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Abstract: To avoid Doppler ambiguity, pulse Doppler radar may operate on a high pulse repetition frequency
(PRF). The use of a high PRF can, however, lead to range ambiguity in many cases. At present, the major
efficient solution to solve range ambiguity is based on a waveform design scheme. It adds complexity to a radar
system. However, the traditional multiple-PRF-based scheme is difficult to be applied in multiple targets because
of unknown correspondence between the target range and measured range, especially using the Chinese remainder
theorem (CRT) algorithm. We make a study of the CRT algorithm for multiple targets when the residue set contains
noise error. In this paper, we present a symmetry polynomial aided CRT algorithm to effectively achieve range
estimation of multiple targets when the measured ranges are overlapped with noise error. A closed-form and robust
CRT algorithm for single target and the Aitken acceleration algorithm for finding roots of a polynomial equation are
used to decrease the computational complexity of the proposed algorithm.

Key words: Range ambiguity; Erroneous range; Multiple targets; Symmetry polynomial aided Chinese remainder
theorem
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1 Introduction

One fundamental task of pulse Doppler (PD)
radars is range estimation using the received signal
coming from the detected target. In general, PD
radar with high pulse repetition frequency (PRF)
can improve the performance of target detection be-
cause of a wider clutter-free area in the frequency
domain. For details, readers can refer to Cao et al.
(2019). Many PD radars use high PRFs, which are
unambiguous in velocity but are likely to have range
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ambiguities or medium PRFs which are ambiguous
in both range and velocity. To date, three ap-
proaches to solve range ambiguity for PD radars have
been presented. These are phase-coding-based (Lev-
anon, 2009; Xu et al., 2020), frequency-coding-based
(Jin et al., 2019), and multi-PRF-based schemes
(Kinghorn and Williams, 1997; Zhou R et al., 2002;
Wang WJ and Xia, 2010; Liu, 2012; Ma et al., 2012).
In the first method, an unambiguous range can be
obtained by transmitting a burst of pluses with a
coded phase. It may give rise to the sensitivity
to the Doppler information, leading to difficulty in
detecting the moving target of interest, although
the range ambiguity can be resolved by discrimi-
nating different pulses. In the second method, the
unambiguous range can be derived by processing
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the phase information related to different frequen-
cies in each pulse. However, frequency agility may
lead to attenuation in correlation of each signal. The
previous two methods adopt a waveform design to
disambiguate range but also add complexity to the
radar system (Wang WQ, 2013; Wang CH et al.,
2017; Zhao et al., 2019). A common approach to find
the unfolded range is to obtain multiple measured
ranges via transmitting multiple pulses with differ-
ent PRFs such as remainder look-up table (Lei et al.,
1999), one-dimensional clustering, and the Chinese
remainder theorem (CRT) (Wang WJ and Xia, 2010;
Silva and Fraidenraich, 2018). In the remainder look-
up table algorithm, the unambiguous range can be
uniquely determined based on the differences of the
measured ranges in the multiple PRFs. The remain-
der look-up table algorithm is a fine compromise be-
tween good error-toleration ability and feasible com-
putation. However, it relies on the establishment of
the remainder look-up table and is less professional
from a mathematical standpoint. That is to say, it
is difficult for the remainder look-up table algorithm
to provide a complete theoretical solution to solving
range ambiguity. The one-dimensional clustering al-
gorithm makes use of all possible unfolded ranges
ordered in ascending direction and evaluates the av-
erage square error. It has been shown that the one-
dimensional clustering algorithm suffers from larger
computational burden than the CRT algorithm, al-
though it is perfectly feasible in real time. In fact,
a simple and straightforward solution of range ambi-
guity is the CRT based algorithm.

It is well known that CRT has received consid-
erable attention because it develops the relationship
between an integer and the corresponding remain-
der modulus or several moduli. Hence, CRT has
been applied to many fields such as signal process-
ing, coding theory, and radar systems. At present,
in Wang WJ and Xia (2010), the range estimation
for a single target has been developed using robust
and closed-form CRT, where there were errors in the
measured ranges due to the restriction on measure-
ment precision. To the best of our knowledge, except
for a few studies (Kinghorn and Williams, 1997; Lev-
anon, 2009), there are few available results on the
issue of robustly reconstructing ranges of multiple
targets with erroneous remainders using the CRT
algorithm. As mentioned in Li et al. (2016), Xiao
L et al. (2017), and Xiao HS and Xiao (2019), the

