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Abstract: Target tracking is one of the hottest topics in the field of drone research. In this paper, we study the
multiple unmanned aerial vehicles (multi-UAV) collaborative target tracking problem. We propose a novel tracking
method based on intention estimation and effective cooperation for UAVs with inferior tracking capabilities to track
the targets that may have agile, uncertain, and intelligent motion. For three classic target motion modes, we first
design a novel trajectory feature extraction method with the least dimension and maximum coverage constraints, and
propose an intention estimation mechanism based on the environment and target trajectory features. We propose
a novel Voronoi diagram, called MDA-Voronoi, which divides the area with obstacles according to the minimum
reachable distance and the minimum steering angle of each UAV. In each MDA-Voronoi region, the maximum
reachable region of each UAV is defined, the upper and lower bounds of the trajectory coverage probability are
analyzed, and the tracking strategies of the UAVs are designed to effectively reduce the tracking gaps to improve the
target sensing time. Then, we use the Nash Q-learning method to design the UAVs’ collaborative tracking strategy,
considering factors such as collision avoidance, maneuvering constraints, tracking cost, sensing performance, and
path overlap. By designing the reward mechanism, the optimal action strategies are obtained as the control input
of the UAVs. Finally, simulation analyses are provided to validate our method, and the results demonstrate that
the algorithm can improve the collaborative target tracking performance for multiple UAVs with inferior tracking
capabilities.

Key words: Collaborative target tracking; Intent estimation; MDA-Voronoi diagram; Multi-UAV; Inferior
tracking capability
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1 Introduction

Unmanned aerial vehicles (UAVs) are one of
the main types of unmanned systems, and in recent
years they have been widely used in military and
civilian fields, such as data collection, environmen-
tal monitoring, military strikes, and urban counter-
terrorism. Effective tracking of agile targets in a
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complex and uncertain environment is one of the
hottest and most difficult problems in the field of
drone research. Because a single UAV is restricted
by structure, load capability, and motor constraints,
it cannot undertake complex tasks. Multi-UAV coor-
dination can overcome these shortcomings to a great
extent. Therefore, multi-UAV collaborative target
tracking and motion planning have received much
attention (Ruan and Duan, 2020; Shao et al., 2020;
Skorobogatov et al., 2020).

Many scholars have made outstanding contri-
butions to UAV target tracking. A new tracker
called the “tracking learning detection and kernelized
correlation filter algorithm” was presented by Liu
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et al. (2019), in which a conditional scale-adaptive
algorithm was adopted to improve the tracking per-
formance of a quadrotor UAV in cluttered outdoor
environments. An efficient, complete, and off-line
algorithm, named the “auction-based spanning tree
coverage” algorithm (Gao and Xin, 2019), was pro-
posed to deal with the multi-robot coverage motion
planning problem. A path planning algorithm (Ragi
and Chong, 2012) was designed to guide UAVs in
tracking multiple ground targets based on the theory
of partially observable Markov decision processes.
A three-dimensional (3D) real-time path planning
method (Yao et al., 2015) was proposed which com-
bines the improved Lyapunov guidance vector field,
the interfered fluid dynamical system, and the strat-
egy of varying receding-horizon optimization from
the model predictive control. A decentralized plan-
ning algorithm that relies on an auction scheme (Yu
et al., 2015) was designed to plan finite look-ahead
paths. This algorithm maximizes the sum of the
joint probability of sensing over all vehicles’ tracking.
The problem of communication-aware UAV place-
ment and motion planning for target localization
and tracking (Di et al., 2016) was investigated. A
nominal belief-state optimization method (Ragi and
Chong, 2013) was proposed to track multiple tar-
gets with an average target location error and aver-
age communication cost. A tracking strategy (Meng
et al., 2017) concerned with integrated autonomous
takeoff, target search, task assignment, and tracking
using multiple fixed-wing UAVs in urban environ-
ments was proposed. An online autonomous UAV
path planning method (Jiang and Liang, 2018) was
proposed for bearing-only standoff multi-target fol-
lowing in a threat environment. A multi-UAV co-
operative path planning method (Wang DB et al.,
2015) was proposed for ground target tracking via
chemical reaction optimization. Zollars et al. (2019)
proposed an optimal path planning algorithm to re-
duce computation time and increase solution accu-
racy for small UAVs in 3D constrained environments.
Some approaches involving obstacle velocity (Douth-
waite et al., 2019) have been presented for multi-
agent collision avoidance in communication-denied
environments.

In recent years, reinforcement learning has also
been successfully applied in target tracking and mon-
itoring. Cai et al. (2012) proposed a multi-sensor
cooperative target tracking method based on dis-

tributed Nash Q-learning, in which a probability
statistics method based on Bayesian inference was
presented to update the Q function. Wang T et al.
(2019) proposed an online distributed algorithm for
tracking and searching, while considering energy re-
fueling. Adepegba et al. (2016) proposed an area
coverage control law in cooperation with reinforce-
ment learning techniques for deploying multiple au-
tonomous agents in a two-dimensional (2D) planar
area. Vanegas et al. (2016) described target finding
and tracking in Global Positioning System (GPS)
denied and cluttered environments for UAVs. Gold-
hoorn et al. (2018) presented a unified method for
searching and tracking a person using a group of mo-
bile robots in a large continuous urban environment
with dynamic obstacles.

Most of the aforementioned studies have some
common features as follows: the UAVs have wide
enough sensing ranges, the target motion is simple,
and the UAVs move faster than the targets. In ad-
dition, there is less emphasis on target intelligence
and the trade-off between sensing performance and
the number of UAVs. However, in practice, the UAV
sensing ranges are limited and the targets may have
a certain intelligence. In addition, the number of
UAVs is limited, and targets may move faster than
the UAVs. There are two main objectives for track-
ing: one is to maximize the sensing performance,
and the other is to minimize the tracking loss. In
some research (Quintero et al., 2015), the tracking
strategy is to make the UAVs move along the tar-
get’s trajectory, constantly getting closer to achieve
optimal tracking; this is a passive tracking strategy.
If the target moves faster than the tracker or the
target motion trajectory has a certain decoy, passive
tracking is difficult to execute well, and it is easy
to lose the target or take more detours. Thus, the
active tracking method based on effective prediction
and cooperative preparation in advance has better
performance. As shown in Fig. 1, a target moves
along the black solid line from left to right, and the
positions of the target at three different time points
are marked in turn from left to right. There are two
UAVs in different locations, named UAV1 and UAV2.
In Fig. 1a, UAV1 follows the target trajectory and
UAV2 flies directly to the target; they are trying to
get closer to the target. Because of the lower speed,
both of them may have no chance of keeping the
target in their sensing range in this way, while in
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Fig. 1b, by analyzing the trajectory characteristics
of the target and predicting the trend of the trajec-
tory, the two UAVs can compensate for their inferior
tracking capabilities and greatly improve the sens-
ing time for the target through cooperation. How
UAVs achieve effective tracking through cooperation
without superior tracking capabilities is a difficult
problem.

