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Abstract: A sheer number of techniques and web resources are available for software engineering practice and this
number continues to grow. Discovering semantically similar or related technical terms and web resources offers the
opportunity to design appealing services to facilitate information retrieval and information discovery. In this study,
we extract technical terms and web resources from a community of question and answer (Q&A) discussions and
propose an approach based on a neural language model to learn the semantic representations of technical terms and
web resources in a joint low-dimensional vector space. Our approach maps technical terms and web resources to
a semantic vector space based only on the surrounding technical terms and web resources of a technical term (or
web resource) in a discussion thread, without the need for mining the text content of the discussion. We apply our
approach to Stack Overflow data dump of March 2018. Through both quantitative and qualitative analyses in the
clustering, search, and semantic reasoning tasks, we show that the learnt technical-term and web-resource vector
representations can capture the semantic relatedness of technical terms and web resources, and they can be exploited
to support various search and semantic reasoning tasks, by means of simple K-nearest neighbor search and simple
algebraic operations on the learnt vector representations in the embedding space.

Key words: Technical terms; Web resources; Word embedding; Q&A web site; Clustering tasks; Recommendation
tasks
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1 Introduction

In software engineering, developers often use a
set of related techniques and seek information from
relevant web resources. Table 1 shows six clusters
of semantically related technical terms and web re-
sources. Discovering such semantically related tech-
nical terms and web resources offers the opportunity
to design appealing services to facilitate information
retrieval and discovery.
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For example, we can cluster forum discussions
of a set of related techniques and web resources
to study the needs and thoughts of developers or
to compile the frequently asked questions (FAQs)
of common technical issues. Furthermore, we can
develop recommendation systems for serendipitous
discovery of information. For example, when users
search for the natural language processing (NLP)
techniques, we can recommend NLP libraries (e.g.,
NLTK) or related concepts (e.g., text mining) for
query reformulation, or recommend web sites spe-
cializing in NLP (e.g., http://alias-i.com/lingpipe).
As another example, when users visit the web site
http://d3js.org, we can recommend similar web
sites (e.g., http://highcharts.com) or suggest related
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Table 1 Examples of three categories of clusters

Category Cluster ID Technical term Web resource

Concept-
centric

Cluster 98

Oop http://en.wikipedia.org/wiki/singleton_pattern
Class http://en.wikipedia.org/wiki/single_responsibility_principle
Design-patterns http://en.wikipedia.org/wiki/dependency_injection
Design http://en.wikipedia.org/wiki/observer_pattern
Inheritance http://en.wikipedia.org/wiki/don%27t_repeat_yourself

Cluster 56

Regex http://www.regular-expressions.info/lookaround.html
String http://gskinner.com/regexr
Replace http://www.regular-expressions.info/charclass.html
Split http://docs.python.org/library/re.html
Preg-match http://www.regular-expressions.info/brackets.html

Technique-
centric

Cluster 59

Django-models https://docs.djangoproject.com/en/dev/howto/static-files
Django-templates https://docs.djangoproject.com/en/dev/howto/

custom-template-tags
Django-forms https://docs.djangoproject.com/en/dev/topics/forms/

modelforms
Django-admin https://docs.djangoproject.com/en/dev/topics/db/

queries/#complex-lookups-with-q-objects
Django-views https://docs.djangoproject.com/en/dev/topics/signals

Cluster 81

PHP http://www.smarty.net
Codeigniter http://framework.zend.com
Cakephp http://www.doctrine-project.org
Magento http://codeigniter.com
Zend-framework http://cakephp.org

Task-centric

Cluster 130

Automation http://phantomjs.org
Selenium-webdriver http://htmlunit.sourceforge.net
Webdriver http://msdn.microsoft.com/en-us/library/

system.windows.forms.webbrowser.aspx
Jmeter http://docs.seleniumhq.org
Phantomjs https://github.com/jnicklas/capybara

Cluster 146

Matlab http://numpy.scipy.org
Numpy http://www.numpy.org
Matrix http://en.wikipedia.org/wiki/matlab
Scipy http://eigen.tuxfamily.org/index.php?title=main_page
Fortran http://www.gnu.org/software/gsl

libraries that the users may not be aware of (e.g.,
Dimplejs). Or when users search Java and D3.js,
we can infer that users need some popular visualiza-
tion library for Java equivalent to the D3.js library
for JavaScript, and thus recommend libraries such
as JFreeChart. Thus, our recommendations can be-
come more satisfiable for users.

To support these information retrieval and dis-
covery tasks, we need to represent technical terms
and web resources in a semantic space in order to
reason their semantic relatedness. In this study, we
present a neural-language-model-based approach to
learn the semantic representations of technical terms
and web resources in a joint vector space. We choose
programming-related question and answer (Q&A)
web sites as our information source, from which we

extract technical terms and web resources and learn
their vector representations from millions of discus-
sion threads.

Programming-related Q&A web sites, such as
Stack Overflow, have become a tremendous knowl-
edge repository for software engineering profession-
als. In Q&A discussions, web users tag their
questions with main technical terms around which
the questions revolve (Sillito et al., 2012), and
share hyperlinks to useful online programming re-
sources. LinkLive (Li et al., 2019) uses multiple
features, including hyperlink co-occurrences in Q&A
discussions. Several studies have used topic mod-
eling methods such as latent Dirichlet allocation
(LDA) (Blei et al., 2003) to discover the overarching
topics in Q&A discussions. These studies analyzed
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the discussion content as a whole but not the specific
technical terms or web resources in the discussions.
Search-based methods help users find relevant infor-
mation using similar attributes or content. However,
they cannot discover semantically related but het-
erogeneous technical terms and web resources that
are not similar in attributes or content. Correlation-
similarity-based analyses, e.g., based on association
rules (Agrawal et al., 1993), can discover correlated
items that co-occur frequently, but many semanti-
cally related technical terms and web resources, such
as graph-database and non-relational-database, may
not be frequently mentioned together in the same
discussion threads.

Different from keyword-based search methods
and correlation-similarity-based methods, our ap-
proach is inspired by the recent success of neural
language models in NLP applications (Mikolov et al.,
2013a, 2013b; Chen et al., 2014; Xie et al., 2016,
2017; Gummidi et al., 2019). In these NLP appli-
cations, neural language models are able to learn
word representations (or word embeddings) in a low-
dimensional continuous vector space using the sur-
rounding context of the word in a sentence, where se-
mantically similar or related words are close to each
other in the resulting embedding space.

