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Abstract: Hypervelocity impact (HVI) vibration source identification and localization have found wide applications
in many fields, such as manned spacecraft protection and machine tool collision damage detection and localization.
In this paper, we study the synchrosqueezed transform (SST) algorithm and the texture color distribution (TCD)
based HVI source identification and localization using impact images. The extracted SST and TCD image features
are fused for HVI image representation. To achieve more accurate detection and localization, the optimal selective
stitching features OSSST+TCD are obtained by correlating and evaluating the similarity between the sample label
and each dimension of the features. Popular conventional classification and regression models are merged by voting
and stacking to achieve the final detection and localization. To demonstrate the effectiveness of the proposed
algorithm, the HVI data recorded from three kinds of high-speed bullet striking on an aluminum alloy plate is used
for experimentation. The experimental results show that the proposed HVI identification and localization algorithm
is more accurate than other algorithms. Finally, based on sensor distribution, an accurate four-circle centroid
localization algorithm is developed for HVI source coordinate localization.

Key words: Ensemble learning; Synchrosqueezied transform; Gray-level co-occurrence matrix; Image entropy;
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1 Introduction

With the cumulative increase in human space
activities, space environment is deteriorating, and a
large number of various types of space debris, such
as tiny meteor bodies, orbital debris particles, and
spacecraft wreckage, are distributed in Earth’s orbit
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(Erickson, 2014; Millan et al., 2019; Wilson, 2019), as
shown in Fig. 1. The hypervelocity impact (HVI) risk
from space debris has become one of the main threats
to space activities (Liou and Johnson, 2006; Witze,
2018). Due to the randomness of meteoroid/orbital
debris (M/OD) impact events (Liou and Johnson,
2006), speed and size of the space debris are gen-
erally unknown, and the impact locations on man-
made aircraft are usually difficult to determine accu-
rately. Thus, accurate detection and localization of
the HVI vibration source are significantly important
in impact damage assessment, spacecraft protection,
M/OD impact measurement, etc.

Surface vibrations can capture information such
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Fig. 1 The current status of the space environment
around Earth in 2019

as the speed and quality of space debris during
the collision, and also contain the impact location
information. The vibrations generated by colli-
sions are non-stationary signals; in the past, the
mainstream in non-stationary signal analysis has
been the time-frequency-based methods, including
short-time Fourier transform (STFT) (Qian and
Chen, 1999; Chan et al., 2001; Monti et al., 2002;
Cohen, 2013), wavelet transform (WT) (Mallat,
1989; Auger and Flandrin, 1995), Gabor transform
(Daubechies and Maes, 1996), and Wigner-Ville dis-
tribution (WVD) (Flandrin et al., 2013). Linear
time-frequency and time-scale analysis is also pop-
ular for non-stationary signals or deterministic sig-
nals with varying frequency content. In partic-
ular, multicomponent signals, i.e., superpositions
of amplitude- and frequency-modulated (AM-FM)
waves, were comprehensively studied in Torrence
and Compo (1998). Due to the Heisenberg uncer-
tainty principle, STFT, Gabor transform, and WT
are generally not suitable (Daubechies, 1990). Com-
pared to other time-frequency distributions, WVD
has the simplest form and good time-frequency res-
olution (Stankovic et al., 2014), and the smoothing
pseudo WVD (SPWVD) can successfully eliminate
the intersection of signal intervals and coherent items
in the time-increasing direction (Önsay and Had-
dow, 1993). When STFT is applied to estimate the
instantaneous frequency of the FM signals, it usu-
ally suffers from relatively low estimation accuracy.
In Almeida (1994) and Bai et al. (2012), the frac-
tional Fourier transform (FRFT) (Flandrin et al.,
2013) was introduced into the short-term fractional
Fourier transform (STFRFT) for non-stationary sig-
nal analysis. Using the FRFT to capture highly
time-frequency aggregated linear frequency modula-
tion signals can make it easier to capture the high
time-frequency resolution results of nonlinear FM
signals (Tao et al., 2010).

The synchrosqueezed transform (SST) is a
method of redistributing the coefficients in the
time-frequency matrix, and its purpose is to per-
form sharpening while maintaining reversibility. At
present, there are mainly two novel time-frequency
transform methods based on SST, the Fourier syn-
chrosqueezd transform (FSST) (Yang et al., 2008;
Thakur et al., 2013) and the wavelet synchrosqueezd
transform (WSST) (Ghosh et al., 2019). The rep-
resentative transform methods, i.e., FSST, WSST,
SPWVD, STFRFT, have been widely used in non-
stationary signal analysis (Yang et al., 2008) due
to their excellent time-frequency resolution, accu-
rate specific frequency band extraction, and statis-
tics characterization. Based on these methods, ad-
vanced features have been developed to enhance the
performance (Yang et al., 2008). In HVI signal anal-
ysis, the effect of the impact angle of the projec-
tile has been investigated in Pierazzo and Melosh
(2000). The three-dimensional hydrocode simula-
tions presented in the paper revealed that in oblique
impacts, the distribution of shock pressure inside the
projectile was highly complex and had only bilateral
symmetry. The HVI flash decay rate was studied in
Anderson and Schultz (2006), where the decay rate
was highly dependent on the initial condition, espe-
cially for the target material. The effects of HVI
on two novel composite materials were studied in
Huang et al. (2016, 2020). In Liu et al. (2019), a
novel HVI source detection and localization method
based on the multi-scale discrete wavelet transform
(MDWT) and the kernel extreme learning machine
(KELM) (Cao et al., 2019, 2020; Wang et al., 2020)
was developed. A novel HVI damage evaluation
method was developed by Yin et al. (2019), where an
active infrared thermal wave image detection tech-
nology with multi-objective feature extraction opti-
mization (MO-FEO) was proposed for HVI damage
evaluation.