range estimation for multiple targets is challenging
because the determination process of target ranges
becomes complicated. On one hand, the difficulty
is that the correspondence between multiple targets
and range remainders is unknown; i.e., each range
residue set is not ordered (Xiao L and Xia, 2014,
2018a; Xiao L et al., 2017; Li et al., 2019). This
problem has been studied in Li et al. (2016), where
all the remainders were assumed to be error-free.
Specifically, a closed-form and simple determination
algorithm for two targets was proposed in Li et al.
(2016) with a smaller dynamic range. Subsequently,
a generalized CRT was presented in Wang W et al.
(2015) and Wang WJ et al. (2015) to determine the
largest dynamic range for any two targets. A sharp-
ened dynamic range of generalized CRT for multiple
targets was presented to further improve the perfor-
mance (Liao and Xia, 2007; Xiao L and Xia, 2015;
Wang CH et al., 2017). The aforementioned algo-
rithms were performed on the assumption that the
remainders are at least partly error-free. On the
other hand, it inevitably happens that the measured
range always has error due to the presence of noise
in the PD radar system (Xia, 1999, 2000; Wang WJ
et al., 2015). The popular and efficient approach to
overcome the sensitivity to error in the reconstruc-
tion process is to resort to redundancy (Xiao HS and
Xia, 2017; Xiao L et al., 2017). One is to have re-
dundancy in the number of remainders; i.e., most of
remainders need to be error-free. For this case, the
unambiguous range can be reconstructed within the
range of error correction ability. Another has redun-
dancy in each modulus, where all the moduli always
have a greatest common divisor (GCD) greater than
one and all the quotients of all the moduli divided
by the GCD are coprime integers (Li et al., 2018).
In this case, the unambiguous range can be uniquely
and correctly determined, where all the remainders
may have errors but be within the error bound (Xiao
L and Xia, 2014, 2015, 2018b).

In this paper, we go further into the robust CRT
algorithm to estimate the ranges for multiple targets
in a PD radar. We are interested only in the redun-
dancy method in each remainder because any range
remainder in practical applications may be corrupted
by measurement noise (Xiao L et al., 2014, 2015).
The main contributions are listed as follows:

On one hand, we present a symmetry polyno-
mial aided robust CRT algorithm to realize range
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estimation of multiple targets, where the symmetry
polynomial is used to recover the folding numbers.
The simulation results verify that the proposed al-
gorithm is effective to estimate ranges where there
exists range ambiguity in the PD radar. On the
other hand, the closed-form and robust CRT algo-
rithm for a single target and the Aitken acceleration
algorithm for finding roots of a polynomial equation
are used to decrease the computational complexity of
the proposed algorithm. Similar to traditional CRT
algorithms, the proposed algorithm performance in-
cluding the tolerable-error range and maximum de-
codable range depends on the selected values of the
multiple PRFs.

2 Problem statement

As mentioned previously, one of the main prob-
lems for PD radars with high PRF is the range am-
biguity when the return echoes from several targets
related to different transmitted pulses are captured
in the same interval. It will lead to overlaid pulses be-
cause of the difficulty in recognizing correspondence
between transmitted pulse and received pulse. As
shown in Fig. 1, echo 1 is the radar return echo from
a target with range r1 due to transmitted pulse 1.
Echo 3 could be interpreted as the return echo from
the same target due to transmitted pulse 3. A pulse
compression technique allows us to obtain range es-
timation by searching the peak. However, it may be
the return echo from a target with range r2 due to
transmitted pulse 1. Consequently, range ambiguity
is associated with transmitted pulse 3; i.e., the re-
turn echo from a target is always associated with the
transmitted pulse at the latest time. In fact, due to
the periodicity of the transmitting pulse, the mea-
sured range r̂ and the unambiguous range R follow

Transmitted 
pulse

Received 
signal

Echo 1

Pulse 1 Pulse 2 Pulse 3

Echo 2 Echo 3

r1
r2

...

...

Fig. 1 Illustration of range ambiguity
The reflected signal (echoes 2 and 3) corresponding to the
first pulse (pulse 1) is received when the radar has already
transmitted other pulses (pulses 2 and 3)

the mathematical expression as

r̂ = R mod Rmax, (1)

where Rmax = c/(2PRF) denotes the maximum un-
ambiguous range related to PRF, here c represents
the electromagnetic wave velocity. The key idea of
the CRT algorithm is to use multiple different PRFs
to estimate the unambiguous range of the target from
multiple measured ranges.

3 Signal model

We begin with the range estimation problem of
multiple targets. As shown in Fig. 2, the PD radar
transmits L PRF groups to estimate the ranges of N
targets. Given a PRF, there are N measured ranges
to be read from the peaks on an output waveform
after pulse compression in each coherent processing
interval (CPI). The residue set, which represents the
union of measured ranges of all targets given one
PRF, is given by

Sl(R1, R2, · · · , Rn, · · · , RN)

=
N∪

n=1
{r̂n,l} with r̂n,l = Rn mod Rmax

l ,
(2)

where Rn (n = 1, 2, · · · , N) denotes the unam-
biguous range of the nth target, Rmax

l represents
the maximum unambiguous range related to the lth

PRF, and r̂n,l is the erroneous remainder of the
real range Rn modulo the maximum unambiguous
range Rmax

l . For brevity, suppose that there are
no repeated remainders in each residue set (2), i.e.,
r̂i,l �= r̂j,l (1 ≤ i, j ≤ N, i �= j). It must be under-
stood that the remainders r̂n,l in each residue set are
not ordered; i.e., the information about the corre-
spondence between the real ranges and the remain-
ders is not specified in advance. In the above for-
mulation, the problem of interest is how to robustly
and correctly reconstruct the true ranges from the
erroneous residue sets and modulus set.