Our objective is taking advantage of this prop-
erty for the discovery of semantically related tech-
nical terms and web resources. Given a corpus
of discussion threads, we extract question tags as
technical terms and hyperlinks in Q&A discussions
as web resources to construct a corpus of pseudo-
documents. Then, we adopt the continuous skip-
gram model (Mikolov et al., 2013a) to learn vector
representations of technical terms and web resources
in a low-dimensional space where semantically re-
lated technical terms and web resources are close in
the resulting vector space.

Our approach reduces the tasks of clustering or
recommending semantically related technical terms
and web resources to a trivial K-nearest neighbor
search in the embedding space. As a result and
in contrast to existing search-based or correlation-
similarity-based methods, related technical terms
and web resources could have a high similarity score
even if they do not have similar content or are
not mentioned together. Furthermore, the learnt
vector representations can be exploited to provide
intuitive results for semantic reasoning tasks, for

example, finding analogical libraries like JavaScript’s
D3.js and Java’s JFreeChart.

We evaluate our approach using the Stack Over-
flow data dump of March 2018. To evaluate whether
the vector representations learnt by our approach can
capture the semantic relatedness of technical terms
and web resources, we conduct three studies: clus-
tering, search, and semantic reasoning tasks. Our
studies show that the learnt vector representations of
technical terms and web resources are in accordance
with the semantic meanings of technical terms and
web resources, and these vector representations have
a wide potential for numerous recommendation and
reasoning tasks. The recommendations based on the
learnt technical-term and web-resource vectors can
complement existing keyword-based search methods
and correlation-similarity-based recommendations.

This paper makes the following contributions:
1. We formulate the discovery of semantically

related technologies and web resources in Q&A dis-
cussions as an NLP word embedding task.

2. We adopt the cutting-edge word embedding
technique to learn the semantic representations of
technical terms and web resources in a joint vector
space.

3. We evaluate quantitatively and qualitatively
the vector representations of technical terms and web
resources in clustering and recommendation tasks.

2 Related works

As a fast growing body of software engineer-
ing knowledge, Stack Overflow has attracted much
research attention. Our previous work (Jia et al.,
2020) did a quantitative study on multi-lingual sites
of Stack Overflow, showing three major problems
of establishing such multi-lingual versions. Another
one (Jia and Li, 2021) focused on the natural order-
ing of tags in domain-specific Q&A sites.

Several studies (Wang et al., 2013; Barua et al.,
2014; Rosen and Shihab, 2015) used topic modeling
methods (such as LDA) to discover the overarching
topics in Q&A discussions. For example, Barua
et al. (2014) used LDA to discover the topics in de-
veloper discussions on Stack Overflow and studied
the relations between topics and their trends. Wang
et al. (2013) reported exploratory analyses of mobile
development issues, which were discussed on Stack
Overflow. They also used LDA to analyze Q&A
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discussions. Topic models can extract the main
concerns from the discussion content, but they are
coarse-grained analyses and, unlike our work, do not
deal with the semantics of specific technical terms
or web resources. For example, to find specific tech-
niques related to a topic, Barua et al. (2014) had
to manually link the question tags to the topics. In
contrast, our approach automatically maps technical
terms and web resources to a semantic space based
on a neural language model.

Traditional search-based methods model the de-
scriptions of technical terms and content of web sites
to help users retrieve relevant information using key-
words. Xia et al. (2017) showed the difficulties that
developers from all over the world face when search-
ing for the needed information. Xu BW et al. (2017)
also focused on the relevance of question retrieval,
while Ren et al. (2019) posed an issue on filtering
of the retrieved relevant information. Search-based
methods cannot help users find new relevant and in-
teresting items (Robillard et al., 2010), because rec-
ommendations are based on some similar attributes
or contents. However, semantically related techni-
cal terms and web resources may not be described
in similar content, and such heterogeneous informa-
tion cannot be discovered using search-based meth-
ods. For example, Openxml is an extensible markup
language (XML) based file format for representing
Microsoft Office documents. Apache POI is a Java
library for reading and writing Microsoft Office doc-
uments. Clearly, the two techniques are semantically
related. However, Google search engine cannot find
the other technique using one technique as a query.
In contrast, our approach can help users find such se-
mantically related technical terms and web resources
as they would be close to each other in a learnt vector
space.

Correlation similarity has often been used to
discover correlated words that are frequently men-
tioned together (Tian et al., 2014b). For exam-
ple, Tian et al. (2014a) proposed a similarity metric
based on weighted co-occurrence to measure the sim-
ilarity of words in the textual contents of posts on
Stack Overflow. They developed a software-specific
WordNet for finding similar words. Yang and Tan
(2014) detected semantically related words from the
source code and code comments in source code files
using clustering and a co-occurrence-based method.
Wang et al. (2012) inferred semantically related tags

from FreeCode based on tag co-occurrence. More-
over, Huang et al. (2018) calculated the similarity
score between two text descriptions on Stack Over-
flow using the word embedding technique. Our work
is more general than that of Wang et al. (2012), as
we consider both tags and uniform resource locators
(URLs) in the Q&A discussions, and learn vector
representations of tags and URLs in the same se-
mantic space. Furthermore, existing methods infer
related words from the direct co-occurrence of the
words in the same documents. In contrast, our ap-
proach can discover semantically related technical
terms and web resources that appear in the simi-
lar discussion context, but may not be mentioned
together in the same discussion, for example, anal-
ogy libraries NLTK for Python versus OpenNLP for
Java.

3 Word embedding techniques

3.1 General background

Word embeddings are low-dimensional vector
representations of words which are built on the as-
sumption that words with similar meanings tend to
appear in similar contexts (Harris, 1954). Learnt
vectors are able to encode rich semantic and syn-
tactic regularities (Harris, 1954). Compared with
one hot vector representation whose dimensionality
is usually as large as the size of vocabulary (i.e., mak-
ing no assumption about word similarity), word em-
bedding techniques are capable of relieving the curse
of dimensionality and improving the generalization
of word representations. Word embedding has been
widely used in several NLP tasks, such as part-of-
speech tagging (Collobert et al., 2011), named entity
recognition (Passos et al., 2014), and dependency
parsing (Bansal et al., 2014).