To create better descriptions of HVI signals, we
propose several advanced features based on the spec-
trogram of vibrations. After the SST, the spectro-
gram contains rich texture and color distribution in-
formation (Materka and Strzelecki, 1998), which can
be extracted for HVI signal representation. Partic-
ularly, the gray-level co-occurrence matrix (GLCM)
(Mamli and Kalbkhani, 2019) and the image entropy
can reflect the characteristics of the HVI signal time-
frequency statistics (Mirzapour and Ghassemian,
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2013). In this study, SST is first obtained and then
texture color distribution (TCD) features on SST
are extracted. Then, based on the correlation and
similarity between the HVI source label and each di-
mension feature, feature selection is performed and
the optimal selective stitching features OSSST+TCD

are obtained.
With the obtained OSSST+TCD vibration fea-

tures, an ensemble learning model is developed for
HVI source classification and impact distance regres-
sion. Two strategies, voting and stacking, are applied
and studied in ensemble learning. Popular conven-
tional learning models, including k -nearest neighbor
(kNN), decision trees (DT), support vector machine
(SVM), logistic regression (LR), multi-layer percep-
tron (MLP), random forest (RF), extra trees (ET),
AdaBoost, and gradient boosting (GB), are adopted
as the bases of the ensemble learning method. With
accurate HVI source classification and impact dis-
tance estimation, a four-circle centroid localization
(FCL) algorithm is developed to perform HVI source
localization based on sensor position distributions.
The performance of the proposed method is vali-
dated using the real recorded HVI vibration signals
generated by the impact of three kinds of high-speed
bullets striking an aluminum alloy plate.

The contributions of the paper are three-fold:
(1) the novel features OSSST+TCD, based on the SST
and its texture color features, are proposed to repre-
sent HVI vibrations; (2) an ensemble learning model
based on voting and stacking generalization strate-
gies is proposed for HVI source classification and
impact distance estimation; (3) the FCL algorithm
is presented for accurate HVI source localization.

2 The proposed algorithm

2.1 SST features

To explicitly characterize the vibrations gener-
ated by HVI, we study the FSST and WSST and
their advantages of good time-frequency resolution
(Ghosh et al., 2019), strong robustness to white
noise (Auger and Flandrin, 1995; Daubechies et al.,
2011), and effective non-stationary signal description
(Franco et al., 2012). Particularly, we focus on the
vibrations generated by three different kinds of bul-
lets in this study: (1) a lead projectile with a speed
of 400 m/s (referred to as IMP1), (2) a steel projec-

tile with a speed of 900 m/s (referred to as IMP2),
and (3) a polycarbonate projectile with a speed of
1000 m/s (referred to as IMP3). The sampling fre-
quency of the vibration signal recording sensor is
5 kHz.

2.1.1 FSST features

The FSST feature extraction algorithm is sum-
marized as follows:

For a vibration signal x(n) of length N and pa-
rameter M :

Step 1: Use STFT to find the amplitude spec-
trum STFTq(ω) of vibration signal x(n) using

STFTq(ω) = STFT[x(n)], q = 1, 2, . . . ,M. (1)

Step 2: According to the instantaneous fre-
quency, calculate the rearranged spectrum F q(ω)

based on the SST as

F q(ω) = SST[STFTq(ω)], q = 1, 2, . . . ,M. (2)

Step 3: Calculate the energy distribution matrix
PPP q of F q(ω) using

PPP q =
[
F 1(ω), F 2(ω), . . . , FM (ω)

]
. (3)

Step 4: Extract the FSST feature PPPFSST from
the M frame data using

PPPFSST =
[
P 1, P 2, . . . , PM

]
. (4)

2.1.2 WSST features

The WSST feature extraction algorithm is sum-
marized as follows:

For a vibration signal x(n) of length N and pa-
rameter M :

Step 1: Use continuous wavelet transform
(CWT) to find the amplitude spectrum CWTq(ω)

of vibration signal x(n):

CWTq(ω) = CWT[x(n)], q = 1, 2, . . . ,M. (5)

Step 2: According to the instantaneous fre-
quency, calculate the rearranged spectrum W q(ω)

by the SST as

W q(ω) = SST[CWTq(ω)], q = 1, 2, . . . ,M. (6)

Step 3: Calculate the energy distribution matrix
PPP q of W q(ω) as

PPP q =
[
W 1(ω),W 2(ω), . . . ,WM (ω)

]
. (7)
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Step 4: Extract the WSST feature PPPWSST from
the M frame data using

PPPWSST =
[
P 1, P 2, . . . , PM

]
. (8)

2.1.3 SST feature comparison

Figs. 2 and 3 show the comparisons of the WSST
and FSST time-frequency diagrams obtained using
the three different types of HVI sources and using
the first HVI source (IMP1) collected at the three
different distances to the sensor, respectively. As ob-
served, WSST and FSST time-frequency diagrams
have different distribution characteristics with dif-
ferent HVI sources and at different propagation dis-
tances. The coefficient size and distribution in the
time-frequency diagram are important features, and
would be applied to predict propagation distances

and vibration sources.
For further analysis, we divide the frequency

range into low, medium, and high subbands, and
compare the spectrum percentages of each subband.
As observed from Table 1, the percentage distribu-
tions of FSST and WSST characteristic coefficients
with different vibration sources are basically consis-
tent. Similar results can be obtained at different
propagation distances, as shown in Table 2. When
the propagation distance increases, the percentages
of the medium and high subbands also increase for
both FSST and WSST, and the increase is more ob-
vious for FSST.

2.2 TCD features

GLCM is used to characterize texture distri-
butions (Materka and Strzelecki, 1998; Mamli and

Fig. 2 WSST (a) and FSST (b) time-frequency diagrams of the three different types of HVI sources

Fig. 3 WSST (a) and FSST (b) time-frequency diagrams of the first HVI source (IMP1) collected at three
different distances to the sensor
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Table 1 Percentage comparison of FSST and WSST coefficients with different HVI sources

Subband
Distribution percentage of FSST Distribution percentage of WSST

IMP1 IMP2 IMP3 IMP1 IMP2 IMP3

Low 97.54% 92.23% 82.35% 98.08% 89.52% 79.46%
Medium 1.77% 5.85% 13.53% 1.52% 8.07% 16.84%

High 0.69% 1.92% 4.12% 0.40% 2.41% 3.70%

Table 2 Percentage comparison of FSST and WSST coefficients at different IMP1 propagation distances

Subband
Distribution percentage of FSST Distribution percentage of WSST

15 cm 29 cm 60 cm 15 cm 29 cm 60 cm

Low 93.60% 57.20% 33.00% 97.51% 93.63% 89.33%
Medium 5.60% 33.00% 47.50% 1.81% 5.17% 8.00%

High 0.80% 9.80% 19.50% 0.68% 1.20% 2.67%

Kalbkhani, 2019) of the time-frequency spectro-
grams for HVI sources at different propagation
distances. Four types of statistical indexes, including
the correlation, energy, homogeneity, and entropy
of four angles of the GLCM, are extracted. The
three-channel entropy features (R, G, B) of the color
time-frequency spectrogram image are also used for
characterization.