Fig. 1 Two tracking mechanisms: (a) passive tracking,
in which the UAVs follow the actual trajectory of the
target or fly directly to the target; (b) active tracking,
in which the UAVs track based on the characteristics
of the target’s trajectory
The black solid curves denote the true motion trajectories
of the target. The black dashed curve is the tracking route
extracted from the target’s motion features, and is the route
that the UAVs expect to follow. The blue curves are the
UAV trajectories and the circles are their sensing range.
References to color refer to the online version of this figure

In this study, we study the multi-UAV collabo-
rative target tracking problem, and propose a novel
tracking method based on intent estimation and ef-
fective cooperation in an environment with obstacles,
where the moving targets have agile, uncertain, and
decoy motions. The UAVs’ sensing ranges are limited
and the maximum tracking speed is lower than those
of the targets. First, the motion models of the UAV
and the target, and the sensor sensing model, are
established. Then, within the observation time win-
dow, a novel trajectory feature extraction method
with least dimension and maximum coverage con-
straints is designed, and the changes of the target’s
velocity and the obstacle distribution around the tar-

get are obtained according to the trunk trajectory.
The intention of the target is estimated using the
Sigmoid function, the target’s intended trajectory
change within the next time window is predicted, and
based on this information, we adjust the prediction
time window and sampling number for the observa-
tion of unexpected situations. Then we propose a
novel Voronoi diagram, called MDA-Voronoi, which
divides the area with obstacles according to the min-
imum reachable distance and the minimum steering
angle of each UAV. In each MDA-Voronoi region,
the maximum reachable region of each UAV is de-
fined and used to discover the extreme coverage holes
(ECOs). Under the premise of the optimal tracking
distance and angle, the target’s escape probability
related to the number, distribution, speed, and sens-
ing radius of the UAVs is analyzed. Furthermore, the
upper and lower bounds of the trajectory coverage
probability are proved, and the UAV tracking strate-
gies are designed to effectively reduce the tracking
gaps and thus increase the sensing time for the tar-
gets. Using Nash Q-learning, the learning strategies
are used as the control inputs of the UAVs, and the
multiple targets, collision avoidance, tracking con-
tribution, sensing performance, and path overlap are
taken into account. We also design a reward mech-
anism to track multiple targets with the expected
sensing performance and the minimum number of
UAVs. Finally, simulation results demonstrate the
effectiveness of our strategies.

2 Mathematical models

2.1 UAV motion model

Define R
2 as a 2D mission area, and q ∈ R

2 a
point in the mission area. Assume that there are
N UAVs, which are flying at a fixed speed V and a
fixed altitude, controlled only by the direction angle
ψ. The ith UAV is denoted by Ui, i ∈ {1, 2, . . . , N},
and the simplified motion model of Ui is

⎧
⎪⎪⎨

⎪⎪⎩

xi(k) = xi(k − 1) + V cos(ψi(k))Δt,

yi(k) = yi(k − 1) + V sin(ψi(k))Δt,

ψi(k) = ψi(k − 1) + Δψi,

(1)

where [xi(k), yi(k)] are the coordinates Pi(k) of Ui

at time k, i ∈ {1, 2, . . . , N}. Δt is the sampling time.
ψi(k) is the direction angle of Ui at time k, andΔψi is
the change in the direction angle. Due to motorized
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constraints, we assume that Δψi ∈ [Δψmin,Δψmax],
where Δψmin and Δψmax are the lower and upper
bounds of Δψi, respectively.

2.2 UAV sensing model

Assume that the ground station can observe the
targets and broadcast the estimated information to
the UAV group. The UAV’s tracking keeps targets
within the sensing range of itself or others for certain
sensing requirements, such as monitoring, gathering
specific information, and sensing can be viewed as a
sensor coverage problem. Suppose that the on-board
sensor is located at the UAV’s center of mass, and
that the detection center shaft is perpendicular to
the plane where the body is located and points to
the ground. Therefore, when the UAV is flying at
a fixed altitude, the sensing range of the on-board
sensor on the ground can be approximated as a cir-
cle with radius r and the center at the position of
the UAV. Without loss of generality, we simply as-
sume that the sensing performance model of the on-
board sensor is a sensing probability function that is
a measure of the UAV’s sensing system. The sensing
performance, also called the coverage performance,
is closely related to the distance between the sen-
sor and the target to be covered. The longer the
distance, the lower the sensing performance. How-
ever, it may be blocked by obstacles; i.e., behind
the obstacle, there is no sensing. Define the sensing
performance of Ui to point q at time k as

Diq(k) =

{
e−‖Pi(k)−q‖, ‖Pi(k)− q‖ ∈ [0, r],

0, ‖Pi(k)− q‖ > r,
(2)

where r is the detection range of the sensor. Eq. (2)
indicates that the sensor’s sensing performance de-
creases as the distance from the target to the UAV
increases, and there is no sensing out of the detec-
tion range. The sensing performance can describe
the sensing quality in specific applications.

2.3 Target motion and observation models

Suppose that there are M agile targets and Z
ground stations that can observe the targets. The
motion model of target i (i ∈ {1, 2, . . . ,M}) is

{
(Xt

i (k))
T
= Γ (Xt

i (k − 1))
T
+ ωX(k − 1),

Zij(k) = Hij(X
t
i (k))

T
+ ωz(k),

(3)

where Xt
i (k) = [xti(k), y

t
i(k), ẋ

t
i(k), ẏ

t
i(k)] is the state

vector of target i at time k, pt
i(k) = [xti(k), y

t
i(k)]

is the coordinate vector of target i at time k, and

Γ =

⎡

⎢
⎢
⎣

1 0 Δt 0

0 1 0 Δt

0 0 1 0

0 0 0 1

⎤

⎥
⎥
⎦ is the state transfer ma-

trix. Zij(k) is the observation of target i by ground
station j (j ∈ {1, 2, . . . ,Z}) at time k. Hij =

diag(1, 1, 1, 1) is the observation coefficient matrix.
ωX(k − 1) and ωz(k) are uncorrelated Gaussian
noises.