Typically, word embedding techniques fall into
two categories: count-based models and context-
predicting models (Baroni et al., 2014). Count-based
models, for example, as proposed in Bullinaria and
Levy (2012), first calculate the word-document co-
occurrence matrix and then use dimension reduc-
tion techniques such as singular value decomposi-
tion (SVD) to map the words to a lower-dimensional
space. Context-predicting models, which are usu-
ally facilitated by neural networks, are trained by
predicting the surrounding contexts of a given word.
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Owing to their simplicity, context-predicting models
are amazingly efficient in training with large corpora
that contain billions of words. Our dataset consists
of millions of discussion threads, which mention tens
of thousands of technical terms and web resources
millions of times. Therefore, in our work, we de-
cide to use the continuous skip-gram model (Mikolov
et al., 2013a), one of the most popular context-
predicting models.

3.2 Continuous skip-gram model

The skip-gram model is a type of neural lan-
guage model. Its basic idea is to learn a mapping
from a central word to a continuous vector, which
is then used to predict the surrounding words in the
context window. The central word and context word
are called the input and output layers of the neu-
ral network, respectively. Specifically, the objective
function of the skip-gram model is defined to maxi-
mize the sum of log probabilities of surrounding con-
text words conditioned on the central word:

N∑

i=1

∑

−k≤j≤k,j �=0

log p (wi+j |wi),

where wi denotes the central word in a sliding win-
dow of k words, wi+j denotes the context word sur-
rounding wi within the sliding window, and N de-
notes the length of the word sequence. Furthermore,
log p (wi+j |wi) is the conditional probability defined
using the softmax function:

p (wi+j |wi) =
exp((v′

wi+j
)T · vwi)∑

w∈W exp((v′
w)

T · vwi)
,

where vwi and v′
wi+j

are the vector representations,
also known as the embeddings, of the central word
wi and the context word wi+j , respectively, and W is
the vocabulary of all words. Here, exp((v′

wi+j
)T ·vwi)

is the exponent of the dot product of the context
word vector and central word vector. Intuitively,
p (wi+j |wi) estimates the probability of a word ap-
pearing in a context of a central word by its nor-
malized dot product with the central word. Af-
ter the training process, we can obtain vector rep-
resentations of central words and context words,
respectively.

Note that, based on the definition of p(wi+j |wi),
calculating the derivatives of the objective function
with regard to v′

wi+j
and vwi during the training

process requires iterating over the whole vocabulary
for each word wi in the sequence. Such learning then
becomes a very time-consuming process for a large
vocabulary. Since people are usually interested only
in learning meaningful word representations but not
the accuracy of prediction, it is acceptable to speed
up the training process with an approximation of the
original model. With this aim, Mikolov et al. (2013a)
used negative sampling, a special case of “contrastive
estimation” (Gutmann and Hyvärinen, 2012), as an
alternative objective function to the original softmax
function:

N∑

i=1

∑

−k≤j≤k
j �=0

(
logσ

(
(v′

wi+j
)T · vwi

)

+
∑

w′∈N(K)

logσ
(
− (v′

w′)T · vwi

))
,

(1)
where N(k) is a sampling function that randomly
samples K words from a unigram distribution as
the negative training instances. σ(x) is the sigmoid
function:

σ(x) =
1

1 + exp(−x)
.

For each word-context pair (wi, wi+j), the neg-
ative sampling process produces N random negative
samples (wi, w

′). Instead of iterating over the whole
vocabulary, the learning process now needs only to
go through the set of negative examples.

As suggested by Levy and Goldberg (2014c), a
skip-gram model in fact implicitly factors the word-
context co-occurrence matrix. This co-occurrence
information is necessary in analyzing the relatedness
between words, and it can be easily extended to in-
corporate heterogeneous input and output data. For
example, Levy and Goldberg (2014a) used depen-
dency links in place of context words in the output
layer so that the resulting word embeddings encoded
more syntactic information. We are therefore in-
spired to adopt the continuous skip-gram model to
analyze the tags and URLs of discussion threads,
which turns out to be an effective method for discov-
ering software-specific semantically related technical
terms and web resources.

4 Approach

The goal of this work is to propose a neural-
language-model-based framework for discovering
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semantically similar technical terms and web re-
sources from community Q&A discussions such as
Stack Overflow discussion threads. The whole frame-
work is composed of three modules: (1) pseudo-
document generation from the community Q&A
discussions; (2) customized skip-gram model for
technical-term and web-resource embedding learn-
ing; (3) similarity computation.

4.1 Pseudo-document generation

In this study, we consider a question and all
its answers as a discussion thread. Directly ana-
lyzing the text content of a discussion thread is a
difficult and complicated task because it requires
the understanding of not only the natural language
but also programming language used to compose the
code embedded in a thread. On the other hand,
each discussion thread has a set of tags, edited by
a question author, which captures the main tech-
nologies or constructs around which the question
revolves (Sillito et al., 2012). Furthermore, salient
online programming resources have been frequently
referenced in many discussion threads. Therefore,
analyzing the tags and URLs involved in the discus-
sion threads could help discover semantically related
technical terms and web resources.

Given a discussion thread, we generate a
pseudo-document that consists of a set of technical
terms and web resources. We extract the question
tags as technical terms around which the discussion
thread revolves. In this study, we use Stack Over-
flow as a test bed. As a Stack Overflow question
can have 1–5 tags, a pseudo-document can have 1–5
technical terms. We extract the hyperlinks refer-
enced in the discussion thread as web resources. A
pseudo-document can have zero or more web re-
sources. In this study, we would like to learn vector
representations of technical terms and web resources
in a joint vector space. Therefore, we consider only
discussion threads that contain both tags and URLs.

4.2 Customized skip-gram model

Given a corpus of pseudo-documents of tech-
nical terms and web resources, we aim to learn low-
dimensional vector representations of technical terms
and web resources in a joint vector space using word
embedding techniques.

The skip-gram model, as discussed in Section 3,

uses the co-occurrence information about a central
word (i.e., input layer) and the context words (i.e.,
output layer) in a sentence to train a neural net-
work. To learn the technical-term and web-resource
embeddings, we extend the skip-gram model to take
as input the technical terms and web resources in a
pseudo-document. Accordingly, the output layer of
the skip-gram model is also set to predict the techni-
cal terms and web resources in the pseudo-document.