GLCM characterizes the statistics of the spatial
position and gray frequency of the pixels in the HVI
signal time-frequency map, where d is the distance
between the pixel (x, y) of image gray-level i and the
pixel (x+Dx, y+Dy) of image gray-level j. For the
entire image, the number of occurrences of each type
of (i, j) value is obtained and normalized to calculate
the probability of occurrence P (i, j, d, θ) using

P (i, j, d, θ) ={(x, y), (x+Dx, y +Dy)|f(x, y) = i,

f(x+Dx, y +Dy) = j},
(9)

where i, j = 0, 1, · · · , N − 1 represent the grayscale
and N = 256, d is the step size generated by the co-
occurrence matrix, θ is the generation direction, and
Dx and Dy are the position offsets, Finally, GLCM
is obtained as an N × N square matrix. The cor-
relation, energy, homogeneity, entropy on GLCM,
and RGB global image entropy are extracted. Fig. 4
shows the pixel distribution of GLCM of the IMP1
source obtained at 15, 29, 60 cm.

With GLCM, TCDs of the FSST and WSST are
extracted for HVI signals in detail in the following:

Step 1: extraction of gray-level images of the
FSST and WSST time-frequency images

The RGB channels are set to a gray threshold

to extract multiple channels of gray images. The
texture features on different channels are calculated
in the same way.

Step 2: gray level quantization
Normally, there are 256 gray levels in an image,

from 0 to 255. To clearly reflect the clarity of the
image, we divide it into 128 gray levels.

Step 3: parameter selection for calculating
TCDs

The window size, distance to neighboring pixels,
and directions in the gray level co-occurrence matrix
are determined, which are set to be 7 × 7 pixels,
1 pixel, and 0◦, 45◦, 90◦, 135◦, respectively.

Step 4: calculation of texture feature values
The correlation, energy, homogeneity, and en-

tropy of GLCM are calculated as texture features.
Step 5: calculation of global entropy of color

images
The global image entropies of the RGB channels

are calculated as the color features.
Step 6: composition of texture and color

features
The texture and color features are composed as

TCDs, a total dimension of 19.
The TCD features obtained from the FSST

(TCDFSST) and WSST (TCDWSST) on the IMP1
HVI source at three different propagation distances
to the sensor are compared in Tables 3 and 4, re-
spectively. Overall, along with the increase of the
propagation distance, for the same feature, the same
trend can be observed in TCDFSST and TCDWSST.
For instance, the correlation decreases for both
TCDFSST and TCDWSST when the propagation dis-
tance increases.
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FSST-15 cm-GLCM (45°) FSST-29 cm-GLCM (45°) FSST-60 cm-GLCM (45°)

WSST-15 cm-GLCM (45°) WSST-29 cm-GLCM (45°) WSST-60 cm-GLCM (45°)

Fig. 4 Pixel distribution of the GLCM of IMP1 at different distances

Table 3 Analysis of TCDFSST

Feature
TCDFSST Trend

15 cm 29 cm 60 cm

Correlation 0.978 0.973 0.959 Decrease
Energy 0.087 0.048 0.026 Decrease

Homogeneity 0.804 0.753 0.714 Decrease
Entropy (GLCM) 0.071 0.089 0.130 Increase

Global entropy (R) 3.267 3.536 4.076 Increase
Global entropy (G) 3.648 4.116 4.703 Increase
Global entropy (B) 3.615 4.053 4.553 Increase

Table 4 Analysis of TCDWSST

Feature
TCDWSST Trend

15 cm 29 cm 60 cm

Correlation 0.938 0.933 0.924 Decrease
Energy 0.088 0.045 0.027 Decrease

Homogeneity 0.805 0.757 0.715 Decrease
Entropy (GLCM) 0.070 0.099 0.140 Increase

Global entropy (R) 3.157 3.456 4.176 Increase
Global entropy (G) 3.568 4.756 4.903 Increase
Global entropy (B) 3.745 4.803 4.953 Increase

2.3 HVI classification and distance estimation

Ensemble learning (Zhou, 2016) based on the
majority voting strategy is applied for HVI source

classification in this study, basically, as

H(x) =

⎧
⎪⎨

⎪⎩

cj , if
∑T

i=1 h
j
i (x) >

0.5
∑N

j=1

∑T
i=1 h

j
i (x),

reject, otherwise,
(10)

where i = 1, 2, · · · , T , j = 1, 2, · · · , N , the N -
dimensional vector (h1

i (xxx), h
2
i (xxx), . . . , h

N
i (xxx)) is the

predicted output of classifier hi obtained on the fea-
ture sample x, and c1, c2, ..., cN are the HVI source
labels.

For the HVI propagation distance estimation,
the stacked generalization strategy is adopted in en-
semble learning to enhance the estimation perfor-
mance. Particularly, the output of each individual
estimator is stacked and used as the input to a fi-
nal estimator to compute the propagation distance.
This final estimator is trained through the cross-
validation strategy. Fig. 5 shows the flowchart of
the stacked generalization algorithm for HVI propa-
gation distance estimation, and Algorithm 1 briefly
summarizes the algorithm.

2.4 FCL algorithm

To accurately locate the vibration source, in this
subsection we introduce the proposed FCL algorithm
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Algorithm 1 Stacked generalization
1: The training set D is divided into m folders: D =

{(x1, y1) , (x2, y2) , . . . , (xm, ym)} // training set
2: L1,L2, . . . ,LT // elementary learning algorithms
3: L // secondary learning algorithm
4: for t = 1, 2, ..., T do
5: ht = Lt(D)

6: end for
7: D′ = ∅

8: for i = 1, 2, ...,m do
9: for t = 1, 2, ..., T do

10: zit = ht(xi)

11: end for
12: D′ = D′ ∪ {(zi1, zi2, . . . , ziT ) , yi}
13: end for
14: h′ = L (D′)
15: H(x) = h′(h1(x), h2(x), . . . , hT (x)), where xxx is the fea-

ture sample
16: Output: regression or classification model

Training set

Training folds Validation fold

Training 

Predictions

All level-1 predictions

Hc or Hr Final 
prediction

R
ep

ea
t m

 ti
m

es

Regression or 
classification 

model

Level-1 
predictions in 

the kth iteration

Xi

...