We use X̂i(k) = 1
Z
∑Z

j=1 X̂ij(k) (i =

1, 2, . . . ,M) to denote the estimated fusion for tar-
get i at time k, where X̂ij(k) is the state estimate
of target i by ground station j (j = 1, 2, . . . ,Z), and
we use Kalman filtering to estimate the state vector
X̂ij(k) by the observation Z ij(k).

Assuming that the target has agile, uncertain,
and intelligent motion, we construct the variable ve-
locity model of target i (i ∈ {1, 2, . . . ,M}) at time k
as

vi(k) = V + �(r, r̄)exp
(−‖Pj(k)− pt

i(k)‖
�(k)

)

, (4)

where �(r, r̄) is a random number in [r, r̄], and
‖Pj(k) − pt

i(k)‖ is the distance between Uj (j ∈
{1, 2, . . . , N}) and target i. �(k) represents the ex-
tent to which the environment around the target is
favorable for its cover at time k, and we use the dis-
tance between target i and the nearest obstacle to
define it as

�(k) =
1

‖pt
i(k)− po(k)‖ , (5)

where po(k) are the coordinates of the obstacle that
is nearest to the target. Without loss of generality,
the closer the target is to the UAV, and the more
conducive the environment is to being used as cover,
the faster the target will move. The velocity of the
target is always greater than those of the UAVs, and
it reflects the intelligence and uncertainty of the tar-
get. We assume that Eq. (4) is unknown to the
UAVs, but the target can observe the UAVs’ coordi-
nates and adjust its velocity according to the UAVs
and its intention.

2.4 UAV collision constraint

In the mission environment, there are obstacles
and multiple UAVs. For safety, each UAV is required
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to maintain a minimum safe distance dmin from ob-
stacles and other UAVs to avoid collisions.

3 Intention estimation and tracking
strategies based on the MDA-Voronoi
diagram

Due to the uncertainty of the target movement,
prediction is effective in improving tracking perfor-
mance. There are some excellent tracking strate-
gies based on trajectory prediction, such as receding-
horizon control (Wang L et al., 2011) and extended
Kalman filtering (Bordonaro et al., 2019; Song et al.,
2019; Khalkhali et al., 2020). These methods make
predictions mainly by observing the historical tra-
jectory, with less consideration of the environment
and the target’s intentions. For decoy behaviors of
intelligent targets, there may be large deviations in
predictions. Although the trajectories of intelligent
targets are complex and varied, they contain intent
information. If the intention can be correctly identi-
fied, it can improve prediction, and make an effective
decision in advance to improve tracking. As shown in
Fig. 2, although the target appears to move irregu-
larly, it can be seen from the trajectory feature that
the target clearly intends to approach the destina-
tion. By analyzing the target trajectory within the
observation time window, UAVs can extract the main
characteristics of the trajectory, combine them with
the environmental information, obtain the short-
term intention of the target by a probability func-
tion, and estimate the target’s trajectory features in
the next time window.

3.1 Trajectory feature extraction

Definition 1 The trunk trajectory refers to a curve
that can reflect the overall change trend, curvature,
and other major characteristics of the trajectory.

Ignoring some unimportant details properly and
retaining the trunk trajectory, which reflects the
main trajectory features within a certain time win-
dow, is conducive to subsequent analysis of the tra-
jectory feature and intent prediction.

Fitting approaches work well in tracking targets
that move in smooth courses, such as passenger air-
craft and ships (Li, 2019; Li et al., 2017, 2019). Be-
cause the velocity of the target is larger than those
of the UAVs, we design a novel trajectory feature
extraction method with least dimension and max-

Fig. 2 Target movement with intent
The black solid curve denotes the true motion trajectory of
the target, and the black dashed line reflects the growth
direction of the trajectory. The black dot and the arrow
in the solid curve denote the starting point and the motion
direction of the target, respectively

imum coverage constraints (LCE), which not only
reflects the trajectory features, but also enables the
UAVs to have the maximum target coverage in less
time. In our work, the trajectory within the obser-
vation time window is discretized into h sampling
points at a fixed time interval, and we have the dis-
crete trajectory sequence S = [s1, s2, . . . , sh], where
si (i ∈ {1, 2, . . . , h}) are the coordinates of the sam-
pling point i. The trunk trajectory, denoted by T , is
composed of two parts: one is the trajectory obtained
according to the sampling points within the obser-
vation time window by the LCE method, and the
other is the prediction part, which is the extension of
the trajectory extracted within the observation time
window and according to the velocity of the target
within the prediction time window. To retain most
of the features of the sampling points and enable
the UAVs to maximize the coverage of the sampling
points with the least time cost when moving along
the trunk trajectory, we use the least dimension to
represent the trajectory characteristics of the target
and maximize the variance of the projection of the
sampling points onto the trunk trajectory to reduce
the loss of trajectory characteristics. Furthermore,
if there are obstacles in the prediction time window,
the obstacles should be taken into account in the
prediction. Taking the intersection of the predicted
trajectory and the obstacle as the starting point, the
target may have a variety of possible path options
when encountering obstacles, and these trajectories
have different angles, denoted by θi (i = 1, 2, . . . , k),
with the surface of the obstacle.

The initial probabilities that these trajectories
are chosen can be given by the angles. The smaller
the angle, the greater the probability. Then the
probability of path i is dynamically adjusted by

ρi =
|θi|
�(θ) , (6)



Zheng and Cai / Front Inform Technol Electron Eng 2021 22(10):1334-1350 1339

where |θi| represents how many times path i has
been chosen by the target, and �(θ) is the total
prediction time so far. This reflects the historical
experience of the target’s movement and the way by
which the target is most likely to move when encoun-
tering obstacles.

The optimal trunk trajectory can be con-
structed as a constrained optimization problem:

T = Lo ∪Lp,

s.t. PLo /∈ po,

max Var(PLo),

max �(Lo)exp

(

−
∑

S

‖PLo‖
)

,

(7)

where Lo is the vector within the observation time
window, and Lp is a vector within the prediction
time window. PLo is the set of projections of the
sampling points onto the vector Lo. po are the coor-
dinates of the obstacles. Var(PLo) is the variance of
PLo . �(Lo) is the number of sampling points covered
by the drone when it moves along Lo.

∑
S‖PLo‖ is

the sum of the distances from the sampling points to
Lo.

The trunk trajectory also contains important
intention information, as shown in Fig. 2. Although
the movement of the target appears to be irregular,
it can be seen from the growth direction that the
target has a clear destination.