Unlike word sequence in a sentence or a docu-
ment, technical terms and web resources in a pseudo-
document are not constrained by a syntactic struc-
ture, and the orders of technical terms and web re-
sources are random. Therefore, in our application
of the skip-gram model, instead of using a sliding
window to constrain the selection of context, we de-
fine the context of a given input (technical term or
web resource) as all other technical terms and web
resources in the pseudo-document. Fig. 1 shows the
architecture of the customized skip-gram model for
technical-term and web-resource embeddings. The
key idea of our model is to use each technical term
and web resource in the pseudo-document to predict
all other technical terms and web resources in the
same document.

A naive customization of the original skip-gram
model is to treat technical terms and web resources
equally as words in the document and set the size of
the sliding window to the length of the document.
However, since technical terms and web resources
are heterogeneous, it makes no sense to assume that
technical terms and web resources should share the
same distribution. Therefore, we consider two types
of contexts in the output layer: tag and URL context.
Considering the two types of inputs, tag or URL, we
have four types of input-output predictions in our
customized skip-gram model: the input tag predicts
tag and URL contexts (Fig. 1a), and the input URL
predicts tag and URL context (Fig. 1b).

Therefore, the objective function of our skip-
gram model is

M∑

i=1

[
∑

t∈TDi

(
∑

ct∈TDi
\{t}

log p(ct|t)+
∑

cu∈UDi

log p(cu|t)
)

+
∑

u∈UDi

(
∑

ct∈TDi

log p(ct|u)+
∑

cu∈UDi
\{u}

log p(cu|u)
)]

,

where M is the number of pseudo-documents, Di is
the ith pseudo-document, TDi is a set of technical
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Pseudo document

Tag context

t1

Projection

t3

t2 u1 u2 u3

Tag context

t1

Projection

u1

t2 t3 u2 u3

t1 t2 t3 u1 u2 u3t1 t2 t3 u1 u2 u3

(a) (b)

URL context URL context

Fig. 1 Customized skip-gram model for technical-term and web-resource embedding: (a) input tag predicts
tag and URL contexts; (b) input URL predicts tag and URL contexts

terms (i.e., tags) contained in Di, and UDi is a set of
web resources (i.e., URLs) contained in Di. Here, ct
and cu are the tag context and URL tag context of a
given tag t or URL u.

We then define the conditional probability for
the four types of input-output predictions indepen-
dently. For example, we define p(cu|u) (i.e., the con-
ditional probability for URL-URL prediction) as

p (cu|u) = exp((v′
cu)

T · vu)∑
cu′∈Wu

exp((v′
cu′)T · vu)

,

where Wu is the URL vocabulary. Note that this
definition is almost identical to the definition used
by the original softmax function (see Section 3), ex-
cept that this definition is for URLs. The conditional
probability for the other three types of input-output
prediction can be defined in the same way. For learn-
ing the parameters in the model, we apply the same
negative sampling approach used in Mikolov et al.
(2013a). As we have separated the URL and tag
contexts, we generate negative instances by sampling
only from the corresponding vocabulary during neg-
ative sampling.

4.3 Similarity computation

The resulting technical-term and web-resource
embeddings learnt from the pseudo-documents map
the technical terms and web resources to the same
low-dimensional vector space, where their similarity
can be simply measured as the cosine similarity be-
tween their vectors:

Sim(u, t) = cos(vu,vt) =
vu · vt

‖vu‖‖vt‖ ,

where t and u represent a tag (technical term) and
a URL (web resource), respectively. The same mea-
sure can be applied to measure the similarity between
tag-tag and URL-URL pairs. In the resulting embed-
ding space, semantically similar or related technical
terms and web resources would be close to each other
(i.e., having high cosine similarity).

4.4 Web site embedding

We use simple weighted sum to generate web
site embedding vD based on the learnt web-resource
vectors:

vD =

∑
u∈D fuvu∑
u∈D fu

,

where D is a set of web resources from the same web
site, fu is a reference frequency of a particular web
resource u ∈ D, and vu is a learnt vector represen-
tation of u. In our empirical study, we use web site
embeddings to recommend web sites given a techni-
cal term or a web resource in search tasks.

5 Empirical study

To evaluate the vector representations of techni-
cal terms and web resources, we conduct three stud-
ies: clustering, search, and semantic reasoning tasks.
In this section, we first give an overview of the three
studies, describe the dataset that we use for the stud-
ies, and finally report the results and further analyses
of the three tasks.
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5.1 Study overview

5.1.1 Clustering task

Our skip-gram model learns vector representa-
tions of technical terms and web resources by predict-
ing the surrounding tag and URL context of a tech-
nical term or web resource in a pseudo-document,
without considering any content information of tech-
nical terms and web resources. Our first research
question is “can the technical-term and web-resource
embeddings learnt using this simple neural network
capture semantic regularities of the related technical
terms and web resources?” To answer this ques-
tion, we cluster technical terms and web resources
using K-means clustering (MacQueen, 1967) on the
learnt vector representations. We manually inspect
the semantic relatedness of technical terms and web
resources in the resulting clusters, and identify three
categories of clusters: concept-, technique-, and task-
centric clusters. Using the description of technical
terms from TagWiki and the titles of web pages, we
quantitatively analyze the semantic relatedness of
technical terms and web resources within and across
the clusters using the intra- and inter-cluster content
similarity. We also comparatively study the clusters
obtained using K-means on the learnt technical-term
and web-resource embeddings with the clusters ob-
tained using the LDA method (Blei et al., 2003) on
technical-term descriptions and web page titles.

5.1.2 Search task

Our second research question is “can the learnt
technical-term and web-resource embeddings sup-
port the recommendation of semantically related
technical terms and web resources?” To answer this
question, we design four search tasks that could be
useful for various online applications: (1) Given a
technical term, search for similar or related techni-
cal terms (useful in query reformulation); (2) Given
a technical term, search for relevant web resources
(useful in web resource retrieval); (3) Given a web
resource, search for relevant technical terms (use-
ful in semantic tagging); (4) Given a web resource,
search for similar or related web resources (useful in
web resource recommendation).

Our approach reduces these search tasks to a
simple K-nearest neighbor search in the joint vector
space between technical terms and web resources.

We report representative examples for each search
task. To understand whether the recommended
technical terms (or web resources) could also be re-
trieved using association rule mining (Agrawal et al.,
1993), we quantitatively analyze the co-occurrence
frequency of a given technical term (or web resource)
and the recommended technical terms and/or web
resources.