...2L1L TL

21

Meta-regression

Fig. 5 Stacked generalization algorithm

based on the propagation distance estimated by the
previous stacking generalization model. We assume
that all implemented sensors are capable of captur-
ing vibrations, and that the vibration source is al-
ways within the effective detection range of the sen-
sors. It is well known that in general, at least three
non-collinear sensors are required to perform precise
localization, for instance, the traditional three-circle
centroid localization (TCL) algorithm (Shang et al.,
2016; Cao et al., 2018). Ideally, if the propagation
distance is accurately estimated, the source should
be located at the intersection of the three circles,
where their radii are the propagation distances d1,
d2, and d3, as shown in Fig. 6. However, due to the
noise, measurement errors, and estimation biases,
the TCL-based algorithm may not intersect at the
same point. When there is a small error, as shown in
Fig. 6, the actual coordinates of the vibration source
are in the red region, and when the error is large,
two circles do not intersect (Fig. 6b); it will lead to
invalid localization by TCL. Consequently, we pro-
pose the accurate FCL algorithm, with the following
detailed steps:

Step 1: When the center coordinates and radii
of the four circles are known, it is easy to calcu-
late the intersection of each two circles separately,
and to obtain at most 12 intersection coordinates
[(x1, y1), · · · , (xn, yn)], n = 2, 3, . . . , 12.

Step 2: According to the target size, the m

(m < n) coordinates outside the effective plane are
removed.

Step 3: Combine the remaining n−m intersec-
tions to obtain C3

n−m red coordinate regions.
Step 4: Calculate the areas of the triangles

Fig. 6 HVI source localization comparison: (a) ideal localization; (b) localization with deviation; (c) localization
with FCL (References to color refer to the online vesion of this figure)
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determined by the three-point coordinates
{S1, S2, · · · , Sn−2}, and the area of the smallest
triangle Smin is obtained. The actual intersection
point is within the area of the triangle, as shown
in Fig. 6c. The x and y coordinates of the three
possible candidates are averaged as

(x, y) =

(
xa + xb + xc

3
,
ya + yb + yc

3

)
, (11)

where (xi, yi) (i = a, b, c) are the three-point co-
ordinates of Smin, and (x, y) is the final estimated
localization.

3 Experiments and discussions

3.1 Experimental setups

In this subsection, experiments on vibrations
generated by the three different HVI sources were
presented for performance validation. The three
bullets were fired from a pistol, a 95-type auto-
matic rifle, and a light gas gun (LGG), where the
associated weights were 2, 4, and 0.38 g, respec-
tively. The vibration signals were collected on an
aluminum plate. For IMP1 and IMP2, the size of
the aluminum plate was 700 mm × 700 mm × 3 mm
(length×width×thickness), and for IMP3, the size
was 300 mm × 300 mm × 3 mm. Four accelera-
tion sensors, YD30 (https://www.zhendongsd.com/
Product/detail/classid/13/id/71.html), were stuck
on the four corners of the aluminum plate for
vibration collection. The acquisition card type
MCC1608G was used for signal recording. For each
bullet, multiple tests were carried out; for IMP1 and
IMP2, the experiments were performed in a shoot-
ing club in Hangzhou, China, and for IMP3, the
vibration acquisition was conducted in HVI experi-
ments on a hypervelocity-ballistic range at the China
Aerodynamics Research and Development Center
(CARDC), as shown in Figs. 7 and 8. There were
1824, 1788, and 5760 samples for the three impact
sources, and for each sample, the frame length was
set to be 256 points and the frame shift was 32 points.
Because the bullets were randomly distributed on the
aluminum plate, the recorded propagation distances
to the sensor of the three bullets were separately
within 15–87, 24–74, and 14–29 cm.

Fig. 7 Three types of bullets used in the experiments

(a) (b) (c)

Fig. 8 Signal acquisition equipment (a), aluminum
plate with a bullet hole (b), and vibration recording
sensors (c)

3.2 HVI source classification

The comparison of the HVI source classification
was shown in the first experiment based on the vibra-
tion signal, where the study focused mainly on using
the FSST and WSST features. Comparison between
the STFRFT and SPWVD vibration features was
also presented, where the STFRFT and SPWVD
time-frequency diagrams are shown in Figs. 9 and
10, respectively. The Hanning window was used for
FSST and SPWVD with an order of 0.9. The ex-
perimental environment was based on the Python
scikit-learn library.

Nine conventional popular classifiers, i.e., kNN,
DT, SVM, LR, MLP, RF, ET, AdaBoost, and
GB, were studied, where for the relevant hyper-
parameters of these algorithms, a grid search algo-
rithm was used for optimization, and the optimal
results were reported. In the experiment, 80% of
data was randomly selected for model training, and
the remaining 20% was used for testing. The root
mean square error (RMSE) and determination co-
efficient R2 were adopted as the regression model
evaluation indicators, where R2 is calculated as fol-
lows: R2 = 1 −

∑
(ya−yp)

2

∑
(ya−ym)2

. Here, ya is the actual
distance, yp is the predicted distance, and ym is the
mean of all actual distances.

Table 5 shows the classification results of the
three HVI sources (IMP1, IMP2, IMP3) based on
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Fig. 9 STFRFT features

Fig. 10 SPWVD features

Table 5 HVI source classification comparison among
conventional classifiers using FSST

Algorithm Accuracy (%)

kNN 99.36
DT 91.47

SVM 98.72
LR 99.14

MLP 99.57
RF 98.50
ET 99.36

AdaBoost 93.60
GB 98.72

Best result is in bold

a single classifier and the FSST feature. It was
observed that (1) all single classifiers can provide
convincing classification performance for the HVI
sources, where all accuracies are higher than 91%,
and that (2) among all classifiers, MLP achieves the
highest accuracy (99.57%). Therefore, we conclude
that FSST is effective in characterizing HVI vibra-
tions. The performance using the WSST features

was also tested and the same observations can be
obtained, but the results are omitted here due to the
space limitation.

The second experiment was based on the en-
semble learning method for HVI source classification
based on voting and stacking generalization strate-
gies. Similar to the above experiment, only the re-
sults using the FSST feature are presented, whereas
the WSST observations are omitted as similar per-
formance can be obtained. For ensemble learning,
three single classifiers were adopted as the basic mod-
ule. For the voting strategy, all combinations of the
seven conventional classifiers (kNN, DT, SVM, LR,
MLP, ET, GB) were used, and therefore there were
35 classifier combinations (C3

7). For stacked gener-
alization, to reduce the risk of overfitting in model
fusion, simple models such as kNN and LR were pre-
ferred. Therefore, we fixed the first model to either
kNN or LR and tested the combination by the re-
maining classifiers (kNN, DT, SVM, LR, MLP, ET,
GB). There were a total of 30 classifier combinations
in stacked generalization.