3.2 Intent estimation

The target intention is reflected by its own tra-
jectory and surrounding environment. Using the
relationship between the target trajectory and its
surrounding environment, from the perspective of
whether there is a destination demand, we iden-
tify the three classic intentional movements within
the observation time window: maintaining motion,
trend motion, and reverse motion. Other intentions
can be represented by combining the three types.
The maintaining motion is a movement without pur-
pose; there is no intention of moving toward or away
from the destination. Thus, the trajectory within
the next time window can be predicted more accu-
rately according to the current trunk trajectory. The
trend motion is a purposeful movement trend toward
a destination, and it is possible to change its state
suddenly with the help of the environment near the
destination, such as hiding and escaping. There-

fore, the surrounding environment needs to be taken
into account when predicting the trajectory. Reverse
motion is the movement that deviates from the des-
tination, as opposed to the trend motion. Without
loss of generality, in this study, we take barriers as
examples to characterize the environment.

We use two characteristics of the target’s in-
tention: the changes in the speed at which the tar-
get’s trunk trajectory approaches obstacles and the
density distribution of surrounding obstacles. The
smaller the distance between the target and the ob-
stacle, and the faster the approaching speed, the
more obvious the intention of the target approaching
the obstacle. When the target chooses to approach
from an open area where it is easy to move to a dense
obstacle area, the intention of the target escaping
or hiding itself using the shielding of obstacles be-
comes more obvious. Conversely, when the target
moves from a dense obstacle area to an open area,
the intention of shielding with the help of obstacles is
weakened, and the intention of the reverse movement
is strengthened. When the target has been moving
in an open area or the relative position between the
target and the obstacles remains unchanged over a
certain time, the intention of the maintaining motion
is obvious. We denote the intent probability function
by the Sigmoid function:

f(x) =
1

1 + e−x
, (8)

x = α(ṽ − v̄) + β(f̃ − f̄), (9)

f̄ =
1

κ

κ∑

k=1

1

‖pt(k)− po(k)‖ , (10)

where α and β are the weight coefficients, and ṽ and
v̄ are the average speeds of the target within the
current observation time window and the previous
observation time window, respectively. Let δ be a
neighborhood radius of the target. f̃ and f̄ are the
average density distributions of obstacles in δ within
the current observation time window and the previ-
ous observation time window, respectively. f̄ can be
represented by the average potential function (10),
where pt(k) and po(k) are the coordinates of the
target and the nearest obstacle within δ at time k,
respectively. κ is the sampling number within the
observation time window. The two terms in Eq. (9)
represent the changes in the velocity of the target ap-
proaching obstacles and in the density distribution of
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the obstacles around it within the observation time
window.

Combining the above two terms as the input
of the Sigmoid function, we have the output as the
probability of intention. If f(x) ∈ (0.5, 1), it is the
trend motion; if f(x) ∈ (0, 0.5), it is the reverse
motion; if f(x)=0.5, it is the maintaining motion.

Define Δto as the observation time window. Let
η be a variable coefficient, which can be adjusted
according to the intention of the target:

η = 2.5− f(x)− |f(x)− 0.5|. (11)

For the maintaining motion and the reverse mo-
tion, obstacles have little influence on tracking. For
the trend motion, the adverse effect of obstacles on
tracking should be considered. The short-term pre-
dicted trajectory should be on the same side of the
obstacle to avoid obstructing observation. To im-
prove prediction accuracy, the sampling number in
the observation window is adjusted by

h(η) =
1

η
h̄, (12)

where h̄ is the preset upper bound of the sampling
number.

Define Δtp as the prediction time window:

Δtp = ηΔt̄p, (13)

where Δt̄p is a preset constant of the time window.
When the intention of trend motion is more ob-

vious, the probability of the target using the obstacle
and making a state saltation is increased. At this
time, η becomes smaller and shortens the prediction
window to adapt to the observation for emergencies.
Meanwhile, the sampling number in the observation
window is increased to improve the accuracy of curve
fitting.

Fig. 3 shows the process of target escaping using
obstacles.

According to Eq. (3), we can obtain the
estimated trajectory of target j, for all j ∈
{1, 2, . . . ,M}, within an observation window de-
noted by

Ωj
Δto

= {X̂j(k)}, ∀k ∈ Δto. (14)

Based on Ωj
Δto

we use the curve fitting men-
tioned in Section 3.1 to predict the trajectory Ωj

Δtp

of target j in the future prediction time window Δtp.

Δtp

Δto

Δtp

Δto

ΔtpΔto

Fig. 3 The target escapes with a barrier cover
The solid curves and the dashed curves are the trajectories
and the trunk trajectories of the target, respectively. The
black rectangle is an obstacle that the target uses as cover

3.3 MDA-Voronoi diagram

Due to the inferior UAV tracking abilities and
target intelligence, it is very difficult to accurately
predict the trajectory coordinates at a future time
point and to maintain sensing of the targets. We
propose a geometric segmentation method and define
the maximum reachable region of each UAV, which
is used to discover the extreme coverage holes. Then
we design a tracking method to effectively reduce the
tracking gaps to increase the target monitoring time.

We design a novel Voronoi diagram called the
MDA-Voronoi diagram. This diagram divides the
region according to the minimum reachable distance
and the minimum steering angle, and the linear com-
bination of the distance and the angle is called the
MDA distance from the UAVs to a point q ∈ R

2.
A group of N UAVs U = {U1,U2, . . . ,UN} is

located at P = {P1,P2, . . . ,PN}. Define the MDA
distance from Ui to a point q ∈ R

2 as

d(Ui, q) = α̃dmin(Ui, q) + β̃θmin(Ui, q), (15)

where α̃, β̃ are the weight coefficients. dmin(Ui, q) =

min‖Ui−q‖ is the minimum reachable distance from
Ui to q, θ(Ui, q) is the angle at which Ui should
turn when it moves from point Pi to point q, and
θmin(Ui, q) = minθ(Ui, q) is the minimum angle be-
tween the speed direction of Ui and the line connect-
ing it with q. If there is an obstacle between Ui and
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q, θmin(Ui, q) is the sum of the required corners of
Ui along the shortest route from its location to q. As
can be seen from Fig. 4, assume that Ui is located at
point A, moving from A to E. There exist countless
lines from point A to point Q, such as curves ÂBQ,
ÂCQ, and ÂDQ, from which it is easy to find
the shortest one ÂBQ, so dmin(Ui,Q) = L(ÂBQ),
where L(ÂBQ) is the length of curve ÂBQ, and
in this case, L(ÂBQ) = ‖A − B‖ + ‖B − Q‖,
θmin(Ui,Q) = ∠EAB + ∠FBQ.

d(Ui, q) reflects the advantage of the UAV’s po-
sition and angle relative to q in an environment with
obstacles. Each region in the MDA-Voronoi contains
only one UAV, which is the closest one in terms of the
MDA distance to any point within that region. This
partition also represents the optimal area division for
each UAV in terms of the MDA distance at a time
point. It can be seen that the MDA-Voronoi changes
dynamically according to the positions and angles of
the UAVs relative to the targets. Analogous to the
conventional Voronoi partition, each MDA-Voronoi
region Πi (∀i ∈ {1, 2, . . . , N}), in this diagram can
be characterized as

Πi = {q ∈ R
2|d(Ui, q) ≤ d(Uj , q), ∀j ∈ N \ {i}}.