5.1.3 Semantic reasoning task

It has been shown that simple algebraic op-
erations on the word vectors can produce intu-
itive results in semantic reasoning tasks (Mikolov
et al., 2013a; Levy and Goldberg, 2014b; Mitra,
2015), such as vector(chicago) + vector(newspaper)
≈ vector(chicago sumtimes) and vector(king) − vec-
tor(man) + vector(woman) ≈ vector(queen). In-
spired by these studies, we conduct an exploratory
study of two types of semantic reasoning tasks us-
ing the learnt vector representations of technical
terms and web resources: (1) semantic addition—
given two technical terms, term1 and term2, find
technical terms (or web resources) whose vector rep-
resentations are similar to the vector vector(term1) +
vector(term2); (2) analogical reasoning—given three
technical terms, term1, term2, and term3, find tech-
nical terms (or web resources) whose vector repre-
sentations are similar to the vector vector(term1) −
vector(term2)+vector(term3); (3) given a web re-
source URL and two technical terms, term1 and
term2, find technical terms (or web resources) whose
vector representations are similar to the vector
vector(URL) − vector(term1) + vector(term2).

5.2 Dataset and model training

We apply our approach to the Stack Overflow
data dump which archives Q&A discussions from
August 2009 to March 2018. We generate a cor-
pus of pseudo-documents of technical terms and web
resources as described in Section 4. Because the
goal of this work is to learn technical-term and
web-resource embeddings together, we remove the
pseudo-documents that contain only tags or URLs.
After this operation, we obtain a corpus of 3 724 259
pseudo-documents that contain both tags and URLs.
In total, the corpus of pseudo-documents contains
40 993 unique tags (technical terms) and 3 883 171
unique URLs (web resources).
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Similar to the rare-word treatment in many NLP
applications (Levy et al., 2015), we remove rare tech-
nical terms and web resources (in this work, tags are
used less than 20 times and URLs are referenced less
than 20 times) from the pseudo-documents. After re-
moving the rare technical terms and web resources,
we obtain 812 035 non-empty pseudo-documents,
which contain 16 598 unique technical terms and
35 124 unique web resources as our vocabulary.

We conduct experiments with the dimension of
technical-term and web-resource embeddings and the
count of random negative samples. We empirically
set the embedding dimension to 400 and the count
of random negative samples to 15 for the balance of
efficiency and performance. After model training,
we obtain the vector representations for each tech-
nical term and web resource in our vocabulary. All
empirical studies below are based on these vectors.

5.3 Clustering task

We use the K-means clustering method (Mac-
Queen, 1967) to cluster technical terms and web re-
sources in our vocabulary based on the cosine similar-
ity of the learnt vector representations. In this study,
we set K = 200 and obtain 200 clusters. These 200
clusters have 258.61± 125.67 (mean ± standard de-
viation (SD)) technical terms and web resources. We
evaluate the semantic relatedness of technical terms
and web resources in the resulting clusters by qual-
itative manual inspection and quantitative analyses
of intra- and inter-cluster content similarity.

5.3.1 Qualitative observation of clusters

We manually inspect the 200 clusters and a
few observations are made. First, we observe three
general categories of technical terms and web re-
sources: concept-, technique-, and task-centric. Ta-
ble 1 presents two examples for each category.

Second, by reading the TagWiki of techni-
cal terms, whereby each WikiWord is transformed
automatically into a link, and visiting the web
pages, we observe that a small number of clus-
ters contain technical terms and web resources
with homogeneous content (e.g., cluster 98 about
object-oriented design and cluster 56 about reg-
ular expression), but most of the clusters con-
tain technical terms and web resources with
more heterogeneous content (e.g., cluster 59 about

Django features, cluster 81 about hypertext pre-
processor (PHP) web development frameworks,
cluster 130 about web automation techniques,
and cluster 146 about numerical and scientific
computing).

Third, we observe different web-resource dis-
semination patterns. For concept- and technique-
centric clusters, there are often some authoritative
web resources that Stack Overflow users frequently
reference, for example, Wikipedia pages for some
software engineering concepts (cluster 98), web sites
dedicated to some concepts (cluster 56), and official
documentations on some techniques (cluster 59). For
task- and technique-centric clusters (e.g., clusters 81,
130, and 146), the clusters often contain a diverse set
of techniques and web resources.
Remark 1 Technical terms and web resources can
be well clustered around concepts, techniques, and
tasks. Some clusters contain homogeneous informa-
tion, but most of the clusters contain heterogeneous
information.

5.3.2 Intra- versus inter-cluster similarity

To confirm our qualitative observations, we
quantitatively compare the similarity between intra-
and inter-cluster contents, which is a commonly
used metric to evaluate the clustering results (Rand,
1971). The well-clustered items should have
low inter-cluster similarity but high intra-cluster
similarity.

In this study, we crawl the web page title as the
web-resource content, and the first sentence of the
TagWiki of the corresponding tags as the technical-
term content. The title of a web page and the first
sentence of a tag’s TagWiki usually provide a con-
cise summary of the corresponding web resource and
technical term. We manage to crawl the titles of
30 004 web resources and the TagWiki definitions of
14 554 technical terms in our vocabulary. We use
the crawled content of these technical terms and web
resources to compute the intra- and inter-cluster con-
tent similarity. We consider the crawled content of
each technical term and web resource as a text doc-
ument. After removing stop words (e.g., is and a),
each document is represented as a term frequency-
inverse document frequency (TF-IDF) vector using
the standard text processing method. We compute
the cosine similarity of the TF-IDF vectors of the two
documents to measure the content similarity of the
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corresponding technical terms and web resources.
Considering the size of the clusters (258.61 ±

125.67 technical terms and web resources), comput-
ing the content similarity of all the pairs of technical
terms and web resources within and across the clus-
ters would be extremely time-consuming. Therefore,
we adopt a random sampling approach. Given a
cluster, we randomly select 40 items (technical terms
and web resources) in the cluster and generate 780
pairs of different items for the cluster. We calcu-
late the average cosine similarity of these 780 pairs
of items as the intra-cluster similarity of the given
cluster. For the two clusters that have fewer than
40 items, we generate pairs from all their items. To
compute inter-cluster similarity, we randomly select
100 items from all other clusters and generate 4000
pairs of different items. We calculate the average
cosine similarity of these 4000 pairs of item as the
inter-cluster similarity of the given cluster.