4 Range estimation formultiple targets
based on CRT

Suppose that the maximum detection range of
the radar is Rmax. The maximum occlusion range is
defined by RE at which the targets will fully eclipse in
all PRFs. In general, the maximum occlusion range
is greater than the maximum detection range of the
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Fig. 2 Signal model for range estimation for multiple targets when there exists range ambiguity

radar, i.e., RE > Rmax. In the general framework for
solving the ambiguity problem using the CRT, we
are concerned mainly with the robustness and dy-
namic range. Here, the terminology “dynamic range”
refers to the values of range for which the proposed
algorithm functions, i.e., zero to the maximum de-
codeable range. The selection of the PRFs plays
the decisive role for the performance of the CRT
in robustness and dynamic range. The robustness
is guaranteed by sharing the greatest common divi-
sor M in the PRF combination. The folding num-
bers can be correctly recovered from the erroneous
residues. In addition, the restriction on the PRF
combination is that the value of PRFs divided by
greatest common divisor is pairwise coprime. The
dynamic range is proportional to the least common
multiple of all the PRFs. Hence, more pairs of the
PRF are required to obtain the maximum dynamic
range. Of course, the range ambiguity problem can
also be addressed using only two restricted PRFs.
The corresponding occlusion repetition frequency
is given by fE = c/(2RE). Hence, the staggered
PRF should be selected according to the following
principle:

PRFl = KlfE, 1 ≤ l ≤ L, Kl ∈ Z
+. (3)

A transmitted pulse width τ should be set so
as to ensure the adequate energy in the waveform,
and hence the adequate signal-to-noise ratio (SNR)
and detection performance are necessary. According
to Eq. (3), the maximum unambiguous range Rmax

l

related to PRFl is given by

Rmax
l =

RE

Kl
, 1 ≤ l ≤ L. (4)

According to Eq. (4), given one RE, the dif-
ferent maximum unambiguous range Rmax

l can be
derived by changing the value of Kl. We go back
to the range estimation problem by the CRT al-
gorithm. Assume that the modulus set Rmax =

{Rmax
1 , Rmax

2 , · · · , Rmax
L } has a greatest common di-

visor M and that the remaining factors Γl of the
moduli divided by the greatest common divisor M

are pairwise coprime; i.e., Γi and Γj for 1 ≤ i, j ≤ L

(i �= j) are pairwise coprime.
According to Wang WJ and Xia (2010), the

remainders of error-free rn,l (1 ≤ l ≤ L) modulo
GCD M are the same when all the range re-
mainders rn,l (1 ≤ l ≤ L) are error-free, i.e., rc

n =

rn,i mod M = rn,j mod M (1 ≤ i, j ≤ L, i �= j)

for the nth target. The estimation of common re-
mainders rc

n (1 ≤ n ≤ N) for multiple targets is
significant for the reconstruction of multiple target
ranges. The common remainder rc

n can be derived
by rcn = Rn mod M .

Once the common remainder is determined, the
unambiguous range Rn can be reconstructed by

Rn = qnM + rc
n. (5)

Similar to the definition of residues of qn =

�Rn/M� in Wang WJ and Xia (2010), we can obtain
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the following important expression:

〈qn〉Γl
=

〈⌊
Rn

M

⌋〉
Γl

=

〈
Rn − rc

n

M

〉
Γl

=

〈
rn,l − rc

n

M

〉
Γl

,

(6)

where 〈qn〉Γl
denotes the residue of qn modulo Γl.

However, it becomes difficult to robustly recon-
struct the unambiguous ranges Rn (1 ≤ n ≤ N)

when there is noise error in the remainders. To
estimate the unambiguous ranges from the erro-
neous residue set Sl (1 ≤ l ≤ L), the common re-
mainder rc

n (1 ≤ n ≤ N) should be first determined
from the given residue sets. Intuitively, the deter-
mination procedure of common remainders from er-
roneous residue sets is not easy because the com-
mon remainders of the given remainder r̂n,l modulo
the greatest common divisor M are relatively dif-
ferent and not the same as those when the residue
sets are error-free. Let r̃c

n,k = r̂n,k mod M be es-
timated common remainders. It should be noted
that repeated residues may exist in set Sl, i.e.,
r̂i,l = r̂j,l for i �= j. Arrange the estimated common
remainder set Λ =

{
r̃c
n,l|1 ≤ n ≤ N, 1 ≤ l ≤ L

}
in

ascending order denoted by {γ1, γ2, · · · , γκ}, where
κ ≤ NL. The equality holds if there is no re-
peated remainder in set Λ. Before presenting the
results, we give the definition of the cross remain-
der. For some Rn (n = 1, 2, · · · , N), if there exists
γξ such that some but not all of the remainder er-
rors Δrn,l (l = 1, 2, · · · , L) satisfy γξ +Δrn,l < 0 or
γξ+Δri,j ≥ M , then γξ is called the cross remainder.
Here, Δrn,l = rn,l−r̂n,l is the error introduced corre-
spondingly. The main obstacle to achieve robustness
is from the cross remainder. Hence, we first give the
following theorem to pave the way for verifying the
existence of cross remainder:
Theorem 1 Denote the error bound δ = M/(4N).
There must exist a cross remainder γξ with ξ ∈
{1, 2, · · · , κ} in set Λ such that

γ〈ξ+1〉M − γξ +M ×Δ (ξ = κ) > 2δ,

where Δ (ξ = κ) is an indicator function with the
mathematical form:

Δ (ξ = κ) =

{
1, ξ = κ ,

0, otherwise,

and 〈ξ + 1〉M denotes the remainder of ξ+1 modulo
M .

