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Abstract: Gait recognition has significant potential for remote human identification, but it is easily influenced by identity- 
unrelated factors such as clothing, carrying conditions, and view angles. Many gait templates have been presented that can effec-
tively represent gait features. Each gait template has its advantages and can represent different prominent information. In this paper, 
gait template fusion is proposed to improve the classical representative gait template (such as a gait energy image) which repre-
sents incomplete information that is sensitive to changes in contour. We also present a partition method to reflect the different gait 
habits of different body parts of each pedestrian. The fused template is cropped into three parts (head, trunk, and leg regions) 
depending on the human body, and the three parts are then sent into the convolutional neural network to learn merged features. We 
present an extensive empirical evaluation of the CASIA-B dataset and compare the proposed method with existing ones. The 
results show good accuracy and robustness of the proposed method for gait recognition. 
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1  Introduction 
 

Vision-based gait recognition is an approach that 
identifies humans by their walking habits, or gait, 
which is difficult to imitate. Recognition of gait, as 
one of the biometric features, has been considered a 
potential means of long-distance identification (Phil-
lips, 2002; Rida et al., 2019). Unlike traditional bio-
metrics, such as faces and fingerprints, recognition of 
gait needs no contact or explicit cooperation by sub-
jects. Considering these strengths, gait recognition 
has become an urgent demand in the field of safety 
monitoring and intelligent surveillance (Iwama et al., 
2013). Gait recognition has gradually attracted wide 

attention from researchers in the computer vision 
field. 

The gait recognition process is more compli-
cated than those of other biometric techniques be-
cause the input is a gait video sequence rather than a 
picture. In gait recognition, it is not easy to learn the 
features directly from the video. Most methods con-
struct an image as a template used to represent a se-
quence of silhouettes, an approach for preliminary 
feature integration (Lv et al., 2015). There are other 
methods of gait recognition that learn the features 
directly from the video as an image set consisting of 
every silhouette frame (Wu et al., 2015; Chao et al., 
2019). However, a gait template (such as a gait energy 
image (GEI)) and a set of images may be affected by 
contour changes or loss of temporal information 
concerning gait sequences (Han and Bhanu, 2006). 
This paper overcomes the problems mentioned above 
by presenting a gait template fusion method that is 
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based on multi-channel mapping and a novel tem-
poral method called the fusion energy image (FEI). 
This proposed method has all the advantages of the 
existing templates, including effectively retaining the 
representative gait information. 

There are many challenges in the practical ap-
plication of gait recognition due to factors such as 
how pedestrian silhouettes are influenced by changes 
in dress, carrying conditions, and the direction of the 
walk (Sarkar et al., 2005). Various approaches have 
been proposed for this problem, but all can be divided 
into two typical categories, i.e., projection of the gait 
feature to subspace and convolutional neural net-
works (CNNs). Typical methods of projection are 
canonical correlation analysis (CCA) and coupled 
metric learning (CML), which can normalize gait 
features under different conditions into other spaces 
to measure their similarity (Bashir et al., 2010a, 
2010b; Wang KJ et al., 2014). However, the perfor-
mance of projection-based methods is affected by 
factors that are unrelated to identity. With the devel-
opment of deep learning and the advantage of feature 
learning, CNNs have achieved significant improve-
ment when applied in gait recognition (Shiraga et al., 
2016; Li C et al., 2017). Generative adversarial net-
works (GANs) are also employed in gait recognition 
for normalization (Goodfellow et al., 2014), through 
elaborate networks that stimulate the projection to 
implement multiple mappings by one model (Yu et al., 
2017a, 2017b; He et al., 2019). As a result of these 
gaps, we present a partition approach to reduce the 
impact of covariates, and design the CNN structure 
based on the merging of features for the application of 
gait recognition. 

In summary, we make the following contribu-
tions in comparison with the state-of-the-art methods: 

1. A gait template fusion method based on multi- 
channel mapping and a novel temporal approach 
called FEI is proposed to effectively represent more 
original gait information. It can combine the ad-
vantages of several existing gait representative tem-
plates simply and efficiently while maintaining a low 
computational cost. 

2. We propose a partition approach based on the 
structure of the gait contour. The FEI is separated into 
three parts: head, trunk, and leg. The features of each 
part of the body are learned from each block, and the 

low-dimensional features of the GEI are obtained 
after fusion. 

3. A CNN-based fusion method is presented for 
gait feature extraction and recognition. Bottom layers 
with three routes in parallel are used to learn the gait 
features, and then identity recognition is performed 
through the fusion layer. 