Fig. 2 shows the comparison between the intra-
and inter-cluster similarities of the 200 clusters. The
x axis shows the rank of the clusters, sorted by de-
scending order of their intra-cluster similarities. The
y axis denotes the similarity metric. We can see that
for all clusters, the inter-cluster similarity is very low
(close to zero). For all clusters except a small number
of the lowest-ranked clusters, the intra-cluster sim-
ilarity is consistently and significantly (3–80 times)
higher than that of the average inter-cluster similar-
ity with other clusters. Only 40 clusters have intra-
cluster content similarity larger than 0.1. These clus-
ters usually contain homogeneous information from
one or two authoritative web sites. For example,
cluster 135 contains jquery-related technical terms.
Almost all the web resources in this cluster are from
http://api.jquery.com, and the titles of these web
pages are all very similar. As such, the intra-cluster
similarities of these clusters are high. In contrast,
152 clusters have intra-cluster content similarity be-
tween 0.015 and 0.1. These clusters contain more
heterogeneous technical terms and web resources.
This quantitative result is consistent with our quali-
tative observations.

We manually inspect the eight clusters whose
intra-cluster similarity is smaller than 0.015, which
is equivalent to the highest average inter-cluster sim-
ilarity for all clusters. We observe two reasons for
the low intra-cluster similarity. First, four clusters
contain rare technical terms and web resources that

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

Av
er

ag
e 

co
si

ne
 s

im
ila

rit
y

Intra-similarity
Inter-similarity

25 50 75 100 125 150 175 2000
Cluster rank

Fig. 2 Intra- and inter-cluster similarities:
embedding-based K-means

have not been frequently used. For example, the
average usage frequency of the tags and URLs in
cluster 15 is only 28. The tags and URLs in clus-
ter 15, for example, Syntax-Error, LiveCode, kdb,
and http://php.net/heredoc, have very low content
similarity. Earlier research (Qiu et al., 2014) showed
that word embedding techniques perform poorly on
rare words. Second, four clusters contain actually
semantically related technical terms and web re-
sources. For example, cluster 132 contains editor-
related technical terms and web resources, such
as xhtml, tinymce, and http://ckeditor.com. Due
to the diversity of these technical terms and web
resources, their content similarities are very low.
Remark 2 The learnt vector representations can
capture the semantic relatedness of the correspond-
ing technical terms and web resources.

5.3.3 Comparison with LDA topics

We show that the learnt technical-term and
web-resourced embeddings can produce high-quality
clusters around software concepts, techniques, and
tasks. A related question is “can content-based meth-
ods like topic models produce clusters comparable
to clusters obtained using technical-term and web-
resourced embeddings?” To study the differences
between the content- and embedding-based clusters,
we compare our embedding-based clusters with the
topics discovered using the LDA method (Blei et al.,
2003). In this experiment, we consider only tech-
nical terms, because technical-term definitions from
TagWiki are usually complete natural language sen-
tences with a certain level of details. In contrast,
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the web page titles are usually short and incomplete
phrases. Furthermore, web page titles are usually in-
consistent across different web sites, while TagWiki
is clean and uniform, which makes technical-term
definitions suitable for the comparative study with
the LDA method.

Recall that we have 14 554 technical terms
with the TagWiki definition in our vocabulary. We
use K-means clustering to cluster these 14 554
technical terms into 100 clusters. We ap-
ply the LDA implemented in the Gensim tool
(https://radimrehurek.com/gensim/) to the corpus
of the 14 554 technical-term definitions, following the
standard text mining process (stop word removal,
tokenization, and stemming). We mine 100 topics
and assign each technical-term to a topic in which
the technical-term definition has a large probability,
similar to Wang et al. (2013).

For the two sets of 100 clusters obtained using
our embedding-based K-means clustering and the
LDA method, respectively, we compute the intra-
and inter-cluster similarity as in the previous subsec-
tion. Fig. 3 shows the comparison of the intra- and
inter-cluster similarity of the technical-term clusters
obtained using two different methods. The clusters
are sorted by descending order of the intra-cluster
similarity. We can see that the clusters obtained
using our technical-term and web-resource embed-
dings have higher intra-cluster similarity than those
obtained using the LDA method, except for the 10
lowest-ranked clusters.
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sus embedding-based K-means

The results contradict the intuition in that the
LDA method mines the topics from the document

content, and intuitively it should produce document
clusters with high intra-cluster content similarity.
One plausible explanation is that the TagWiki def-
initions of the technical terms are still too short to
train a high-quality LDA model. Earlier research
in Hong and Davison (2010) found that topic mod-
els, such as LDA, perform poorly on short text doc-
uments. Certainly, it is possible to use the LDA
method to obtain high-quality clusters by crawling
more TagWiki content, but preparing a large cor-
pus of high-quality text documents is a tedious and
time-consuming task. We also manually examine
the 10 lowest-ranked clusters obtained using our ap-
proach. We observe the same two reasons for the low
intra-cluster similarity: clusters contain rare techni-
cal terms, and clusters contain semantically related
but dissimilar-content technical terms.
Remark 3 Our technical-term and web-resource
embeddings provide an alternative to the tradi-
tional topic models to obtain high-quality clusters
of semantically related technical terms and web re-
sources, without crawling and processing of a large
volume of textual content, which is usually tedious
and time-consuming.

5.4 Search task

We have shown that the learnt technical-term
and web-resource embeddings capture the seman-
tic relatedness of technical terms and web resources.
In this subsection, we demonstrate that the learnt
vector representations can support a wide range of
search tasks by the simple K-nearest neighbor search
in the learnt embedding space. We also perform
quantitative co-occurrence analyses of the search re-
sults to learn the relationship between the technical-
term and web-resource co-occurrence and semantic
relatedness.

5.4.1 Four types of search tasks

As we have two types of information (technical-
term and web-resource), we design four types of
search tasks that could be useful for various online
applications, denoted as term − > ? term, term − >

? URL, URL − > ? term, and URL − > ? URL.
The left-hand item represents the query input, and
the right-hand item represents the query result. Ta-
ble 2 shows example queries of technical terms (or
web resources) from the vocabulary, together with
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their top-5 nearest technical-term or web-resource
neighbors in the embedding space. The technical
terms and URLs in a gray background are the query
inputs, while those in a white background are the
query results.