The proof of Theorem 1 is provided in
Appendix A.

According to Theorem 1, the residue set Λ will
be divided into two subcases:

(1) Case I, ξ = κ.
Define

r̂c
n,l = r̃c

n,l (n = 1, 2, · · · , N, l = 1, 2, · · · , L) .
(2) Case II, ξ �= κ.
We divide this case into two subcases to discuss.
(a) If r̃c

n,l ≤ γξ, define

r̂c
n,l = r̃c

n,l.

(b) Otherwise, define

r̂c
n,l = r̃c

n,l −M.

We give a straightforward illustration for the op-
erations based on Theorem 1. In case I as depicted in
Fig. 3a, there does not exist any cross residue since
the distance between any pair of adjacent elements
in set {γ1, γ2, · · · , γκ} is less than δ. In case II as de-
picted in Fig. 3b, we deal with this case to avoid te-
dious classification by employing the above trick. For
case II, set {γ1, γ2, · · · , γκ} is divided into two sub-
sets, i.e., {γ1, γ2, · · · , γξ} and {γξ+1, γξ+2, · · · , γκ}.
After a shifting operation, the second subset turns
to be {γξ+1 −M,γξ+2 −M, · · · , γκ −M}, as illus-
trated in Fig. 3c. It is noted that such opera-
tion changes only the relative position of the com-
mon residues while not affecting the estimation
〈Rn〉M (n = 1, 2, · · · , N). Based on the above fact,
we define

q̃n,l =

〈⌊
r̂n,l − r̂c

n,l

M

⌋〉
Γl

=

〈
r̂n,l − r̂c

n,l

M

〉
Γl

. (7)

For each Γl (1 ≤ l ≤ L), we have

〈
N∑

n=1

q̃n

〉

Γl

=

〈 N∑
n=1

(
r̂n,l − r̂c

n,l

)

M

〉

Γl

. (8)

(a)

(b)

(c)

0 M

0 M

−M M0

γ1 γ2 … γk−1 γk

γ1 γ2 … γξ−1 γξ  … γk−1 γk

γk−1 γk γ1  γ2 ……

γξ−γξ−1>2δ

Fig. 3 Illustration of the definition of r̂c

n,l: (a) small
interval between common remainder; (b) big inter-
val between common remainder; (c) negative-valued
common remainder
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It is explicitly shown from Eq. (8) that
N∑

n=1
q̃n

can be determined by the robust and closed-
form CRT algorithm without knowing the corre-
spondence from the fact that the order of r̂n,l −
r̂c
n,l (n = 1, 2, · · · , N) does not affect the summation

result in Eq. (8).
Denote en = q̃n − q̄ (1 ≤ n ≤ N), where q̄ =

N∑
n=1

q̃n/N . For each Γl, the residue sets of en modulo

Γl can be derived by

〈en〉Γl
= αn,l = q̃n,l − 〈q̄〉Γl

, 1 ≤ n ≤ N. (9)

It is implicitly hidden in Eq. (9) that the cor-
respondence that target unambiguous range and the
remainder αn,l have is not known. In this study, we
make full use of the symmetry polynomial to recon-
struct the unambiguous ranges in the case where the
correspondence between the unambiguous range and
the remainder is not known in advance.
Theorem 2 Given an N -degree polynomial with
the form

P (x) = c0x
N − c1x

N−1 + c2x
N−2

+ · · ·+ (−1)
n
cnx

N−n + · · ·+ cN ,

where c0 = 1 if the coefficient set {c1, c2, · · · , cN} of
polynomial P (x) is constructed by

〈c1〉Γl
=

N∑
n=1

αn,l,

〈c2〉Γl
=

∑
1≤i1<i2≤N

αi1,lαi2,l,

...
〈cn〉Γl

=
∑

1≤i1<···<in≤N

αi1,lαi2,l · · ·αin,l,

...

〈cN 〉Γl
=

N∏
n=1

αn,l,

(10)

where αn,l (n = 1, 2, · · · , N, l = 1, 2, · · · , L) can be
calculated in advance according to Eq. (9), and the
root of the polynomial equation P (x) = 0 is the set
{e1, e2, · · · , eN}.

The proof of Theorem 2 is provided in
Appendix B.