Table 6 presents the HVI classification results
of the voting-based ensemble learning model using
FSST. From the table, one can see that (1) compared
with the results using the single model in Table 5, en-
semble learning with the voting strategy can provide
more consistent and better accuracy, with the accu-
racy of almost all combinations being higher than
99%, but at the cost of higher computation complex-
ity, and that (2) among all combinations, the ac-
curacies of kNN+DT+GB and DT+MLP+GB are
the highest, slightly higher than those of the other
combinations. Table 7 shows the results using stack-
ing generalization. As observed, (1) like the voting
method, the stacking generalization based model can
offer more consistent and better accuracy than a sin-
gle classifier, and (2) compared with the voting strat-
egy, stacking generalization performs slightly poorer
on HVI source classification.

The last comparison in this subsection focused
on the HVI source classification performance by
the SST features (FSST and WSST), SPWVD, and
STFRFT, where ensemble learning based on vot-
ing or stacking generalization was adopted. For all
features, the classifier combination in the ensemble
model with the best performance was reported. The
classification accuracies given in Table 8 revealed
that (1) SST features are more effective in HVI
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source classification and that (2) the FSST-based
model performs better than the WSST model.

3.3 HVI propagation distance estimation

Accurate estimation of the vibration propaga-
tion distance is a prerequisite for HVI source lo-
calization. In this subsection, we separately study
the propagation distance estimation performances
for these three different types of impact vibration
signals. The performance obtained from the IMP1
HVI source using the FSST feature is discussed in
detail and others are omitted due to similar observa-
tions. Table 9 shows the performance comparison of
the eight single algorithms, revealing that AdaBoost
is the most effective algorithm, with the RMSE and
R2 reaching 2.591 cm and 0.965, respectively.

Table 6 HVI source classification comparison using
FSST with voting-based ensemble learning

Number Model 1 Model 2 Model 3 Accuracy

1 DT SVM 99.360%
2 DT LR 99.147%
3 DT MLP 99.360%
4 DT ET 99.360%
5 DT GB 99.787%
6 SVM LR 99.360%
7 SVM MLP 99.360%
8 kNN SVM ET 99.360%
9 SVM GB 99.147%
10 LR MLP 99.360%
11 LR ET 99.360%
12 LR GB 99.360%
13 MLP ET 99.574%
14 MLP GB 99.574%
15 ET GB 99.360%
16 SVM LR 99.147%
17 SVM MLP 99.360%
18 SVM ET 99.360%
19 SVM GB 99.574%
20 DT LR MLP 99.147%
21 LR ET 99.147%
22 LR GB 99.574%
23 MLP ET 99.574%
24 MLP GB 99.787%
25 ET GB 99.574%
26 LR MLP 99.360%
27 LR ET 99.360%
28 SVM LR GB 99.147%
29 MLP GB 99.574%
30 MLP ET 99.147%
31 ET GB 98.934%
32 MLP ET 99.574%
33 LR MLP GB 99.360%
34 ET GB 99.147%
35 MLP ET GB 99.360%

Best results are in bold

The propagation distance estimation per-
formances of the voting-based and stacking

Table 7 HVI source classification comparison using
FSST with stacking generalization based ensemble
learning

Number Model 1 Model 2 Model 3 Accuracy

1 DT SVM 98.507%
2 DT LR 98.081%
3 DT MLP 97.015%
4 DT ET 99.147%
5 DT GB 98.721%
6 SVM LR 98.934%
7 SVM MLP 98.934%
8 kNN SVM ET 98.934%
9 SVM GB 98.721%
10 LR MLP 92.324%
11 LR ET 99.574%
12 LR GB 99.360%
13 MLP ET 99.574%
14 MLP GB 99.574%
15 ET GB 99.787%
16 DT SVM 98.721%
17 DT kNN 99.147%
18 DT MLP 98.934%
19 DT ET 99.360%
20 DT GB 99.147%
21 SVM kNN 99.147%
22 SVM MLP 99.360%
23 LR SVM ET 99.360%
24 SVM GB 98.934%
25 kNN MLP 99.360%
26 kNN ET 99.360%
27 kNN GB 99.360%
28 MLP ET 99.574%
29 MLP GB 99.574%
30 ET GB 99.574%

Best result is in bold

Table 8 HVI source classification comparison among
FSST, WSST, SPWVD, and STFRFT features

Ensemble Accuracy

learning FSST WSST SPWVD STFRFT

Stacking 99.787% 98.934% 97.068% 97.174%
Voting 99.787% 98.987% 97.256% 97.482%

Table 9 HVI source propagation distance estimation
comparison using FSST

Algorithm RMSE (cm) R2

kNN 3.538 0.935
DT 8.576 0.619

SVM 10.681 0.409
MLP 4.568 0.891
RF 7.159 0.734
ET 4.307 0.903

AdaBoost 2.591 0.965
GB 5.140 0.863

Best results are in bold
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generalization based ensemble learning algorithms
are presented in Tables 10 and 11, respectively. Sim-
ilarly, for voting, seven single classifiers were tested,
leading to 35 combinations, and for stacking general-
ization, the first model adopted kNN and AdaBoost,
leading to 30 combinations. From Tables 10 and 11,
one can observe that (1) compared with the single
model based HVI propagation distance estimation,
ensemble learning with both the voting and stacking
generalization strategies can generally provide rela-
tively stable and accurate estimation performance,
and that (2) for voting, the lowest RMSE and the
highest R2 were 3.054 cm and 0.952 respectively, and
for stacking generalization, the lowest RMSE and the
highest R2 were 2.150 cm and 0.976 respectively, bet-
ter than those of the voting-based strategy.

Comparison to existing vibration features, SP-
WVD and STFRFT, with respect to propagation dis-
tance estimation, is given in Table 12, where results
are reported for the three HVI sources. It can be seen
from the table that: (1) SST features are more ef-
fective in HVI propagation distance estimation than
SPWVD and STFRFT, (2) the FSST-based model
performs better than the WSST-based model, and
(3) when the velocity of the HVI source increases,
the estimation performance is improved.