4. We conduct an extensive evaluation under 
different clothing, carrying conditions, and view an-
gles. Gait recognition accuracy is improved by the 
proposed method on the CASIA-B dataset. 
 
 
2  Related works 
 

Most gait recognition methods involve various 
steps: video information integration, feature extrac-
tion, and similarity metric classification (Wang C  
et al., 2012). The existing works are presented based 
on different methods of video information integration 
and cross-domain feature learning. 

2.1  Gait representative template 

Due to the difficulty in directly obtaining in-
formation from videos, it is essential to convert a 
sequence of images into a single representative 
template in gait recognition. Han and Bhanu (2006) 
presented GEI which is the most classic template. 
The GEI was calculated by superimposing the av-
erage of periodic normalized silhouettes while losing 
temporal information. Zhang EH et al. (2010) used 
an active energy image (AEI), consisting of the 
frame difference image, which is a good response to 
the temporal features of the moving part. Although it 
is not sensitive to image quality, it has less contour 
information. Bashir et al. (2010a) proposed a gait 
entropy image (GEnI) by calculating the Shannon 
entropy of each pixel of a GEI and the density of 
different positions of the profile by Shannon entropy. 
It effectively solves the problem of sensitivity due to 
the change of contour of the pedestrian under dif-
ferent clothing and carrying conditions. Based on the 
idea of GEI, Wang C et al. (2012) applied a mul-
ti-channel mapping function to encode temporal 
information to project the silhouettes onto the RGB 
space, and named this template the Chrono-gait 
image, which is still sensitive to changes in clothing 
and carrying conditions. 
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2.2  Cross-domain gait features learning method 
 
Cross-domain gait recognition has always been a 

big challenge due to the huge change of contour 
caused by the view angle, clothing, and carrying 
conditions. Various approaches have been proposed 
to solve this problem. They can be divided into two 
classes, i.e., projection-based and CNN-based. 

Projection-based methods are always based on 
the distance metric of gait features. Bashir et al. 
(2010a) applied CCA to a model with different view 
angles. Xing et al. (2016) developed a complete ca-
nonical correlation analysis method (C3A) to deal 
with the unsteady and incomplete singular matrix 
problem of generalized feature analysis in the CCA 
framework of two high-dimensional datasets. It has 
also been reported that a view transformation model is 
a typical method, where gait features are projected 
from one view domain to another. The gait matrix is 
decomposed into a view-independent matrix and an 
object-independent matrix using singular value de-
composition (Makihara et al., 2006; Kusakunniran  
et al., 2012; Muramatsu et al., 2016). CML is an ef-
fective gait recognition approach for detecting the 
essential structure of tensor manifolds by preserving 
local information to encode intra-class compactness 
and inter-class separability with local relationships 
(Wang KJ et al., 2014; Ben et al., 2019a, 2019b). Ben 
et al. (2020) presented a coupled bilinear discriminant 
projection to reduce the gap caused by view differ-
ence based on a coupled distance metric without 
losing the GEIs’ spatial information. 

Recently, CNNs have become the common 
workhorse for feature learning from images. Con-
structing a CNN is helpful in extracting gait features 
from a sequence of silhouette sets (Wu et al., 2015; Li 
C et al., 2017; Chao et al., 2019). They can also be 
learned through cross-domain features using gait 
templates. Wu et al. (2017) designed a CNN structure 
for gait recognition based on a GEI with good 
cross-view performance. Yu et al. (2017b) employed 
a deep model using stacked progressive auto- 
encoders (SPAE) to convert the gait features from one 
view to another to reduce the influence of view 
changes. Song et al. (2019) deployed joint learning to 
combine silhouette extraction and gait recognition in 
an end-to-end framework. 

In addition, GANs restore the probe and the 

corresponding gallery data standard condition to learn 
invariant gait features by combining projection 
methods and CNNs. Yu et al. (2017b) employed a 
GAN as a regressor to generate invariant gait images 
while preserving human identification, converting 
arbitrary gait images to the side view with normal 
clothing but without carrying objects. Zhang P et al. 
(2019) proposed the variation-normalizing GAN, 
deploying a coarse-to-fine method, where initial 
coarse images were generated by normalizing the 
view and then refined by injecting identity-related 
information. Li X et al. (2020) presented an alpha- 
blending GAN to remove carried objects to obtain 
identity-preserved alpha-blended gait templates. 
 
