities (12)–(14):

Case 1: m = 0.
Subcase 1: If t ∈ (tk, tk + T/2), then we can

obtain

Vk(ek(t)) ≤ Vk(ek(t
+
k ))exp[ηk(t− tk)].

So, Vk(ek((tk + T/2)−)) ≤ Vk(ek(t
+
k ))exp[ηk(T/2)].

Subcase 2: If t = tk0, that is t = tk + T/2, then
we can obtain

Vk(ek(t))|t=tk+T/2 ≤λkVk(ek((tk + T/2)−))

≤λkVk(ek(t
+
k ))exp[ηk(T/2)].

Subcase 3: If t ∈ (tk +T/2, tk+T ], then we can
obtain

Vk(ek(t)) ≤Vk(ek((tk + T/2)+))exp[ηk(t− tk − T/2)]

≤λkVk(ek(t
+
k ))exp(ηk(T/2))

· exp[ηk(t− tk − T/2)]

≤λkVk(ek(t
+
k ))exp[ηk(t− tk)].

So, Vk(ek(tk + T )) ≤ λkVk(ek(t
+
k ))exp[ηk(T )].

Case 2: m = 1.
Subcase 1: If t ∈ (tk + T, tk + 3T/2), then we

can obtain

Vk(ek(t)) ≤Vk(ek((tk + T )+))exp[ηk(t− tk − T )]

≤λkVk(ek(t
+
k ))exp[ηk(T )]

· exp[ηk(t− tk − T )]

≤λkVk(ek(t
+
k ))exp[ηk(t− tk)].



Hu et al. / Front Inform Technol Electron Eng 2021 22(1):120-133 129

So, Vk(ek((tk + 3T/2)−)) ≤ λkVk(ek(t
+
k ))

· exp[ηk(3T/2)].
Subcase 2: If t = tk1, that is t = tk+3T/2, then

we can obtain

Vk(ek(t))|t=tk+3T/2 ≤λkVk(ek((tk + 3T/2)−))

≤λ2
kVk(ek(t

+
k ))exp[ηk(3T/2)].

Subcase 3: If t ∈ (tk + 3T/2, tk + 2T ], then we
can obtain

Vk(ek(t)) ≤Vk(ek((tk + 3T/2)+))

· exp[ηk(t− tk − 3T/2)]

≤λ2
kVk(ek(t

+
k ))exp[ηk(3T/2)]

· exp[ηk(t− tk − 3T/2)]

≤λ2
kVk(ek(t

+
k ))exp[ηk(t− tk)].

So, Vk(ek(tk + 2T )) ≤ λ2
kVk(ek(t

+
k ))exp[ηk(2T )].

Case 3: m = 2.
Subcase 1: If t ∈ (tk + 2T, tk + 5T/2), then we

can obtain

Vk(ek(t)) ≤Vk(ek((tk + 2T )+))exp[ηk(t− tk − 2T )]

≤λ2
kVk(ek(t

+
k ))exp[ηk(2T )]

· exp[ηk(t− tk − 2T )]

≤λ2
kVk(ek(t

+
k ))exp[ηk(t− tk)].

So, Vk(ek((tk + 5T/2)−)) ≤ λ2
kVk(ek(t

+
k ))

· exp[ηk(5T/2)].
Subcase 2: If t = tk2, that is t = tk+5T/2, then

we can obtain

Vk(ek(t))|t=tk+5T/2 ≤λkVk(ek((tk + 5T/2)−))

≤λ3
kVk(ek(t

+
k ))exp[ηk(5T/2)].

Subcase 3: If t ∈ (tk + 5T/2, tk + 3T ], then we
can obtain

Vk(ek(t)) ≤Vk(ek((tk + 5T/2)+))

· exp(ηk(t− tk − 5T/2))

≤λ3
kVk(ek(t

+
k ))exp[ηk(5T/2)]

· exp[ηk(t− tk − 5T/2)]

≤λ3
kVk(ek(t

+
k ))exp[ηk(t− tk)].

So, Vk(ek(tk + 3T )) ≤ λ3
kVk(ek(t

+
k ))exp[ηk(3T )].

Case θ + 1: m = θ (θ ∈ N
+).

Subcase 1: If t ∈ (tk + θT, tk + θT + T/2), then
we can obtain

Vk(ek(t)) ≤ λθ
kVk(ek(t

+
k ))exp[ηk(t− tk)]. (15)

Subcase 2: If t ∈ [tk + θT + T/2, tk + (θ+ 1)T ],
then we can obtain

Vk(ek(t)) ≤ λθ+1
k Vk(ek(t

+
k ))exp[ηk(t− tk)]. (16)

From inequality (15), when t ∈ (tk + θT, tk +

θT + T/2), let t = tk + θT + T/2. So,

Vk(ek(t)) ≤λθ
kVk(ek(t

+
k ))exp[ηk(θT + T/2)]

≤exp(θlnλk)Vk(ek(t
+
k ))exp[ηk(θT+T/2)]

≤Vk(ek(t
+
k ))exp[θlnλk + θηkT + ηkT/2]

≤Vk(ek(t
+
k ))exp[θ(lnλk + ηkT ) + ηkT/2].

(17)

From inequality (16), when t ∈ [tk + θT +

T/2, tk + (θ + 1)T ], let t = tk + (θ + 1)T . So,

Vk(ek(t)) ≤λθ+1
k Vk(ek(t

+
k ))exp[ηk((θ + 1)T )]

≤exp[(θ + 1)lnλk]Vk(ek(t
+
k ))

· exp[ηk((θ + 1)T )]

≤Vk(ek(t
+
k ))exp[(θ + 1)lnλk

+ ηk((θ + 1)T )]

≤Vk(ek(t
+
k ))exp[(θ + 1)(lnλk + ηkT )].