3.4 Distance estimation with optimized
features

The main purpose of feature optimization in this
subsection is to optimize the original features, reduce
the feature dimension, improve the signal-to-noise

Table 10 Comparison of HVI source propagation distance estimation with voting-based ensemble learning

Number Model 1 Model 2 Model 3 RMSE (cm) R2

1 DT SVM 5.592 0.838
2 DT AdaBoost 3.819 0.925
3 DT MLP 4.344 0.902
4 DT ET 4.446 0.898
5 DT GB 4.991 0.871
6 SVM AdaBoost 4.624 0.889
7 SVM MLP 5.127 0.864
8 kNN SVM ET 5.117 0.864
9 SVM GB 5.222 0.859
10 AdaBoost MLP 3.054 0.952
11 AdaBoost ET 3.062 0.951
12 AdaBoost GB 3.228 0.946
13 MLP ET 3.368 0.941
14 MLP GB 3.514 0.936
15 ET GB 3.820 0.924
16 SVM AdaBoost 4.624 0.889
17 SVM MLP 5.127 0.864
18 SVM ET 5.117 0.864
19 SVM GB 5.222 0.859
20 AdaBoost MLP 3.054 0.952
21 DT AdaBoost ET 3.062 0.951
22 AdaBoost GB 3.228 0.946
23 MLP ET 3.368 0.941
24 MLP GB 3.514 0.936
25 ET GB 3.820 0.924
26 AdaBoost MLP 3.054 0.952
27 AdaBoost ET 3.062 0.951
28 AdaBoost GB 3.228 0.946
29 SVM MLP GB 3.514 0.936
30 MLP ET 3.368 0.941
31 ET GB 3.820 0.924
32 MLP ET 3.368 0.941
33 AdaBoost MLP GB 3.514 0.936
34 ET GB 3.820 0.924
35 MLP ET GB 3.820 0.924

Best results are in bold
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Table 11 Comparison of HVI source propagation distance estimation with stacking generalization based
ensemble learning

Number Model 1 Model 2 Model 3 RMSE (cm) R2

1 DT SVM 8.596 0.618
2 DT AdaBoost 4.519 0.894
3 DT MLP 4.506 0.895
4 DT ET 3.013 0.953
5 DT GB 4.014 0.917
6 SVM AdaBoost 5.510 0.843
7 SVM MLP 4.210 0.908
8 kNN SVM ET 3.741 0.928
9 SVM GB 4.521 0.894
10 AdaBoost MLP 3.306 0.943
11 AdaBoost ET 2.150 0.976
12 AdaBoost GB 2.846 0.958
13 MLP ET 3.698 0.929
14 MLP GB 4.074 0.914
15 ET GB 2.912 0.956
16 DT SVM 7.980 0.670
17 DT kNN 4.478 0.896
18 DT MLP 4.945 0.873
19 DT ET 3.293 0.944
20 DT GB 4.394 0.900
21 SVM kNN 4.874 0.877
22 SVM MLP 4.210 0.908
23 AdaBoost SVM ET 3.741 0.928
24 SVM GB 4.521 0.894
25 kNN MLP 3.474 0.938
26 kNN ET 2.312 0.972
27 kNN GB 2.394 0.970
28 MLP ET 3.698 0.929
29 MLP GB 4.074 0.914
30 ET GB 2.912 0.956

Best results are in bold

ratio, strengthen the anti-interference ability of the
data, and further improve the localization accuracy.
The essence of the propagation distance regression
problem is to linearly fit the distance and the vi-
bration signal feature. The better the fitting effect,
the higher the degree of correlation and the greater
the degree of similarity, indicating that the feature
of this dimension is more discriminative. With this
principle, we use the Pearson correlation coefficient
ρp, Spearman correlation coefficient ρs, and cosine
similarity cos(θ) to measure the fitting effect. Then,
the feature selection is performed based on thresh-
olds of ρp, ρs, and cos(θ).

ρp =
∑N

i=1 xiyi − 1
N

∑N
i=1 xi

∑N
i=1 yi√(

∑N
i=1 x

2
i − (

∑N
i=1 xi)

2

N

)(
∑N

i=1 y
2
i − (

∑N
i=1 yi)

2

N

) ,

(12)

Table 12 Propagation distance estimation comparison
among the four features on IMP1, IMP2, and IMP3

HVI Ensemble RMSE (cm)

source learning FSST WSST SPWVD STFRFT

IMP1
Stacking 2.150 2.380 9.30 7.74
Voting 3.054 5.170 8.39 7.32

IMP2
Stacking 0.78 2.03 7.72 7.20
Voting 1.54 3.76 6.71 6.23

IMP3
Stacking 0.26 0.32 1.38 1.11
Voting 0.47 0.92 1.93 1.29

ρs =

∑N
i=1 (xi − x̄) (yi − ȳ)

√∑N
i=1 (xi − x̄)

2 ∑N
i=1 (yi − ȳ)

2
, (13)

cos(θ) =

∑N
i=1 xiyi√∑N

i=1 x
2
i

√∑N
i=1 y

2
i

, (14)

whereXXX = [x1, x2, · · · , xN ] and YYY = [y1, y2, · · · , yN ]

are the labeled distance vector and the feature vector
respectively.
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Specifically, the normalized WSST and FSST
features and their TCDs are stitched together
(SST+TCD), and the obtained feature matrix is de-
noted as TTTm×n. The propagation distances are de-
noted as a vector, LLLm×1.

The detailed feature optimization steps are sum-
marized in the following:

Step 1: Calculate ρp, ρs, and cos(θ).
Step 2: Determine the thresholds of ρp, ρs, and

cos(θ) for feature selection.
The thresholds are determined by a grid search

parameter optimization method. With various com-
binations of ρp, ρs, and cos(θ), a variety of different
dimension fusion splicing features are calculated and
the propagation distance regression RMSEs are cal-
culated as the indicators. The threshold combination
with a smaller RMSE is finally selected.

Step 3: Find the selected stitching feature.
The effective features yj are finally selected.
Table 13 shows the propagation distance es-

timation comparison between the selected stitch-
ing features OSSST+TCD and the original features
SST+TCD, where dimensions of the selected fea-
tures for IMP1, IMP2, and IMP3 were 215, 279,
and 236 respectively, and the associated thresh-
old values (ρp, ρs, cos(θ)) were (0.005, 0.040, 0.600),
(0.005, 0.02, 0.650), and (0.005, 0.01, 0.600), respec-
tively. From the table, it was observed that the op-
timally selected feature can effectively improve the
propagation distance estimation performance, com-
pared with the original features for all the three HVI
sources. In addition to accuracy enhancement, it has
the advantages of eliminating redundant features and
reducing the computational complexity.