(16)
Definition 2 Consider Ui with sensing radius r
and the corresponding MDA-Voronoi regionΠi, ∀i ∈
{1, 2, . . . , N}. The ith sensing region with respect to
Ui is defined as the intersection of Πi and a circle of

radius r centered at Pi, and is denoted by SPi

Πi
, i.e.,

SPi

Πi
= Πi ∩C(Pi, r), (17)

where C(Pi, r) is a circle of radius r centered at Pi.
Denote the total sensing region of UAVs for the field

by Stotal =
N∑

i=1

SPi

Πi
.

Definition 3 Assume that Ui is located at Pi

at time t0. Then, due to mobility, the maximum
sensing range that it can reach within [t0, t0 + Δtp]

is a circle of radius r+ΔtpV centered at Pi, defined
as S̃Pi

Πi
, and is expressed as

S̃Pi

Πi
= C(Pi, (r +ΔtpV )). (18)

Definition 4 For any Πi and Ui, the ECO with
respect to Ui is defined as the intersection of Πi and
the exterior of S̃Pi

Πi
, denoted by S̄Pi

Πi
= Πi − S̃Pi

Πi
.

Furthermore, the union of all ECOs in an MDA-
Voronoi diagram is called the total extreme coverage
holes (TECOs), and its area is represented by S̄ =
N∑

i=1

S̄Pi

Πi
(Fig. 5).

Definition 5 The escape trajectory of target j,
∀j = {1, 2, . . . ,M}, is defined as the part of its tra-
jectory that cannot be covered by any UAV. Fur-
thermore, the ratio of the undetected trajectory to
the total trajectory is referred to as the escape prob-
ability, i.e., the ratio of its trajectory length out-
side the UAVs’ sensing range to its total trajectory
length. The intersection of target j’s prediction tra-
jectory and Πi, and C(Pi, r), are denoted by Ωj

Πi

D
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Fig. 4 MDA-Voronoi diagram: (a) minimum reachable distance and the minimum steering angle; (b) an
example of an MDA-Voronoi diagram for a group of six UAVs in a 2D plane with an obstacle
The black rectangle is an obstacle. In (b), the positions of the UAVs are [52, 333], [156, 358], [200, 350], [206, 125], [140, 150],
and [60, 100]. The angles relative to the right horizontal direction are −45, −90, −135, 135, 45, and 45 degrees, respectively
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r+VΔtp

C(Pi, r)
r Pi

πi

Fig. 5 Extreme coverage hole with respect to Ui

and Ωj
Ci

, respectively. The trajectory curve of target
j, ∀j = {1, 2, . . . ,M}, is denoted by Ωj =

⋃

i∈N

(Ωj
Πi

),

and the length is denoted by L(Ωj).
Theorem 1 Under the premise of the optimal
tracking distance and angle, the target’s escape prob-
ability is related to the number, distribution, speed,
and sensing radius of the UAVs, i.e., the more uni-
form the distribution, the larger the number, the
higher the speed, and the larger the sensing radius
of UAVs, the smaller the target’s escape probability.
Proof Consider a set of N UAVs randomly lo-
cated in a 2D field. The number of intersections of
Ωj (∀j = {1, 2, . . . ,M}) and all UAVs’ sensing areas
is denoted by

N(Ωj ,C) =

N∑

i=1

N(Ωj ,C(Pi, r)), (19)

where

N(Ωj ,C(Pi, r)) =

{
0, Ωj ∩C(Pi, r) = ∅,

1, Ωj ∩C(Pi, r) 	= ∅.

(20)
The probability of target j being covered is

Θj =
1

L(Ωj)

N(Ωj ,C)∑

i=1

(max(tc) · vj) ∩Πi, (21)

where tc is the length of time when the target is
within the sensing range of Ui, ∀i ∈ {1, 2, . . . , N},
and max(tc) represents the longest time the target
can be in the sensing range of Ui. vj is the velocity
of target j. vj − V is positive and represents the
velocity difference between target j and Ui.

It is clear that, in a bounded region, for a
fixed trajectory, N(Ωj ,C) increases as Stotal in-
creases. With the small number, uneven distri-
bution, and the small sensing range of the UAVs,
sensing holes exist. When the target is always in
the sensing holes, i.e., Ωj ∈ R

2 − Stotal, tc = 0,
and the probability of the target being covered is 0.
When the target trajectory passes through C(Pi, r),
∀i ∈ {1, 2, . . . , N}, Ui tracking along the direction
of target speed until the target leaves C(Pi, r) is the
best way to increase the sensing time, and in this
case minmax(tc) = 2r

vj−V . If the target is always sta-
tionary or is moving in C(Pi, r), i.e., tc → ∞, then
lim

tc→∞(max(tc)vj) = L(Ωj ∩ Πi), and in this case,

Θj = 1.

The smaller the velocity difference, the larger
the sensing radius and N(Ωj ,C), the larger Θj , and
the probability of target j being covered by UAVs is
in the range [0, Θj ].

3.4 Tracking strategies for UAVs

Definition 6 For any Πi (∀i ∈ {1, 2, . . . , N}) and
Ωj that satisfy Ωj

Πi
∩ S̃Pi

Πi
	= ∅, ∀j = {1, 2, . . . ,M},

we have the following definitions. The two inter-
section points of Ωj with S̃Pi

Πi
are defined as the

entry point and exit point, respectively. The time–
space intersection point (TSIP) of Ωj is defined as
the coordinates at which Ui can first cover the tar-
get on Ωj within S̃Pi

Πi
. The maximum time-space

intersection curve (MTSIC) of Ωj is defined as the
part on Ωj from the TSIP point to the exit point
within S̃Pi

Πi
. For example, for the case in Fig. 6b,

the entry point and exit point of Ω1 are A and B,
respectively. Without loss of generality, for a better
description, in Fig. 6 we assume that the TSIP point
is the entry point. The minimum distance between
two curves is defined as the shortest distance be-
tween them within S̃Pi

Πi
, and the maximum distance

between two curves is defined as the longest distance
between them within S̃Pi

Πi
. The neighbor curves of

Ωj are referred to as the curves whose maximum dis-
tances from Ωj are within 2r, denoted as Ξj . The
farthest neighbor of Ωj is defined as the farthest
curve within Ξj . The longest curve in S̃Pi

Πi
is defined

as the curve with the largest length in S̃Pi

Πi
.