1. Keyword suggestion
An important task in many online applications

is finding similar or related words given an input
word as a query. For example, when users browse
questions of a specific tag on Stack Overflow, Stack
Overflow suggests a list of related tags on the right
side of the page. For the two examples of term
− > ? term search, meaningful semantic rela-
tionships can be observed within the closest dis-
tance of the input technical-term. For the techni-
cal term NLP, the model finds NLP tool NLTK, re-
lated concepts such as text-mining and text-analysis,
and concepts related to NLP in general, such as
machine-learning and linguistics.

2. Semantic tagging
Automatic web-resource tagging can assign a

list of relevant technical terms that explain the web-
resource content. This is very useful in improving
web-resource recommendation. Our model is suit-
able for such tasks because technical terms and web
resources reside in the same vector space. Using the
learnt embeddings, we can easily retrieve the nearest
technical terms given a URL as an input. In Table 2,
we can see that the retrieved technical terms often
summarize and further explain the web resources.
For example, for the URL http://d3js.org (the web-
site of a popular JavaScript library for data visualiza-
tion), the tags include the general concepts, graph-
and data-visualization, force-layout algorithm, and
two other visualization tools, gephi and flot.

3. Locating specialty web resources

Given a technical term, one may be in-
terested in finding the most relevant web re-
sources, which is a typical task of a search en-
gine. Unlike the comprehensive list returned
by a search engine, our model can find several
most semantically related web resources in which

Table 2 Examples of search tasks

Term − > ? Term

loops nlp
for-loop nltk
while-loop text-mining
nested-loops linguistics
continue text-analysis
break machine-learning

URL − > ? Term

http://d3js.org http://www.google.com/analytics
graph-visualization web-analytics
data-visualization analytics
flot web-analytics-tools
gephi ab-testing
force-layout universal-analytics

Term − > ? URL

visualization youtube
http://www.graphviz.org https://developers.google.com/youtube/v3
http://gephi.org https://developers.google.com/youtube/v3/docs/videos/list
http://www.gnuplot.info https://developers.google.com/youtube/v3/docs/channels/list
http://thejit.org https://developers.google.com/youtube/iframe_api_reference
http://highcharts.com https://developers.google.com/youtube/player_parameters

URL − > ? URL

http://wordpress.org http://en.wikipedia.org/wiki/utf-8
http://www.opensourcecms.com http://en.wikipedia.org/wiki/ISO/IEC_8859-1
http://www.concrete5.org http://en.wikipedia.org/wiki/utf-16
http://www.cushycms.com http://en.wikipedia.org/wiki/unicode
http://www.cmsmatrix.org http://en.wikipedia.org/wiki/numeric_character_reference
http://expressionengine.com http://en.wikipedia.org/wiki/diacritic
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developers are most interested. As shown in Ta-
ble 2, for YouTube, our model does not return
https://www.youtube.com/, but the YouTube data
application programming interface (API) for Google
developers. Furthermore, our model can find the web
pages that do not necessarily contain the queried
technical term. For example, our model returns
http://www.highcharts.com/ for visualization, de-
spite the fact that the web page does not mention
word visualization.

4. Finding similar web resources
One may be interested in finding related web

resources similar to the ones you are reading. In Ta-
ble 2, we can see that given the Wikipedia 8-bit uni-
code transformation format (UTF-8) page, relevant
and semantically related Wikipedia pages on char-
acter coding are located close in the vector space.
Interestingly, in some cases the recommended web
resources may not be similar to the queried URL,
but they are still semantically related. For example,
for the URL http://wordpress.org, the recommended
web site http://www.cmsmatrix.org is not really a
content management product, but it is a web site for
comparing the features in more than 1200 content
management system products.

5.4.2 Co-occurrence analysis of search results

To understand the relationship between co-
occurrence and the semantic relatedness of techni-
cal terms and web resources, we randomly sam-
ple 1000 technical terms and web resources in our
vocabulary. For each sampled technical term or
web resource, we collect the top-10 technical terms
or web resources in the relevant types of search
tasks. For a pair of query item and search re-
sult, we examine the co-occurrence frequency of
the pair in the Stack Overflow discussion threads.
The statistics show that about 71% of the pairs
of query items and search results never co-occur in
the discussion threads, for example, graph-databases
and non-relational-database, profile and profiles,
and facebook-login and http://developers.faceb
ook.com/docs/authentication.

About 24% of the pairs co-occur fewer than
10 times, for example, storage and data-storage,
and python-requests and https://github.com/
kennethreitz/requests. Fewer than 1% of the
pairs co-occur more than 100 times in the dis-
cussion threads, for example, licensing and gpl,

and facebook-graph-api and https://developers.
facebook.com/apps. For those pairs that never co-
occur or co-occur only a few times, the relationship
between the two items may not be discovered using
frequent itemset mining or association rule mining.
However, our skip-gram model does not rely on
the direct co-occurrence of the two items. Instead,
it learns the embeddings from the co-occurrence
of a technical term or web resource and the sur-
rounding technical terms and web resources in the
pseudo-document. Although a pair of items, such
as fix-width and margin, never directly co-occur in
the discussion threads, as long as they frequently
appear in the similar context, the learnt embeddings
can still be close in the vector space. As such, items
that do not frequently co-occur with the query item
can be recommended. Specifically, for the technical
terms and web resources with low usage frequency,
their semantic relatedness can be bridged by their
context, while association rule mining methods
cannot discover such relations.

For frequently co-occurring technical terms
and web resources, their associations can be discov-
ered. However, recommendations based on the learnt
technical-term and web-resource embeddings can be
very different from those based on associations. For
example, Table 3 shows five examples of tags recom-
mended using our learnt embeddings and related tags
collected from the Stack Overflow web site. Stack
Overflow recommends related tags based on the di-
rect co-occurrence between frequent tags. Using our
method, the tags are ordered by their cosine similari-
ties with the query term. The tags by Stack Overflow
are related to the tags that are ordered by their co-
occurrence frequency with the query tag. We can
see that Stack Overflow related tags are dominated
by the most frequently used tags, such as program-
ming languages and platforms. In contrast, our rec-
ommendations are more semantically related, com-
parable to the query term. Furthermore, the most
related techniques are ranked higher using the range
of the two techniques in the embedding space, rather
than using the co-occurrence frequency, for example,
gmail and imap, or hadoop and hdfs.