 
3  Method 

3.1  Overview 

In this study, we present a novel fusion-based 
gait recognition method, taking the advantage of more 
gait information and solving the problem posed by 
silhouettes in different view angles or dresses. The 
application of the fusion method is reflected in two 
ways. First, by fusing existing gait representative 
templates, the original information is fully used while 
maintaining a low computational cost. Second, the 
features of each partitioned sub-FEI are learned by a 
CNN, and the final gait features are obtained by a 
feature fusion method for classification of the nearest 
neighbor (NN). 

Fig. 1 shows the systematic workflow of the 
proposed method; the algorithm is roughly under-
stood as three main parts, i.e., gait representative 
template fusion, partition, and feature fusion based on 
convolutional networks. The following subsections 
present these three parts in detail. 

3.2  Gait representative template fusion method 
based on multi-channel mapping 

The existing single gait representative template 
effectively integrates the gait video information but 
cannot avoid losing features. For example, GEI loses 
gait timing information and AEI loses contour fea-
tures. However, each template has a unique advantage, 
such as insensitivity to changes in dress with AEI. 
Because most templates are gray-level images, it is 
reasonable to create a colorful new fusion template  
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that will represent more gait information with low 
calculation costs. 

The multi-channel mapping method is used to 
complete the fusion of multiple templates. Gait tem-
plates are marked with color and mapped to the RGB 
space in the red, green, and blue channels. For M 
fused templates, the weights of the mth template in the 
RGB space are 
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where im is the normalized number of the mth template, 

and R G, ,m mW W  and B
mW are the weights mapped to the 

RGB space. So, FEI(x, y) is defined as follows: 
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where Tm(x, y) is the image of the mth template. In this 
study, we choose GEI, AEI, and GEnI to compose the 
FEI. GEI has an efficient gait characterization tem-
plate, but has no connection between adjacent frames.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
AEI can extract the active regions by calculating the 
frame difference. Note that GEnI is not sensitive to 
changes in static information about carrying condi-
tions or clothing. The FEI composed of these three 
templates contains more gait information and the 
respective shortcomings are offset by each other. 

As the most widely used gait template, GEI has 
an effective representation of gait sequences and high 
computational efficiency, i.e., the energy of a super-
position of a period of normalized silhouettes (Han 
and Bhanu, 2006). The GEI is calculated as 
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where N is the number of frames in a gait cycle and 
B(x, y, n) is the binary and normalized silhouette of 
the nth frame. The concentration of the pixel, i.e., 
energy, represents the frequency of human motion at 
this pixel, as shown in the third row of Fig. 2. GEI is a 
gray-scale image that represents the dynamic and 
static (shape) information of a gait sequence, although 
it is not sensitive to occasional errors in a single 
frame. 

GEI is an effective gait template, but does not 
change the motion between adjacent frames. To solve 
this problem, Zhang EH et al. (2010) proposed AEI, 
which can extract the active regions by calculating the 
frame difference. AEI is defined as follows: 

 

AEI
1

1
( , ) ( , , ),

N

n
n

E x y D x y n
N 

               (7) 

Fig. 1  Process flow of the proposed method 
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where Dn(x, y, n) is the difference between the next 
frame and the current frame of the silhouettes. There 
are more temporal characteristics in AEI than in GEI 
from the comparison of rows 1 and 3 in Fig. 2. 

As shown in Fig. 2, AEI, GEI, and GEnI are 
displayed in the three channels of the FEI accordingly. 
Furthermore, the influence of carrying conditions or 
clothing is reduced, but AEI ignores static information 
by using only the dynamic part of the silhouettes. 

To increase dynamic information, dynamic and 
static regions are distinguished from GEI by meas-
uring the Shannon entropy of each pixel position in 
the GEI (Bashir et al., 2010a). By strengthening the 
dynamic region in this way, the GEnI can be obtained: 
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Due to the uncertainty of the dynamic region, the 

intensity of the GEnI is higher in the dynamic region 
than in the static region, as shown in the second row 
of Fig. 2. 

FEI is calculated according to Eq. (5) as shown 
in the last row in Fig. 2. At this point, M is three. It is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

easy to calculate the weights of the three channels of 
AEI, GEI, and GEnI, and FEI can be described as 
representing all information about the three templates. 
The GEI has a satisfactory extraction of contour fea-
tures, but the dynamic information is insufficiently 
expressed and the timing information is lost. There-
fore, there is no disadvantage in the FEI because AEI 
and GEnI make up for the deficiency of GEI. 
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3.3  A robust partition approach for covariate 
factors 

In general, gait information is based on the se-
quence of the entire silhouette. However, the covari-
ate factors, such as clothes and bags, make the ap-
pearance of the silhouette change so greatly that it is 
difficult to extract gait information effectively. As 
illustrated in Fig. 2, the three FEIs belonging to the 
same pedestrian show a great difference in silhouette, 
and this difference has a great impact on the accuracy 
of vision-based gait recognition. 