3.5 HVI source localization

With the propagation distances estimated using
multiple joint sensors, the coordinates of the HVI
source were calculated by the proposed FCL algo-
rithm. In this experiment, the distance mean square
error DMSE between the measured coordinates and

the estimated ones was derived for performance eval-
uation, where DMSE is defined as

DMSE =
1

n

∑√
(Xp

n −Xa
n)

2
+ (Y p

n − Y a
n )

2
, (15)

where n is the number of samples, Xp and Y p are
the predicted x- and y-coordinate respectively, and
Xa and Y a are the actual x- and y-coordinate of the
sample respectively.

Table 14 shows the DMSE obtained by the con-
ventional TCL algorithm and the proposed FCL
method on IMP1, IMP2, and IMP3. It is appar-
ent that the proposed FCL achieved a more con-
sistently accurate localization than the conventional
TCL method for all the three HVI sources.

4 Conclusions

Accurate hypervelocity impact (HVI) vibration
source identification and localization play an impor-
tant role in manned spacecraft protection, collision
damage detection, and localization. In this paper,
we have presented a novel HVI source classification,
propagation distance estimation, and source local-
ization algorithm. The Fourier and wavelet domain
time-frequency spectrogram based synchrosqueezed
transforms (SSTs) and their associated texture color
distribution (TCD) have been proposed for HVI sig-
nal characterization. An optimal feature selection
method based on the Pearson correlation coefficient,
Spearman correlation coefficient, and cosine simi-
larity has been developed for feature optimization.
The HVI source classification, propagation distance
estimation, and localization have been achieved
by ensemble learning and a four-circle centroid

Table 14 HVI source localization comparison between
TCL and the proposed FCL algorithm

Algorithm
DMSE (cm)

IMP1 IMP2 IMP3

TCL 2.672 1.569 0.597

FCL 0.914 1.011 0.079

Table 13 HVI source propagation distance estimation comparison between the optimized features

Fusion feature
RMSE (cm) R2

IMP1 IMP2 IMP3 IMP1 IMP2 IMP3

SST+TCD 2.451 1.158 0.424 0.969 0.985 0.992
OSSST+TCD 1.670 1.009 0.264 0.986 0.988 0.996



528 Bao et al. / Front Inform Technol Electron Eng 2022 23(4):515-529

localization algorithm. The effectiveness of the pro-
posed algorithm has been demonstrated using real
recorded HVI signals generated by three different
high-speed bullets.

In this study, HVI source identification and
localization have been used to accurately and ef-
fectively perform damage pattern recognition and
evaluation. Specifically, we found that WSST and
FSST features are highly efficient in characteri-
zation and discrimination. The improved vibra-
tion source identification and localization algorithm
(SST, TCD+voting+stacking) achieves more accu-
rate vibration source type recognition and improved
distance prediction accuracy compared with the pre-
vious ones. Collision localization has been finally
achieved using the distances estimated by multi-
ple joint sensors, and the four-circle centroid local-
ization algorithm further improves the accuracy of
localization.

Contributors
Jiao BAO and Lifu LIU completed the experiments,

processed the data, and drafted the paper. Jiuwen CAO
designed the research, organized the paper, and revised and
finalized the paper.

Compliance with ethics guidelines
Jiao BAO, Lifu LIU, and Jiuwen CAO declare that they

have no conflict of interest.

References
Almeida LB, 1994. The fractional Fourier transform and

time-frequency representations. IEEE Trans Signal
Process, 42(11):3084-3091.
https://doi.org/10.1109/78.330368

Anderson JLB, Schultz PH, 2006. Flow-field center migration
during vertical and oblique impacts. Int J Impact Eng,
33(1-12):35-44.
https://doi.org/10.1016/j.ijimpeng.2006.09.022

Auger F, Flandrin P, 1995. Improving the readability of
time-frequency and time-scale representations by the
reassignment method. IEEE Trans Signal Process,
43(5):1068-1089. https://doi.org/10.1109/78.382394

Bai X, Tao R, Liu LJ, et al., 2012. Autofocusing of SAR im-
ages using STFRFT-based preprocessing. Electron Lett,
48(25):1622-1624. https://doi.org/10.1049/el.2012.3169

Cao JW, Wang TL, Shang LM, et al., 2018. An intelligent
propagation distance estimation algorithm based on
fundamental frequency energy distribution for periodic
vibration localization. J Franklin Inst, 355(4):1539-
1558. https://doi.org/10.1016/j.jfranklin.2017.02.011

Cao JW, Zhang K, Yong HW, et al., 2019. Extreme learning
machine with affine transformation inputs in an acti-
vation function. IEEE Trans Neur Netw Learn Syst,
30(7):2093-2107.
https://doi.org/10.1109/TNNLS.2018.2877468

Cao JW, Dai HZ, Lei BY, et al., 2020. Maximum cor-
rentropy criterion-based hierarchical one-class classifi-
cation. IEEE Trans Neur Netw Learn Syst, 7:1-7.
https://doi.org/10.1109/TNNLS.2020.3015356

Chan HL, Huang HH, Lin JL, 2001. Time-frequency analysis
of heart rate variability during transient segments. Ann
Biomed Eng, 29(11):983-996.
https://doi.org/10.1114/1.1415525

Cohen L, 2013. leID1. Time-frequency analysis: theory and
applications. J Acoust Soc Am, 134(5):4002.
https://doi.org/10.1121/1.4830599

Daubechies I, 1990. The wavelet transform, time-frequency
localization and signal analysis. IEEE Trans Inform
Theory, 36(5):961-1005.
https://doi.org/10.1109/18.57199

Daubechies I, Maes S, 1996. A nonlinear squeezing of the
continuous wavelet transform based on auditory nerve
models. In: Aldroubi A, Unser M (Eds.), Wavelets in
Medicine and Biology. CRC-Press, Boca Raton, USA.