For any Πi, ∀i ∈ {1, 2, . . . , N}, and Ωj , ∀j =

{1, 2, . . . ,M}, if Ωj
Πi
∩ S̃Pi

Πi
= ∅, i.e., Ωj is not

within the range of the maximum reachable region of
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Fig. 6 Different tracking strategies: (a) a UAV does not need to be involved in tracking; (b) a UAV will choose
to cover the longest curve based on the maximum distance between the trajectories; (c) a UAV will cover as
many trajectories as possible; (d) a UAV will choose to cover the longest one based on the minimum distance
between the trajectories; (e) more than one UAV will participate in tracking

Ui during Δtp, then Ui does not need to be involved
in tracking because it cannot cover the target anyway
(Fig. 6a). With the assistance of the ground stations,
the UAV can still obtain the motion coordinates of
the target, which guide it to move along the direction
of the target.

If more than one prediction trajectory passes
through S̃Pi

Πi
and the maximum distances between

them are greater than 2r, Ui will choose to cover the
longest MTSIC curve, and move to a tracking point
P̃i. Let P̃i be a virtual point moving at velocity
V along the longest curve from the TSIP point to
the exit point (Fig. 6b). If the maximum distances
between them are less than 2r, then we select two
curves with the maximum distance and set the vir-
tual tracking point P̃i to move along their middle
curve, which is the curve at the same distance from
the two curves; in this way, Ui can cover as many
trajectories as possible when tracking (Fig. 6c).

If more than one trajectory passes through S̃Pi

Πi

and the minimum distance between them is larger
than 2r, Ui will choose to cover the longest one
(Fig. 6d).

If the trajectory is chosen by more than one

UAV at the same time, then the UAVs can also par-
ticipate in tracking (Fig. 6e).

4 Collaborative tracking based on
Nash Q-learning

Reinforcement learning (Sutton and Barto,
1998) is based on the Markov decision process, does
not rely on prior knowledge, and is suitable for the
decision-making problems in unknown or uncertain
complex environments.

Conventional Q-learning is a single-agent re-
inforcement learning algorithm, which uses state-
action rewards during learning iterations to seek the
optimal strategy π∗. In state st, action at is chosen
according to the ε-greedy strategy, the immediate
reward rt and the next state st+1 are obtained, and
then Q values are updated as

Q(st,at)← Q(st,at)

+ σ[rt + γmax
a∈A

Q(st+1,a)−Q(st,at)],
(22)

where σ ∈ [0, 1] is the learning rate, A is the action
space, and γ ∈ [0, 1] is the discount factor. Because
the conventionalQ-learning algorithm considers only
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the actions of a single agent, without considering the
influence of other agents, we use the NashQ-learning
algorithm (Hu and Wellman, 2003), which considers
the collaboration among multiple agents and extends
the state-action Q function to the joint state-action
Q function. The Q value of Ui is updated as

Qi(st,at)

← Qi(st,at) + σ[rit + γNashQi(st+1)−Qi(st,at)],

(23)
NashQi(st+1) = π1(st+1) · · ·πN (st+1)Q

i(st+1),

(24)
where (st,at) is a joint state-action pair, rit is the
immediate reward of Ui, and π1(st+1), . . ., πN(st+1)

is the Nash equilibrium for multiple UAVs under joint
state st+1. NashQi(st+1) is the payoff of Ui in state
st+1 for the selected equilibrium. Because we use a
mixed-strategy game, the Nash equilibrium exists.

4.1 State-action space

Because a high-dimensional continuous state-
action space leads to huge numbers of states and
actions, and slow convergence, we separate the state-
action space without affecting the overall effect, and
design a smaller state space S and the action space
A. For any Ui, i ∈ {1, 2, . . . , N}, S is divided into
H sections based on the distance between Ui and
tracking point P̃i, i.e.,

S =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, 0 < dij(k) ≤ d̄1,
2, d̄1 < dij(k) ≤ d̄2,
...

...

H, d̄H−1 < dij(k) ≤ d̄H ,

(25)

where dij(k) is the distance between Ui and P̃i at
time k, d̄i − d̄i−1 = d̄, and i ∈ {2, 3, . . . , H} is the
dividing threshold. Based on the UAV heading angle
constraint, Δψi is discretized into 13 parts, which we
define as the action space A:

A = {0◦,±15◦,±30◦,±45◦,±60◦,±75◦,±90◦}.
(26)

4.2 Reward function design

In the reward function, we consider factors in-
cluding collision avoidance between UAVs, and be-
tween UAVs and obstacles, sensing performance,
tracking contribution, and path overlap, described
as follows.

Let duo(k) and dut(k) be the distances between
the UAV and the obstacle and between the UAV and
the tracking point at time k, respectively. duo(k +

1)− duo(k) is the difference of the distance between
the UAV and the obstacle at time k + 1 and time k,
denoted as Δ1, which indicates whether the UAV is
approaching or moving away from the obstacle, and
we assume that the obstacle can be a fixed barrier or
other UAVs closest to the UAV. dut(k+1)−dut(k) is
the difference of the distance between the UAV and
the tracking point at time k+1 and time k, denoted
as Δ2, reflecting whether the UAV is approaching or
moving away from the tracking point.