It can be seen from Eq. (10) that 〈cn〉Γ l
can be

derived by summing αn,l for n (1 ≤ n ≤ N) with-
out knowing the correspondence due to the symme-
try. It is noted that the above symmetry comes from
the fact that the summation and product results in

Eq. (10) can be derived without needing to know
the correspondence. That is to say, the order of
αn,l does not affect the results of the summation
and product in Eq. (10). Subsequently, the coef-
ficients cn (n = 1, 2, · · · , N) can be determined by
the CRT algorithm since remainders 〈cn〉Γ l

and the
corresponding modulo Γ l have been known after im-
plementing the computation of Eq. (10). Then the
number en (1 ≤ n ≤ N) can be determined by solv-
ing the polynomial equation. After the above pro-
cesses, the folding number q̃n (1 ≤ n ≤ N) can be
calculated by q̃n = en + q̄ (1 ≤ n ≤ N). Finally, we
can estimate unambiguous ranges with the following
form:

R̂n = q̃nM +
1

L

L∑
l=1

r̂c
n,l, n = 1, 2, · · · , N. (11)

To summarize, Algorithm 1 gives the detailed
process of the range estimation for multiple targets
via pseudo code.

In Algorithm 1, the CRT algorithm is exploited
twice to recover single integers from the erroneous
residue set. It is vitally important for Algorithm 1
whether the above CRT algorithm can robustly
and correctly recover unambiguous integer with low
computational cost. In the following, we establish
a closed-form and analytical solution to solve the
above problem at low cost. Algorithm 2 shows the
pseudo code for the closed-form and robust CRT
algorithm.

In addition, we have to stress the fact that the
product q̃nM plays a key role to achieve robustness in
the reconstruction of unambiguous rangeRn; i.e., the
reconstruction of the unambiguous range depends
mainly on the calculation of the folding number. For-
tunately, the roots of the above polynomial equation
are all integer. Hence, it allows us to find the roots of
the polynomial equation via a numerical solution. In
this study, an efficient method called Aitken accel-
eration is adopted to determine the folding numbers
because of its faster convergence.

As is well known, the Aitken acceleration
method is a feasible numerical solution method for
finding the zero point of a polynomial equation based
on an iterative function. Before presenting the nu-
merical method, we first give the iterative function
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Algorithm 1 Range estimation for symmetry poly-
nomial aided robust CRT algorithm

Input: Residue set Sl(R1, R2, · · · , RN ) =
N⋃

n=1

{
r̂n,l

}
for

each PRFl, the maximum unambiguous range Rmax
l , the

greatest common divisor M , the number of targets N , and
the number of staggered PRFs L

Output: Range estimate R̂n (n = 1, 2, · · · , N)

1: Calculate Γl =
Rmax

l
M

(1 ≤ l ≤ L) and error bound δ =
⌈

M
4N

⌉

2: Calculate the common residue set Λ ={
r̃cn,l|1 ≤ n ≤ N, 1 ≤ l ≤ L

}
by r̃cn,l =

〈
r̂n,l

〉
M

. The

common residue set Λ =
{
r̃cn,l| 1 ≤ n ≤ N, 1 ≤ l ≤ L

}

turns out to be Φ = {γ1, γ2, · · · , γκ} by rearranging in
ascending order

3: Obtain the difference set Ψ == {ϕ1, ϕ2, · · · , ϕκ−1} with
ϕi = γi+1 − γi (1 ≤ i ≤ κ− 1). Then find the cross
remainder γi (1 ≤ i ≤ κ− 1) according to ϕi > 2δ

4: Calculate the set
{
r̂cn,l|n = 1, 2, · · · , N, l = 1, 2, · · · , L

}

according to Theorem 1
5: Calculate successively q̃n,l according to Eq. (7). Calculate

N∑

n=1
q̃n according to Eq. (8) and recover q̄ =

N∑

n=1
q̃n/N

6: Calculate
N⋃

n=1
αn,l and 〈{c1, c2, · · · , cN}〉Γl

for l ∈
{1, 2, · · · , L} according to Eqs. (9) and (10), respectively

7: Reconstruct coefficients c1, c2, · · · , cN by Algorithm 2
8: Let c0 = 1 and construct polynomial equation P (x) =

N∑

i=0
(−1)icixN−i = 0

9: Solve the equation P (x) = 0 by Algorithm 3 and ob-
tain N roots e1, e2, · · · , eN . Subsequently, the fold-
ing numbers q̃1, q̃2, · · · , q̃N can be derived according to
q̃n = en + q̄ (1 ≤ n ≤ N), where the number of targets
is known in advance

10: Calculate the unambiguous ranges R̂1, R̂2, · · · , R̂N ac-
cording to Eq. (11)

of the polynomial equation P (x) = 0, i.e.,

g (x) =
cN

cN−1
+

1

cN−1

N−2∑
n=0

cn(−x)
N−n

.

5 Numerical simulation

In this section, several simulations are per-
formed to verify the efficacy of the proposed algo-
rithm. Assume that the maximum occlusion range
is set as RE = 450.45 km. Both range blindness
and range ambiguity arise because of the choice of
PRFs. Thus, PRFs have to be carefully chosen
to ensure target visibility in four PRFs. Suppose
that all the measured ranges in the four PRFs are
obtained ignoring range blindness due to eclipsing.