Daubechies I, Lu JF, Wu HT, 2011. Synchrosqueezed wavelet
transforms: an empirical mode decomposition-like tool.
Appl Comput Harmon Anal, 30(2):243-261.
https://doi.org/10.1016/j.acha.2010.08.002

Erickson AS, 2014. China’s space development history: a
comparison of the rocket and satellite sectors. Acta
Astronaut, 103:142-167.
https://doi.org/10.1016/j.actaastro.2014.06.023

Flandrin P, Amin M, McLaughlin S, et al., 2013. Time-
frequency analysis and applications. IEEE Signal Pro-
cess Mag, 30(6):19-150.
https://doi.org/10.1109/MSP.2013.2270229

Franco C, Guméry PY, Vuillerme N, et al., 2012. Syn-
chrosqueezing to investigate cardio-respiratory interac-
tions within simulated volumetric signals. Proc 20th

European Signal Processing Conf, p.939-943.
Ghosh SK, Tripathy RK, Ponnalagu RN, et al., 2019. Auto-

mated detection of heart valve disorders from the PCG
signal using time-frequency magnitude and phase fea-
tures. IEEE Sens Lett, 3(12):7002604.
https://doi.org/10.1109/LSENS.2019.2949170

Huang XG, Yin C, Huang J, et al., 2016. Hypervelocity
impact of TiB2-based composites as front bumpers for
space shield applications. Mater Des, 97:473-482.
https://doi.org/10.1016/j.matdes.2016.02.126

Huang XG, Yin C, Ru HQ, et al., 2020. Hypervelocity im-
pact damage behavior of B4C/Al composite for MMOD
shielding application. Mater Des, 186:108323.
https://doi.org/10.1016/j.matdes.2019.108323

Liou JC, Johnson NL, 2006. Risks in space from orbiting
debris. Science, 311(5759):340-341.
https://doi.org/10.1126/science.1121337

Liu LF, Cao JW, Huang XG, 2019. High speed collision lo-
calization based on surface vibration processing. Proc
12th Int Symp on Computational Intelligence and De-
sign, p.35-38.
https://doi.org/10.1109/ISCID.2019.10091

Mallat SG, 1989. Theory for multiresolution signal decom-
position: the wavelet representation. IEEE Trans Patt
Anal Mach Intell, 11(7):674-693.
https://doi.org/10.1109/34.192463



Bao et al. / Front Inform Technol Electron Eng 2022 23(4):515-529 529

Mamli S, Kalbkhani H, 2019. Gray-level co-occurrence ma-
trix of Fourier synchro-squeezed transform for epileptic
seizure detection. Biocybern Biomed Eng, 39(1):87-99.
https://doi.org/10.1016/j.bbe.2018.10.006

Materka A, Strzelecki M, 1998. Texture Analysis Methods—
a Review. COST B11 Report. University of Lodz,
Brussels, Belgium.

Millan RM, von Steiger R, Ariel M, 2019. Small satellites for
space science: a cospar scientific roadmap. Adv Space
Res, 64(8):1466-1517.
https://doi.org/10.1016/j.asr.2019.07.035

Mirzapour F, Ghassemian H, 2013. Using GLCM and Gabor
filters for classification of PAN images. 21st Iranian
Conf on Electrical Engineering, p.1-6.

Monti A, Medigue C, Mangin L, 2002. Instantaneous parame-
ter estimation in cardiovascular time series by harmonic
and time-frequency analysis. IEEE Trans Biomed Eng,
49(12):1547-1556.
https://doi.org/10.1109/TBME.2002.805478

Önsay T, Haddow AG, 1993. Comparison of STFT, Gabor,
and wavelet transforms in transient vibration analysis
of mechanical systems. J Acoust Soc Am, 93(4):2290.
https://doi.org/10.1121/1.406528

Pierazzo E, Melosh HJ, 2000. Hydrocode modeling of oblique
impacts: the fate of the projectile. Meteorit Planet Sci,
35(1):117-130.
https://doi.org/10.1111/j.1945-5100.2000.tb01979.x

Qian SE, Chen DP, 1999. Joint time-frequency analysis.
IEEE Signal Process Mag, 16(2):52-67.
https://doi.org/10.1109/79.752051

Shang LM, Cao JW, Wang JZ, et al., 2016. Fundamental
frequency energy distribution of periodic vibrations and
their relation to distance. Proc IEEE 13th Int Conf on
Signal Processing, p.96-101.
https://doi.org/10.1109/ICSP.2016.7877804

Stankovic L, Stankovic S, Dakovic M, 2014. From the STFT
to the Wigner distribution. IEEE Signal Process Mag,
31(3):163-174.
https://doi.org/10.1109/MSP.2014.2301791

Tao R, Li YL, Wang Y, 2010. Short-time fractional Fourier
transform and its applications. IEEE Trans Signal
Process, 58(5):2568-2580.
https://doi.org/10.1109/TSP.2009.2028095

Thakur G, Brevdo E, Fučkar NS, et al., 2013. The syn-
chrosqueezing algorithm for time-varying spectral anal-
ysis: robustness properties and new paleoclimate appli-
cations. Signal Process, 93(5):1079-1094.
https://doi.org/10.1016/j.sigpro.2012.11.029

Torrence C, Compo G, 1998. A practical guide to wavelet
analysis. Bull Amer Meteorol Soc, 79(79):61-78.

Wang TL, Cao JW, Lai XP, et al., 2020. Hierarchical one-
class classifier with within-class scatter-based autoen-
coders. IEEE Trans Neur Netw Learn Syst, 32(8):3770-
3776. https://doi.org/10.1109/TNNLS.2020.3015860

Wilson EK, 2019. Space tourism moves closer to lift off.
Engineering, 5(5):819-821.
https://doi.org/10.1016/j.eng.2019.08.006

Witze A, 2018. The quest to conquer Earth’s space junk
problem. Nature, 561(7721):24-26.
https://doi.org/10.1038/D41586-018-06170-1

Yang MQ, Kpalma K, Ronsin J, 2008. A survey of shape
feature extraction techniques. Patt Recogn, 15(7):43-90.

Yin C, Xue T, Huang XG, et al., 2019. Research on damages
evaluation method with multi-objective feature extrac-
tion optimization scheme for M/OD impact risk assess-
ment. IEEE Access, 7:98530-98545.
https://doi.org/10.1109/ACCESS.2019.2930114

Zhou ZH, 2016. Machine Learning. Tsinghua University
Press, Beijing, China (in Chinese).


	Introduction
	The proposed algorithm
	SST features
	FSST features
	WSST features
	SST feature comparison

	TCD features
	HVI classification and distance estimation
	FCL algorithm

	Experiments and discussions
	 Experimental setups
	HVI source classification
	HVI propagation distance estimation
	Distance estimation with optimized features
	HVI source localization

	Conclusions