μ =

∣
∣
∣
∣
duo(k + 1)− duo(k)
dut(k + 1)− dut(k)

∣
∣
∣
∣ (27)

is the speed ratio of the UAV approaching the obsta-
cles and the tracking point, reflecting the trade-off
between tracking and avoiding collisions, denoted as
Δ3. Define

ds(k) =
∑

j �=i

‖Pi(k)− Pj(k)‖ (28)

as the sum of the distances between Ui and others at
time k, and ds(k+1)−ds(k), denoted as Δ4, reflects
the aggregation degree between the UAVs, avoiding
the path overlap in the tracking and increasing
the dispersion of the UAVs, which is conducive
to reducing the TECOs. In addition, we consider
the rewards for both UAV safety and tracking
cost. Based on the four indicators and constraints
above, we can describe the different states that
the UAVs may encounter during tracking, and
set different reward values to define the reward
function, as given in Eq. (29) (see the next page).
In Eq. (29), Φ =

∑E
k=1

∑N
i=1Dit(k) represents the

total sensing performance of the target by the UAVs
during a training cycle, E is the total number of
steps in a cycle, and Dit(k) represents the sensing
performance of Ui to the target at time k. When
Φ reaches a small neighborhood ξ of the expected
value D̄, which can be set according to experience,
i.e., Φ ∈ [D̄ − ξ, D̄ + ξ], the cooperation achieves
the expected tracking performance, and a large
positive reward is given. When Φ > D̄ + ξ, the
sensing has been exceeded, and some UAVs may
not need to participate in tracking to avoid wasting
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r(s,a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−200, Δ1 < 0, Δ2 > 0, Δ3 < 1, Δ4 < 0,

−175, Δ1 < 0, Δ2 > 0, Δ3 < 1, Δ4 > 0,

−150, Δ1 < 0, Δ2 > 0, Δ3 > 1, Δ4 < 0,

−125, Δ1 < 0, Δ2 > 0, Δ3 > 1, Δ4 > 0,

−100, Δ1 > 0, Δ2 > 0, Δ3 < 1, Δ4 < 0,

−75, Δ1 > 0, Δ2 > 0, Δ3 < 1, Δ4 > 0,

−50, Δ1 > 0, Δ2 > 0, Δ3 > 1, Δ4 < 0,

−25, Δ1 > 0, Δ2 > 0, Δ3 > 1, Δ4 > 0,

25, Δ1 < 0, Δ2 < 0, Δ3 < 1, Δ4 < 0,

50, Δ1 < 0, Δ2 < 0, Δ3 < 1, Δ4 > 0,

75, Δ1 < 0, Δ2 < 0, Δ3 > 1, Δ4 < 0,

100, Δ1 < 0, Δ2 < 0, Δ3 > 1, Δ4 > 0,

125, Δ1 > 0, Δ2 < 0, Δ3 < 1, Δ4 < 0,

150, Δ1 > 0, Δ2 < 0, Δ3 < 1, Δ4 > 0,

175, Δ1 > 0, Δ2 < 0, Δ3 > 1, Δ4 < 0,

200, Δ1 > 0, Δ2 < 0, Δ3 > 1, Δ4 > 0,

−500, duo(k) < 5,

500, dut(k) < 5,

100, Φ ∈ [D̄ − ξ, D̄ + ξ],

−100, Φ /∈ [D̄ − ξ, D̄ + ξ].

(29)

resources, and a negative reward is given. When
Φ < D̄ − ξ, the UAVs’ tracking does not meet the
sensing requirement, and a negative reward is given.
Φ reflects the collaboration performance of the UAVs,
and enables as few UAVs as possible to achieve the
expected sensing, to improve the tracking efficiency.
Because the total reward belongs to all drones in-
volved in tracking in a learning cycle, it needs to
be assigned to each individual. In the case of meet-
ing the sensing, we define the ratio of the sensing
contribution to the flight distance as the tracking
contribution of Ui, i ∈ {1, 2, . . . , N}, i.e.,

ςi =

E∑

k=1

Dit(k)

E∑

k=1

disi(k)

, (30)

where disi(k) is the flight distance of Ui at step k.
All UAVs are ranked by their tracking contribution.
For those with long flight distance and small sens-
ing contribution, it is not necessary to participate in
tracking. Therefore, it is necessary to give a larger

reward for the actions that give up participation, so
as to avoid their participation in tracking. Thus,
the number of individuals participating in tracking
is minimized, which can reduce the total energy con-
sumption and maintain dispersion of the UAVs to a
certain extent, facilitating subsequent deployment.

5 Simulation verifications

In the simulations, the observation time win-
dow and the preset constant of the time window are
Δto=2.5 s and Δtp=1.5 s, respectively. The learn-
ing cycle is 500 and the learning step is 80. We use
different colors to represent the tracking state of a
UAV, in which green indicates the state in which the
UAV can cover a target, while red indicates not, and
yellow indicates the state in which the UAV should
not be involved in tracking. Two scenarios are used
to demonstrate the proposed strategies. In scenario
1, we consider four UAVs and only one target. In
scenario 2, the situation is more complex, and two
targets, two obstacles, and five UAVs are included.
The targets’ movements are more deceptive. The
simulation parameters are shown in Table 1.

5.1 Scenario 1

In Fig. 7a, the target is trying to escape with
the cover of the oval obstacle. The true motion tra-
jectory of the target is represented by the black solid
line. The black circle denotes the starting point of
the target and the black triangle denotes the end
point. The cross symbols denote the boundary of the
obstacle. The four black squares denote ground sta-
tions, located at [80, 60], [80, 380], [150, 60], and [150,
380]. The blue curves are estimates of the Kalman
filtering, and the black curve is the average of the
estimates.

In Fig. 7b, the red circles and red triangles de-
note the starting and end points of the UAVs, respec-
tively. The black circle and black triangle denote the
starting and end points of the target, respectively.
The trunk trajectory, represented by the black solid
line, shows that in the first stage, the target quickly
approaches the upper edge of the obstacle, and the
intention of taking the obstacle as cover is obvious.
In the second stage, the target suddenly changes the
direction and approaches the edge of the obstacle
again, and the intention to escape with the help
of the obstacle’s cover increases. From the UAVs’
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Table 1 Simulation parameters

Parameter
Value

Scenario 1 Scenario 2

Task environment 250 m × 400 m 250 m× 400 m
UAV number N=4 N=5
UAV initial positions U1=[52, 333], U2=[206, 125], U1=[36, 135], U2=[86, 30], U3=[135, 27],

U3=[156, 358], U4=[212, 225] U4=[192, 83], U5=[115, 303]
Initial flight angles ψ [−45◦, 180◦, 180◦, 180◦] [45◦, 60◦, −45◦, 90◦, 135◦]
Probability of the initial action

selection of the UAVs
1/8 1/8

UAV velocity V=1.5 m/s V=1.3 m/s
Target number M=1 M=2
Target initial position [65, 325] [60, 75], [185, 50]
Center of the obstacle [125, 200] [90, 80], [165, 120]
Sensing threshold D̄=200 D̄=360
Sensing radius r=65 m r=50 m