As shown in Fig. 3, the changing of silhouettes  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AEI

GEnI

GEI

FEI

0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180°

Fig. 2  AEIs, GEnIs, GEIs, and FEIs at different view angles 
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caused by the clothing or backpacks is concentrated 
mainly on the human body’s torso, and less on the 
head and legs. In the traditional method, based on the 
whole image, each human body part contributes to the 
recognition results, which is clearly inappropriate. 
Also, some existing works demonstrate that learning 
from local images is conducive to enhancing feature 
extraction (Hossain et al., 2010; Wang YY et al., 2019; 
Fan et al., 2020). 

Therefore, we present a solution to the covariate 
factors based on partition. FEI is cropped into the 
head, trunk, and leg regions as shown in Fig. 3. Due to 
normalization in the FEI generation process, it is easy 
to apply this method to all the subjects. In this way, 
attention is not solely focused on the whole silhouette, 
but also dispersed to each sub-FEI to reduce the effect 
of covariate factors. The size of the FEI is 64×128×3, 
and the sizes of the three sub-FEIs are 64×32×3, 
64×48×3, and 64×48×3. 

3.4  Feature-level information fusion based deep 
convolutional networks 

Feature-level fusion is designed to extract fea-
tures to obtain information. The purpose is to increase 
the number of features in the FEI. The CNN can learn 
local features and silhouettes together, and hence it 
can use the information of given features and improve 
recognition performance. Three sub-FEIs are sent to 
the CNN to learn the gait feature, and the fusion layer 
combines multiple features to recognize it. 

Table 1 shows the structure of the network in 
detail. The output shape of each layer is given after 
the structure. Bottom layers with three routes in par-
allel are used to learn the gait features, respectively. 
The middle layer is the fusion layer with top layers for  
 
 
 
 
 
 
 
 
 
 
 
 
 

classification. Conv5 has 5×5 kernels, and Conv3 has 
3×3 kernels. Similarly, maxpool2 means the maxi-
mum pool layer with 2×2 kernels. Moreover, all of the 
activation functions are ReLU. 

The softmax loss is used for network training, 
classifying each gait pose into the corresponding 
subject and enlarging the inter-class distance effec-
tively. It is defined as 
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ix  is the ith feature that belongs to the yi

th 

class, d denotes the feature dimension, 
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n
y j b b  denote bias terms. 

The GEI is divided into three blocks according to 
body parts, and they are sent to the convolutional 
network to learn gait features accordingly. Not only 
can the CNN learn global gait silhouettes, but also 
local body part information is extracted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Implementation details of the network 

Layer (head) Layer (trunk) Layer (leg) 
Conv5-ReLU-Batch_norm (60, 28, 16) Conv5-ReLU-Batch_norm (60, 44, 16) Conv5-ReLU-Batch_norm (60, 44, 16) 

Conv3-ReLU (58, 42, 32) Conv3-ReLU (58, 42, 32) 
Maxpool2 (30, 14, 16) Maxpool2 (29, 21, 32) Maxpool2 (29, 21, 32) 
Conv3-ReLU-Batch_norm (28, 12, 32) Conv3-ReLU-Batch_norm (27, 19, 64) Conv3-ReLU-Batch_norm (27, 19, 64) 

Conv3-ReLU (25, 17, 64) Conv3-ReLU (25, 17, 64) 
Maxpool2 (14, 6, 32) Maxpool2 (14, 8, 64) Maxpool2 (14, 8, 64) 
FC-ReLU (512) FC-ReLU (1024) FC-ReLU (1024) 
Concat (2560) Concat (2560) Concat (2560) 
FC-ReLU (1024) FC-ReLU (1024) FC-ReLU (1024) 
FC-ReLU (512) FC-ReLU (512) FC-ReLU (512) 
FC-ReLU (62) FC-ReLU (62) FC-ReLU (62) 
 

Fig. 3  Partitioned FEI when the person is in the normal 
condition (a), carrying a bag (b), and wearing a coat (c) 
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4  Experiments and analysis 
 

An empirical evaluation was provided on the 
CASIA-B gait dataset. There were 124 subjects and 
11 view angles (0, 18, …, 180°), and 10 sequences 
per subject for each view angle in the CASIA-B gait 
dataset (Yu et al., 2006). Six of the 10 sequences were 
taken under normal walking conditions (four of them 
were selected as galleries with the other two as probes 
(NM)); two sequences when the subjects wear their 
coats were used as probes (CL); the remaining two 
with bags were kept as probes (BG). We evaluated our 
method by comparing it to alternative approaches in 
terms of different clothing, carrying conditions, and 
view angles. 