Algorithm 2 CRT algorithm for single target
Input: Erroneous residue set {ν̂1, ν̂2, · · · , ν̂L}, the
modulus set (the maximum unambiguous range)
{Rmax

1 , Rmax
2 , · · · , Rmax

L }, and the greatest common
divisor M

Output: Unambiguous integer Q

1: Calculate Γl =
Rmax

l
M

for 1 ≤ l ≤ L

2: Calculate ϑ̂l,1 for 2 ≤ l ≤ L according to ϑ̂l,1 =
[
ν̂l−ν̂1

M

]

3: Calculate the remainder of ϑ̂l,1Γ̄l,1 modulo Γl, i.e., ζ̂l,1 =〈
ϑ̂l,1Γ̄l

〉

Γl

for 2 ≤ l ≤ L, where Γ̄i,1 denotes the modular

multiplicative inverse of Γ1 modulo Γl (2 ≤ l ≤ L)

4: Estimate the folding number n̂1 =

〈
L∑

l=2
ζ̂l,1θl,1

γ1
Γl

〉

γ1

,

where γ1 =
L∏

l=2
Γl and θl,1 is the modular multiplicative

inverse of γ1
Γl

modulo Γl

5: Again estimate the other folding numbers n̂l =
n̂1Γ1−ϑ̂l,1

Γl
for 2 ≤ l ≤ L

6: Reconstruct Q = 1
L

(
L∑

l=1
n̂lΓl + ν̂l

)

7: if Q >
L∏

l=1
Γl/2 then

8: Q = Q−
L∏

l=1
Γl

9: else
10: Q = Q

11: end if
12: Return Q

Algorithm 3 Aitken acceleration iteration
Input: Iterative function g (x) and precision ε

Output: N roots of polynomial equation
1: loop
2: x0 ← 1, 2, · · · , 100
3: for k ← 1, 2, · · · do
4: Iterate x̃k+1 = g (xk), x̄k+1 = g (x̃k+1)

5: Update xk+1 = x̄k+1 − (x̄k+1−x̃k+1)
2

x̄k+1−2x̃k+1+xk

6: if |xk+1 − xk| ≤ ε then
7: break
8: else
9: continue

10: end if
11: end for
12: end loop

Choose K1 = 1287, K2 = 1001, K3 = 819, and
K4 = 693, and the corresponding maximum unam-
biguous ranges are Rmax

1 = 350 m, Rmax
2 = 450 m,

Rmax
3 = 550 m, and Rmax

4 = 650 m. It is noted that
the number and range (range cell) of the target can
be obtained by finding the peak of the echo signal
after pulse compression. Assume that the SNR is
fixed at 22 dB and that the probability of false alarm
rate is set as 10−8, i.e., SNR=22 dB and Pfa = 10−8.



Cao and Zhao / Front Inform Technol Electron Eng 2022 23(2):304-316 311

As shown in Fig. 4, consider a set of
multi-target trajectories on two-dimensional region
[−10, 25] km×[−40, 60] km. There are four targets
entering and exiting the surveillance region at differ-
ent time and each target travels from different initial
positions. Clearly, the simulations are performed
in a time-varying digital scenario. The optimal
sub-pattern assignment (OSPA) metric with cut-off
parameter c = 100 m and order parameter p = 1 is
adopted to measure the difference between the true
range set and the estimated range set for multiple
time-varying targets.

It can be seen from Fig. 5 that the true range
in both X and Y directions of the target is larger
than the maximum unambiguous range of PD radar.
That will lead to range ambiguity. To solve the
range problem, the proposed algorithm is used to
estimate the range of the time-varying targets. Note
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Fig. 4 Trajectories of the detected targets

References to color refer to the online version of this figure
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Fig. 5 XXX (a) and YYY (b) directions of range estimation
using the proposed algorithm

that the estimated range using the proposed algo-
rithm slightly deviates from the true range because
of measurement noise, and the proposed algorithm
achieves a satisfactory result in estimation precision
over 40 Monte-Carlo trials. It is worth explaining
the problem of range blindness using four PRFs in
the simulation. On the assumption that the number
of targets is known in advance, the proposed algo-
rithm is feasible for up to two targets. Note that the
proposed algorithm does not work when there exists
range blindness due to the eclipsing given the PRFs
used in this model.

To rigorously evaluate the performance of the
proposed algorithm in the scenario with fixed
SNR=22 dB, Fig. 6 exhibits the distance and lo-
calization error between the real range and the esti-
mated range. The OSPA error has larger fluctuation
due to the different error in measured ranges in a
single Monte-Carlo trial. We further give the mea-
sured ranges and the true range for the targets at
20 s. As seen in Table 1, the proposed algorithm is

Fig. 6 OSPA distance (a) and location error (b) of
range estimation of multiple targets

Table 1 Measured and estimated ranges in the XXX and
YYY directions of the targets at 20 s

Range X (km) Y (km) Target

Measured range 1 0.1471 0.0698 1
0.0871 0.2298 2

Measured range 2 0.0461 0.0198 1
0.4371 0.1297 2

Measured range 3 0.1968 0.2199 1
0.4373 0.3797 2

Measured range 4 0.4964 0.5596 1
0.4372 0.5797 2

True range 6.7963 −23.8698 1
−0.4372 16.3297 2

Estimated range 6.7964 −23.8697 1
−0.4371 16.3297 2
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able to reconstruct the unambiguous range from the
erroneous measured ranges, where the visual ranges
have deviated from the true value because of the
noise. That is to say, the proposed algorithm is ro-
bust to the noise-induced range errors.