Other parameters ξ=10, d̄=100 m, dmin=5 m, α=1, β=3, α̃ = 2/3, β̃ = 1/3, Δt=1 s, h̄=12,
δ=20, σ=0.6, γ=0.9, r=1, r̄=2

trajectories, in the early stage, the target trajectory
is closer to U1 and is in the MDA-Voronoi region
of U1, rather than in that of others. Therefore, at
this time, U1 tracks the target, but others cannot
sense the target and do not participate in tracking.
However, after a short time, due to the larger tar-
get speed, U1 is gradually evaded by the target and
cannot cover it. However, the target gradually ap-
proaches U3 and is within the MDA-Voronoi region
of U3. At this time, U3 participates in tracking.
After a while, U3 is also gradually evaded by the tar-
get. However, the target gradually enters the region
of U2, and then U2 is involved in tracking. Then, the
predicted trajectory of the target enters the region
of U1 again, and U1 and U2 cooperate to track it.
In the initial stage, the target is not within the max-
imum sensing range that U4 can reach, so U4 does
not participate in tracking and is in a random patrol
mode. At about step 50, the target is within its max-
imum sensing range, and U4 participates in tracking.
At about step 79, because the UAVs’ sensing of the
target has met the demand, U4 is no longer involved
in the tracking, and keeps the last action to continue
patrolling. As can be seen, our method makes full use
of the UAVs’ position advantages using the dynamic
MDA-Voronoi diagram to achieve effective collabora-
tion. In terms of avoiding collisions, no UAVs collide
with the obstacle or other UAVs.

Fig. 7c shows the average Q value during train-
ing. It can be seen that in the early training stage,
the UAVs are in exploratory learning and the reward

is low. As training progresses, the UAVs’ strate-
gies are gradually improved, the reward gradually
increases, and the average Q value converges to a
steady state.

As shown in Fig. 7d, due to the inferior track-
ing abilities, the UAVs’ sensing of the target will
drop or even be zero, but according to the dynamic
MDA-Voronoi diagram and trajectory prediction,
the UAVs can effectively track the target, reduce
tracking gaps to a large extent, and improve the
sensing performance. For example, at about step
58, U1’s sensing of the target ends, but at this time,
the target sensing of U3 and U4 increases. At about
step 77, U3’s sensing of the target begins to drop,
but at the same time, U2 maintains the coverage of
the target. At about step 138, U3’s sensing of the
target ends, but U1’s sensing of the target starts to
increase significantly.

We compare our strategies with a passive track-
ing method in which the UAVs move directly to the
target. We define the tracking loss as the number of
time steps when the target is not within the sensing
range of any UAV. The tracking loss and the track-
ing trajectories are shown in Figs. 7e–7g. The total
tracking loss of the proposed method is 0, and that
of the passive method is 29. It can also be seen from
Fig. 7f that the target is not within the sensing range
of the UAVs for a long time during tracking.

5.2 Scenario 2

The two targets, named targets 1 and 2, are
trying to make curve flights to the top right and top
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Fig. 7 Simulation results of scenario 1: (a) target trajectory; (b) UAVs’ tracking trajectories; (c) average Q

value during training; (d) UAVs’ sensing performance in tracking; (e) tracking loss of the proposed method;
(f) passive tracking trajectories of the UAVs; (g) tracking loss of the passive method
References to color refer to the online version of this figure

left, respectively, and the actual trajectories are as
presented in Fig. 8a.

In Fig. 8b, it can be seen that, in the early stage
of the first prediction window, U1 and U2 are track-
ing target 1, and U3 and U4 are tracking target 2.
Because U5 is far away from targets 1 and 2, it does
not participate in tracking at this time. As the tar-
gets’ trajectories change, U1 and U2 are gradually
evaded by target 1, while their tracking advantages
for target 2 increase, so they start tracking target
2. Similarly, the tracking advantages of U3 and U4

for target 2 are diminishing, and even target 2 com-
pletely leaves U4’s sensing range. After a short time,
the tracking advantages of U3, U4, and U5 on tar-
get 1 increase gradually, so they start to track target

1. It can be seen that all UAVs have successfully
avoided collision with fixed obstacles and each other.

Fig. 8c shows the average Q value during train-
ing. Fig. 8d shows the sensing performance of each
UAV during tracking. It can be seen that there is
also effective collaboration between the UAVs; e.g.,
at about step 60, although U4’s sensing of a tar-
get ends, other UAVs effectively compensate for U4’s
sensing loss at this time. After a short time, U4 is
also involved in the effective tracking of another tar-
get. Figs. 8e and 8f show the tracking loss concerning
the two targets during the whole tracking.

We also compare our strategies with a pas-
sive tracking method in which the UAVs move di-
rectly to the targets. The tracking loss and tracking
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trajectories are shown in Figs. 8g–8i. The total track-
ing loss of the proposed method about target 1 is 0,
and that of the passive method is 112. The total
tracking loss of the proposed method about target
2 is 3, and that of the passive method is 106. It
can also be seen from Fig. 8g that the targets are
not within the sensing range of the UAVs for a long
time during tracking. Compared with scenario 1, our
method has more advantages in this scenario, which
indicates that the more complex the scenario is, the
more advantages our method has.

6 Conclusions
In this study, we propose a novel multi-UAV

collaborative target tracking method for UAVs with

a limited detection range, inferior tracking capabil-
ities, and targets with agile mobility, trajectory un-
certainty, and decoy behavior. We first build the
motion models of the UAV, the target, and the sen-
sor detection model with a limited detection range.
After discretizing the target trajectory within the
observation time window, a novel trajectory feature
extraction method with least dimension and maxi-
mum coverage constraints is designed. The extracted
trajectory characteristics and the trunk trajectory
trend approaching the obstacle are taken as inputs
of a Sigmoid function to estimate the target’s intent.
Based on this estimate, we adjust the prediction time
window and sampling number for the observation
of emergencies. Then we propose a novel Voronoi
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diagram, called MDA-Voronoi, which divides the
area with obstacles according to the minimum reach-
able distance and the minimum steering angle of each
UAV. In each MDA-Voronoi region, the maximum
reachable region of each UAV is defined and used to
discover the ECOs based on the distribution, sensing
radius, and velocity of the UAVs. Furthermore, the
upper and lower bounds of the trajectory coverage
probability are analyzed, and the tracking strate-
gies of the UAVs are designed to effectively reduce
the tracking gaps. Based on Nash Q-learning, the
learning strategies are taken as the UAV control in-
puts, and collision avoidance with UAVs and obsta-
cles, sensing performance, and path overlap are also
considered to reduce the number of UAVs involved
in tracking while achieving the expected sensing per-
formance to improve tracking efficiency. Finally, we
give two scenarios to validate the theoretical results
that the multiple UAVs can monitor multiple intel-
ligent targets with effective cooperation in complex
and uncertain environments.
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