The CASIA-B database provides segmented 
binary gait contours, but some image preprocessing 
steps are still needed before carrying out the experi-
ment. We need to normalize all the frames so the 
contours are of equal size to avoid the influence of 
different distances between the human and camera to 
generate a gait representative template. In this process, 
the top and bottom pixels of the silhouettes should be 
located to establish the pedestrian area, and then their 
centers of gravity were calculated. After calculating 
the center of gravity, the height of the image, and the 
aspect ratio (1/2), the frames were cropped and 
resized to 64×128. 

The first 62 subjects of the 124 were put in the 
training set, and the four normal walking sequences of 
the remaining subjects were kept as galleries in the 
test set. The networks were trained using stochastic 
gradient descent with a learning rate of 0.001. The 
batch size was set to 128, and there were about 30 000 
iterations. 

4.1  Impact of fusing gait representative templates 

We designed a simple experiment to prove the 
validity of the template fusion algorithm. From Ta-
ble 2, the experiment is provided with AEI, GEI, 
GEnI, and FEI (consisting of these three) as gait 
representative templates. The NN classifier was used 
for identification to establish accuracy, and the view 
angle of both the gallery and probe was 90°. 

The accuracy of recognition with FEI is the best 
in all three conditions with more than 2% improve-
ment over GEI (Table 2). Moreover, it can be seen that 
more information is lost in AEI, which is less affected 

by covariate factors as compared to the experimental 
results of the same template under different condi-
tions. There are more features and a slight improve-
ment in GEnI than in GEI when clothing worn or 
carrying an object. FEI effectively synthesizes the 
information of three templates and achieves better 
recognition results. None of the recognition rates are 
high in the experiment. This may be due to the weak 
robustness caused by the simple feature extraction 
approach and classifier. 

 
 

 
 
 
 
 
 
 

4.2  Impact of CNN-based partition and fusion 

In this subsection, we evaluate the effectiveness 
of partition and fusion based on the CNN. Fig. 4 
compares the recognition accuracies of the two ap-
proaches, with or without partition. As a result of the 
partitioned FEI with a dedicated network structure, 
the CNN of the FEI structure is similar to it without 
the bottom layers of three parallel routes and the in-
termediate fusion layer. The setting of gallery and 
probe is consistent with the experiment in Section 4.1. 

The effectiveness of the proposed partition 
method is illustrated in Fig. 4. Both of them achieved 
more than 98% accuracy in normal walking because 
the CNN has the advantages of good feature learning 
and generalization performance. The partition and 
fusion method’s performance is slightly better when 
there are changes in the clothing or carrying condi-
tions, showing that the proposed method increases the 
robustness of covariate factors. 

The partition methods and the number of parti-
tions influence our results. Table 3 shows a compar-
ison with different numbers of partitions (partitions 
are based on the human body structure). 

We observed that partition approaches perform 
better in the clothing worn and bag-carrying condi-
tions, which means that this method is effective in 
dealing with covariate factors. Additionally, three- 
sub-FEI is the best method in the clothing condition, 

Table 2  Comparison of different gait representative 
templates by accuracy 

Probe 
Accuracy (%) 

AEI GEI GEnI FEI 
NM 88.7 93.5 94.8 96.8 
CL 35.2 32.7 34.3 35.4 
BG 46.3 44.5 45.8 47.0 

Gallery: NM 1–4, 90°; probe: NM 5–6, CL, BG 
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whereas two-sub-FEI is the best method in the bag- 
carrying condition. This may be because these two 
methods both split the trunk and legs, and are more 
successful at extracting local features. When the 
number of sub-FEIs is four, the result becomes worse 
due to dense separation, which is detrimental to 
global learning. 