The next simulation is performed to verify the
performance of the proposed algorithm for different
SNRs. First, OSPA error is employed to measure the
estimation accuracy for different SNRs. As shown in
Fig. 7, the proposed algorithm can realize effective
estimation of the target position in different SNRs.
The higher the SNR is, the more precise position the
proposed algorithm can achieve.

Second, the probability of target detection Pd is
used to assess the performance of the proposed algo-
rithm. Pd is defined as the probability of the trial
statistic exceeding the detection threshold, where the
estimated target position is within a certain distance
cell of the actual value. As shown in Fig. 8, the de-
tection probability can achieve 88% when the SNR
is equivalent to 20 dB for Pfa = 10−5. The pro-
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Fig. 7 OSPA error of the proposed algorithm with
different SNRs
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Fig. 8 Probability of target detection PdPdPd with different
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posed algorithm is effective in accuracy performance
for range estimation of multiple targets when there
exists range ambiguity.

Additionally, it is apparent from Fig. 9 that the
robust CRT algorithm aided Aitken acceleration is
able to improve the computational complexity. At
the same time, the real time can be guaranteed at
low time cost with a quantum level of 10−1 s for each
trial.
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Fig. 9 Computational cost for two algorithms

6 Conclusions

This paper presents a symmetry polynomial
aided CRT algorithm to estimate ranges of multiple
targets in a PD radar where there exists range ambi-
guity. The proposed algorithm can correctly and ro-
bustly reconstruct the range of multiple targets with-
out knowing the correspondence between the target
and the remainder. Additionally, the closed-form
and robust CRT algorithm for single target and the
Aitken acceleration algorithm for finding roots of a
polynomial equation are used to decrease the compu-
tational complexity of the proposed algorithm. The
simulation results verify the efficacy of the proposed
algorithm in reconstructing ranges for multiple tar-
gets on the assumption that all the measured ranges
in the four PRFs are obtained ignoring range blind-
ness due to eclipsing.

There are some shortcomings in our current
work. First, in practical implementation, the pro-
posed algorithm can be performed for three or more
targets on the assumption that the number of tar-
gets is known in advance. Hence, the requirement
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to know in advance the number of targets detracts
from a good and important method. Note that the
range blindness has nothing to do with the number
of targets since the range blindness occurs because of
high eclipsing loss. Second, the proposed algorithm
does not function if the returns from multiple targets
(three or more) coincide. More importantly, the
proposed algorithm may be invalid when the range
blindness arises from eclipsing.

The dynamic range and error bound are two
main performance indices for a robust CRT. On one
hand, the measurement point information including
Doppler, range, and bearing can provide important
prior knowledge for target tracking (Zhou GT et al.,
2014; Mertens et al., 2016; Tang et al., 2017; Xi
et al., 2018; Zhang et al., 2019). Further study of the
performance of the proposed algorithm may be the
subject of the future work. On the other hand, the
cross correlation of the ambiguous ranges of multi-
target ghosting phenomenon is another venue for fu-
ture work since it would happen with larger prob-
ability for the range reconstruction of the remote
target.
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Appendix A: Proof of Theorem 1

To further present our proof, we first define the
following two metrics:

For any two common remainders, we have

Di = rc
〈i+1〉κ − rc

i +M ×Δ (i = κ) ,

and for any two integers, we have

dM (X,Y ) = min
k∈Z

|X − Y + kM | .

Assume that there exists an index j0 satisfying
Dj0 > 4δ. There must exist ξ ∈ {1, 2, · · · , κ} such
that dM

(
γξ, r

c
j0

) ≤ δ and dM
(
γ〈ξ+1〉κ , r

c
〈j0+1〉N

) ≤
δ. Considering the form of indicator function, we
discuss the existence problem from the following two
cases:

(1) Case I
When j0 �= N , i.e., Dj0 = rc

j0+1 − rc
j0

> 4δ, we
have two subcases:

(a) ξ �= κ. In this subcase, γ〈ξ+1〉κ−γξ = γξ+1−
γξ ≥

(
rc
j0+1 − δ

)− (
rc
j0
+ δ

)
> 2δ.

(b) ξ = κ, i.e., γ1 ≥ rc
j0+1 − δ. In this subcase,

γ1 − γκ +M ≥ γ1 ≥ rc
j0+1 − δ ≥ rc

j0 + 4δ − δ > 2δ.
(2) Case II
When j0 = N , i.e., Dj0 = rc

1− rc
N +M > 4δ, we

also have two subcases:
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(a) ξ �= κ, i.e., rc
N ≥ M − δ and γξ +

(M − rc
N ) ≤ δ. In this subcase, γξ+1 − γξ ≥

rc
1 − δ − (rc

N + δ −M) > 2δ.
(b) ξ = κ. In this subcase, γ1 − γξ + M ≥

rc
1 − δ − (rc

N + δ) +M > 2δ.
Theorem 1 has been proved.