Remark 4 The learnt technical-term and
web-resource embeddings can complement existing
keyword-based and co-occurrence-based search sys-
tems in numerous online applications.
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5.5 Semantic reasoning task

In this subsection, we report an exploratory
study using simple algebraic operations on the learnt
technical-term and web-resource embeddings in two
types of semantic reasoning tasks.

5.5.1 Semantic addition

Developers are often interested in something re-
lated to two or more techniques. To answer such
queries, we need to add the semantics of the two
techniques together. The learnt technical-term em-
beddings can be exploited to solve the semantic
addition questions by finding the technical terms
and web resources whose embeddings are the most

similar to the addition of the technical-term vectors.
Table 4 shows four examples of semantic addition
queries. Using simple vector addition, our model
can recommend highly related technical terms and
web resources for the two given technical terms.

5.5.2 Analogical reasoning

It often happens that developers need to find
some analogical libraries that can provide features
comparable to the libraries with which they are al-
ready familiar, for example, the NLP libraries for
Java to the NLTK library for Python, and the Office
software for Linux to the Microsoft Office for Win-
dows. The traditional search systems do not sup-
port such analogical queries. Taking advantage of

Table 3 Embedding-based recommendation versus Stack Overflow related tags

Query tag Cordova Http Algebra Gmail Hadoop

Tags using
our method

Phonegap-plugins Httprequest Polynomial-math Imap MapReduce
Appcelerator Http-status-codes Quadratic Hotmail Hdfs
Phonegap-build Http-headers Symbolic-math Gmail-imap Hive
Sencha-touch-2 Content-length Calculus Email-integration Hbase
Jquery-mobile Http-request Discrete-

mathematics
Pop3 Cloudera

Stack
Overflow
related tags

Android Java Math Email MapReduce
JavaScript PHP Algorithm PHP Java
IoS Android Python Smtp Hive
Jquery JavaScript Java Android Hdfs
Jquery Post C++ Imap Apache-pig

Table 4 Examples of semantic addition

Semantic algebraic operation Technical term Web resource

IoS + facebook

Facebook-ios-sdk https://github.com/facebook/facebook-ios-sdk
Sharekit https://dev.twitter.com/docs/ios
Fbconnect http://getsharekit.com
Mgtwitterengine https://github.com/sharekit/sharekit
Three20 http://www.getsharekit.com

Python + svm

Scikits http://pybrain.org
Scikit-learn http://scikit-learn.org
Training-data http://orange.biolab.si
Pybrain http://www.heatonresearch.com
Cross-validation http://www.ailab.si

Symfony + orm

Doctrine http://www.orm-designer.com
Doctrine2 http://propel.phpdb.org
Propel http://www.phpandstuff.com
Symfony-2.1 http://docs.doctrine-project.org
Doctrine-1.2 http://www.propelorm.org

D3.js + scientific − computing

Networkx http://mathgl.sf.net
Graph-visualization http://www.vtk.org
Gephi http://networkx.lanl.gov
Ogr http://www.rforge.net
Curve-fitting http://matplotlib.org
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the learnt technical-term and web-resource embed-
dings, we can solve an analogy question “a is to A as
? is to B.” The unknown word “?” can be inferred
from the words whose embedding is most similar to
the vector a−A+B.

Table 5 shows two examples of such anal-
ogy questions. Using simple algebraic oper-
ations URL − Python + Java, our model
can recommend code convention related terms
and web resources for Java, similar to the
web page https://www.python.org/dev/peps/pep-
0008/, which is a style guide for Python code.
For the query “Microsoft Office is to Windows as
? is to Linux,” our model recommends Office
software for Linux (like openoffice and liboffice)
and relevant web sites. Meanwhile, we observe
some software and web resources related to Mi-
crosoft Office but not for Linux, such as Openxml,
powerpoint, and http://poi.apache.org. We also ob-
serve some unrelated web resources in this example
(http://www.artofsolving.com and dag.wieers.com,
two personal blogs). Such unrelated web resources
(or technical terms) could be filtered out by incor-
porating domain knowledge into a word embedding
(Xu C et al., 2014) or by further considering the dis-
cussion context in which they appear and the content
of the web resources (or technical terms) in the neu-
ral network as proposed in Grbovic et al. (2015).

6 Conclusions and future work

In this study, we present a neural-language-
model-based approach to learn semantic

representations of technical terms and web resources
extracted from community Q&A discussions. Dif-
ferent from existing approaches that either mine
textual content of discussions or rely on direct
co-occurrence of technical terms and web resources,
the underlying assumption of our approach is that
semantically similar or related technical terms
and web resources would be presented in similar
technical-term and web-resource contexts.

Our evaluation of the large-scale Stack Over-
flow data dump shows that the learnt technical-
term and web-resource vector representations work
surprisingly well for clustering semantically related
technical terms and web resources, even when the
technical terms and web resources are not similar in
content. Furthermore, the learnt vector represen-
tations have a good potential in reducing complex
search and semantic reasoning tasks to simple K-
nearest neighbor search and simple algebraic opera-
tions in the technical-term and web-resource embed-
ding space.

In the future, we are interested in studying
web-resource dissemination patterns for different
categories of technical-term and web-resource
clusters. We will incorporate context (e.g., anchor
text of hyperlinks) and content (e.g., definition of
technical terms) information into the technical-term
and web-resource embeddings. We will also develop
semantic search systems that exploit the learnt
embeddings for recommending semantically related
technical terms and web resources in tasks such as
query reformulation and direct answers.

Table 5 Examples of analogical reasoning

Semantic algebraic operation Technical term Web resource

http://www.python.org/
dev/peps/pep-0008
− python + java

Annotation-processing http://www.oracle.com/technetwork/java/codeconventions-135099.
html#367

Checkstyle http://www.oracle.com/technetwork/java/javase/documentation/co
deconvtoc-136057.html

Apache-commons-lang http://www.oracle.com/technetwork/java/javase/documentation/co
deconventions-135099.html#367

Anonymous-class http://code.google.com/p/javadude/wiki/annotations
Xtend http://docs.oracle.com/javase/specs/jls/se7/html/jls-4.html

Microsoft Office −
windows + linux

Openxml http://www.artofsolving.com
Powerpoint http://poi.apache.org
Openxml-sdk http://wiki.services.openoffice.org
Openoffice.org http://dag.wieers.com
Libreoffice http://api.openoffice.org
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