4.3  Comparison with other methods 

We evaluate the accuracy of the proposed 
FEI+CNN and FEI+partition+CNN methods, and the 
effect of view and covariate variations. The results of 
the comparison are shown in Figs. 5–7, with the state- 
of-the-art cross-condition gait recognition methods 
including principal component analysis and linear 
discriminant analysis (GEI+PCA+LDA), CCA 
(Bashir et al., 2010b), SPAE (Yu et al., 2017b), and 
VN-GAN (Zhang P et al., 2019). Cross-condition 
refers to gait recognition where the conditions (such 
as view angle, clothing worn, and carrying an object) 
of galleries and probes are not the same. The GEI+ 
PCA+LDA method is easy to understand, where PCA 
is applied for feature extraction with LDA for identity 
recognition. CCA is applied to model gait sequences  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

from different conditions with the similarity measure 
of correlation strength (Bashir et al., 2010a). SPAE is 
based on multi-layer auto-encoders that extract the 
invariant gait feature of different conditions (Yu et al., 
2017b). VN-GAN employs a divide-and-conquer 
strategy where coarse, view-normalized gaits are 
generated first, and then identity information is im-
planted (Zhang P et al., 2019). 

Fig. 5 shows the results in comparison with the 
existing methods in normal walking, where the view 
angles of the gallery are 0°–180°. A significant 
change of view angle is a big challenge for gait 
recognition. The proposed methods are significantly 
better than almost all other algorithms. This can be 
seen in the FEI-based approach, which performs 
better than the partitioned FEI in most view angles. 
This is because the FEI-based approach may focus 
more on the overall contour information, which is 
more useful in the normal walking condition of the 
gallery and probe. Notably, our results do not support 
the general understanding that the accuracy at 90° is 
not the best. This may be due to gait recognition based 
on silhouettes. It is unable to discriminate the left- or 
right-hand side of the body structure in silhouettes, 
thus causing confusion, such as the left or right leg as 
shown in Fig. 1, while more stereoscopic information 
is included in the better performing 36° and 144°. 

Experimental settings are unchanged except for 
the condition of probes in coats or with a bag. Figs. 6 
and 7 show the performance comparisons of the ex-
isting approaches under more complex conditions. 
The superiority of our method is embodied in the 
condition of complex changes. Moreover, the method 
with partitioned FEI achieves higher accuracy in 
almost all view angles than the FEI-based approach, 
revealing that the partition and fusion methods are 
robust to covariate factors. It can also be seen that the 
accuracy is always higher in the condition of carrying 
a bag than wearing a coat. The reason may be that the  
 
 
 
 
 
 
 
 
 

Table 3  Comparison of accuracy at different numbers of partitions 

Probe 
Accuracy (%) 

Partition number=1 Partition number=2 Partition number=3 Partition number=4 
NM 98.7 98.5 98.5 98.0 
CL 67.6 70.1 70.4 68.2 
BG 52.7 53.3 53.1 53.1 

Gallery: NM 1–4, 90°; probe: NM 5–6, CL, BG. Partition number=1: the whole image without partition; Partition number=2: two partition parts 
involve double 64×64×3 sub-FEIs; Partition number=3: three sub-FEIs are 64×32×3, 64×48×3, and 64×48×3; Partition number=4: four parti-
tion parts involve 64×32×3, 64×24×3, 64×24×3, and 64×48×3 sub-FEIs 
 

Fig. 4  Comparison of partition and fusion by accuracy 
(References to color refer to the online version of this 
figure) 
Gallery: NM 1–4, 90°; probe: NM 5–6, CL, BG 
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bag only blocks out or changes part of the contour, 
while the effect of the clothing worn on the contour is 
enormous and creates more noise. 
 
 
5  Conclusions 
 

In this paper, a novel gait template fusion and 
partition method has been proposed for gait recogni-
tion. We have employed gait template fusion using 
multi-channel mapping to obtain an FEI to represent  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
more original gait features. The FEI approach also 
combines the advantages of the existing templates to 
increase the robustness of identity-unrelated factors. 
Moreover, the partition and fusion method has been 
applied to a CNN, where the features of a partitioned 
FEI and fusion for identification have been extracted. 
This is effective in reducing the impact of changes in 
clothing and carrying conditions. Experimental results 
confirmed the proposed method’s effectiveness and 
robustness for gait recognition, and showed especially 
good performance in various complex environments.  

Fig. 5  Comparison of the proposed method with existing ones by accuracy under probe NM 5–6, 0°–180° (gallery: NM 
1–4, 0°–180°) (References to color refer to the online version of this figure) 

Fig. 6  Comparison of the proposed method with existing ones by accuracy under probe BG 0°–180° (gallery: NM 1–4, 
0°–180°) (References to color refer to the online version of this figure) 
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