(18)

We know that the kth agent group starts work-
ing at time tk, so ek(t

+
k ) is the initial value of

the error system ek(t). From inequalities (17) and
(18) and the conditions of Theorem 1, we conclude
that when t → +∞, we have θ + 1 → +∞. So,
lim

t→+∞Vk(ek(t)) = 0.

6 Example

Considering the central idea of this study, we
give a numerical example to verify the availability
and reliability of the proposed model. We consider
that there is one leader agent and four agent groups.
The leader agent is x0, the first agent group is x1,
the second agent group is x2, the third agent group
is x3, and the fourth agent group is x4. At t0 = 0,
assume that the leader agent starts working. The
kth (k = 1, 2, 3, 4) agent group is dynamically joined
at time tk (0 < t1 ≤ t2 ≤ t3 ≤ t4 < +∞).

Fig. 7 shows the working time of the leader agent
x0 and the dynamic join time of the four agent groups
x1, x2, x3, and x4.

Let H = 3.2 and ϕ(x0(t)) =
√
x2
0(t) + 5. The

dynamics of the leader agent x0 is as follows:

ẋ0(t) = 3.2x0(t) +
√
x2
0(t) + 5, (19)
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and let x0(t0) = x0(0) = 0.237 to represent the ini-
tial state of the leader agent.

From Fig. 7, we can see that the first agent group
has two agents, x11 and x12. The second agent group
has two agents, x21 and x22. The third agent group
has three agents, x31, x32, and x33. The fourth agent
group has one agent x41. The directed edge ε1 roots
at x0 and ends at x11. The directed edge ε2 roots
at x0 and ends at x21. The directed edges ε3, ε4,
and ε5 all root at x0 and end at x31, x32, and x33,
respectively. The directed edge ε6 roots at x0 and
ends at x41.

From Fig. 7, we can obtain

L1 =

[
1 −1

−1 1

]

, L2 =

[
1 −1

−1 1

]

,

L3 =

⎡

⎣
2 −1 −1

−1 2 −1

−1 −1 2

⎤

⎦ , L4 =
[
0
]
,

B1 =

[
1 0

0 0

]

, B2 =

[
1 0

0 0

]

,

B3 =

⎡

⎣
1 0 0

0 1 0

0 0 1

⎤

⎦ , B4 =
[
1
]
.

Similarly, ϕ(xki(t)) =
√
x2
ki(t) + 5 and the dy-

namics of the ith agent in the kth agent group is

ẋki(t) =3.2xki(t) +
√
x2
ki(t) + 5

+

∞∑

m=1

fk

( ∑

kj∈Ξki

akij [xki(t)− xkj(t)]

+ bki[xki(t)− x0(t)]

)

δ(t− tkm),

k = 1, 2, 3, 4, m = 0, 1, · · · . (20)

When k = 1 then i = 1, 2, when k = 2 then i = 1, 2,
when k = 3 then i = 1, 2, 3, and when k = 4 then
i = 1. From Theorem 1 and the central idea of this
study, let f1 = −0.18, f2 = −0.198, f3 = −0.33, and
f4 = −1.28. We use Matlab to simulate all agent
groups. Let the system control period T = 0.03 s
and the step size p = 0.0015 s. Let t1 = 20p = 0.03 s,
t2 = 50p = 0.075 s, t3 = 70p = 0.105 s, t4 = 90p =

0.135 s. The initial values of all agent groups are

x11(0.03) = 1.2, x12(0.03) = −1.2,

x21(0.075) = 1.1, x22(0.075) = 0.2,

x31(0.105) = 1.65, x32(0.105) = 1.3,

x33(0.105) = −0.52, x41(0.135) = −1.58.

This example assumes that the state value of
each agent group from time 0 to its initial time is
always equal to its initial state value. Through the
above initial values and parameter setting, we can
obtain four exponentially stable solutions. Figs. 8–
11 show the state error values between the leader
agent and the first, second, third, and fourth agent
groups, respectively, all expressed over time.

Figs. 12–15 show the state values of the first, sec-
ond, third, and fourth agent groups. It can be seen
from Figs. 8–15 that system (20) has achieved state
consensus; that is, all agent groups have achieved
state consensus with dynamic join characteristics un-
der impulsive control.

7 Conclusions

We have studied the state consensus prob-
lem of multi-agent systems with dynamic join
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characteristics under impulsive control. To the best
of our knowledge, we have given the definition of
dynamic join characteristics of multi-agent systems
for the first time. We have divided the schemes
of the state consensus of multi-agent systems with
dynamic join characteristics into four cases. We
have obtained four feasible schemes in theory, in-
cluding the best one for actual industrial production.
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Compared with other feasible schemes, this scheme
has more advantages in communication, and has the
advantage of unified form for the state consensus
problem of single group and multiple groups in con-
trol; thus, it has higher practicability. Based on the
best scheme, we have established the dynamic mod-
els of agent groups. In addition, the error system
ek(t) between the agent groups and the leader agent
has been obtained. We have used the Lyapunov
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stability theory to analyze the error system ek(t),
and obtained the necessary and sufficient conditions
for the exponential stability of the error system ek(t),
that is, Theorem 1. Finally, a numerical example has
been given to verify the practicality and validity of
Theorem 1. The idea and theorem are of significance
in industrial production and can be widely used in
industry.
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