Appendix B: Proof of Theorem 2

According to Eqs. (9) and (10), we can obtain
the simultaneous congruence (B1):

〈c1〉Γl
=

N∑
n=1

αn,l =

N∑
n=1

〈en〉Γl
=

〈
N∑

n=1

en

〉

Γl

,

〈c2〉Γl
=

∑
1≤i1<i2≤N

αi1,lαi2,l

=
∑

1≤i1<i2≤N

〈ei1〉Γl
〈ei2〉Γl

=

〈 ∑
1≤i1<i2≤N

ei1ei2

〉

Γl

,

...

〈cn〉Γl
=

∑
1≤i1<···<in≤N

αi1,lαi2,l · · ·αin,l

=

〈 ∑
1≤i1<···<in≤N

ei1ei2 · · · ein
〉

Γl

,

...

〈cN 〉Γl
=

N∏
n=1

αn,l =

〈
N∏

n=1

en

〉

Γl

.

(B1)
Since ci, ei < min

1≤l≤L
Γl for each i, we further

obtain the following conclusion:

c1 =
N∑

n=1
en,

c2 =
∑

1≤i1<i2≤N

ei1ei2 ,

...
cn =

∑
1≤i1<···<in≤N

ei1ei2 · · · ein ,
...

cN =
N∏

n=1

en.

(B2)

According to the formal generalized Viete the-
orem, we can know that the set {e1, e2, · · · , eN} is

the root of polynomial equation constructed by co-
efficient set {c1, c2, · · · , cN}.

Theorem 2 has been proved.

Appendix C: Robustness proof of the
proposed algorithm

The estimated range reconstructed via the pro-
posed algorithm is given by

R̂n = q̃nM +
1

L

L∑
l=1

r̂c
n,l.

The deviation between the true range Rn and
the estimated one R̂n is given by

∣∣∣Rn − R̂n

∣∣∣ =
∣∣∣(qn − q̃n)M +

(
�

r
c
nl − rc

n

)∣∣∣ ,
where

�

r
c
n denotes the average of the common residue

r̂c
nl for all l (l = 1, 2, · · · , L).

Based on the fact that the cross remainder
γξ (ξ = 1, 2, · · · , κ) must be within [M − δ,M ] or
[0, δ], there have to exist r̃c

nθ1
∈ [γξ+1, γκ] and

r̃c
nθ2

∈ [γ1, γκ], where θ1, θ2 ∈ {1, 2, · · · , L}. Then

r̃nθ1 − r̃c
nθ1

M
=

〈
Rn − kMΓθ1 − rc

n

M

〉
Γθ1

=

〈
Rn − rc

n

M
− kΓθ1

〉
Γθ1

=

〈⌊
Rn

M

⌋〉
Γθ1

.

Since r̃c
nθ1

∈ [γξ+1, γκ], M − 2δ ≤ rc
n +Δrnθ1 <

M . Then

q̃nθ1 =

〈
r̃nθ1 −

(
r̃c
nθ1

−M
)

M

〉

Γθ1

=

〈⌊
Rn

M

⌋
+ 1

〉
Γθ1

.

Similarly, we can obtain

q̃nθ2 =

〈
r̃nθ2 − (rc

n +Δrnθ2 −M)

M

〉
Γθ2

=

〈⌊
Rn

M

⌋
+ 1

〉
Γθ2

.

Therefore, q̃n =
〈⌊

Rn

M

⌋
+ 1

〉
Γl

for n =

1, 2, · · · , N . That is to say, 0 < |qn − q̃n| < 1 al-
ways holds for n = 1, 2, · · · , N .
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(1) Case I
For M − 2δ ≤ r̃c

nl = rc
nl + Δrnθ1 < M and

r̂c
nl = r̃c

nl −M < 0, then
∣∣∣Rn − R̂n

∣∣∣ = ∣∣∣(qn − q̃n)M +
(

�

r
c
n − rc

nl

)∣∣∣
< |M + r̃c

nl −M − rc
nl|

= max
l

|Δrnl| < δ.

(2) Case II
For 0 < r̂c

nl = r̃c
nl =

�

r
c
nl +Δrnl −M < δ, then

∣∣∣Rn − R̂n

∣∣∣ =
∣∣∣(qn − q̃n)M +

(
�

r
c
n − rc

n

)∣∣∣
<

∣∣∣M +
�

r
c
n +Δrnl −M − �

r
c
nl

∣∣∣
= max

l
|Δrnl| < δ.

The deviation between the estimated range R̂n

and the true range Rn follows
∣∣∣R̂n −Rn

∣∣∣ < max rnl = δ.

Hence, the proposed algorithm is robust to er-
roneous residues. The robustness of the proposed
algorithm has been proved.
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