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Abstract: The main purpose of this paper is to study different types of sampling formulas of quaternionic functions,
which are bandlimited under various quaternion Fourier and linear canonical transforms. We show that the quater-
nionic bandlimited functions can be reconstructed from their samples as well as the samples of their derivatives
and Hilbert transforms. In addition, the relationships among different types of sampling formulas under various
transforms are discussed. First, if the quaternionic function is bandlimited to a rectangle that is symmetric about
the origin, then the sampling formulas under various quaternion Fourier transforms are identical. If this rectangle
is not symmetric about the origin, then the sampling formulas under various quaternion Fourier transforms are
different from each other. Second, using the relationship between the two-sided quaternion Fourier transform and
the linear canonical transform, we derive sampling formulas under various quaternion linear canonical transforms.
Third, truncation errors of these sampling formulas are estimated. Finally, some simulations are provided to show
how the sampling formulas can be used in applications.
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Sampling theory is one of the most important
mathematical techniques used in communication en-
gineering, information theory, signal analysis, image
processing, and so on (Zayed, 1993; Cheng and Kou,
2019, 2020). Sampling theories of multi-dimensional
real signals in RY appeared in Zayed (1993). Sam-
pling theories of high-dimensional signals in several
complex variable settings (Kou and Qian, 2005a) and
the Clifford analysis setting (Kou and Qian, 2005b)
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were obtained. Recently, the quaternions, which
are hyper-complex numbers, have been proved to
be an effective tool in quite a few applications of
multi-dimensional signal processing analysis (Jiang
et al., 2016; Zou et al., 2016; Hu and Kou, 2018;
Bahia and Sacchi, 2020; Alon and Paran, 2021), and
account for correlated nature of the signal compo-
nents in a natural way. Meanwhile, numerous novel
tools in multi-dimensional signal and image pro-
cessing have been developed using the quaternion
modeling technique. The representative tools are
quaternion Fourier transforms (QFTs), quaternion
fractional Fourier transforms (QFrFTs), and quater-
nion linear canonical transforms (QLCTs) (Ell et al.,
2014; Kou and Morais, 2014; Chen et al., 2015; Kou
et al., 2017; Lian, 2021). Some important theorems
have been studied, such as the inverse theorems as-
sociated with QFTs and QLCTs (Hu and Kou, 2017)
and convolution theorems associated with QFTs and
QLCTs (Pei et al., 2001; Hitzer E, 2017).

The sampling expansions associated with the
right-sided QFT were studied in Cheng and Kou
(2018), but the main shortcoming of this approach is
that only the right-sided QFT case was considered.
In this study, we study not only the sampling for-
mula associated with the right-sided QFT, but also
the sampling formulas associated with the left- and
two-sided QFTs. Therefore, sampling formulas asso-
ciated with various QLCTs are obtained.

There are five main points in this study: (1) to
study the quaternionic function sampling formulas
bandlimited (BL) to a rectangle that is symmetric
about the origin under various QFTs; (2) to study
the quaternionic function sampling formulas BL to
a rectangle that is not symmetric about the origin
under various QFTs; (3) to explore not only the
sampling formulas using samples of themselves, but
also samples of the partial derivatives and quater-
nion partial and total Hilbert transforms; (4) to
obtain the sampling formulas associated with vari-
ous QLCTs using relationships between QFTs and
QLCTs; (5) to estimate truncation errors of these
sampling formulas.

2 Preliminaries of quaternion, QFTs,
and QLCTs

In this section, we are devoted to the exposition
of basic preliminary materials that are used exten-

sively throughout this paper.

Let H denote the Hamiltonian skew field of
quaternions, which has been proved to provide a nat-
ural framework for a unified treatment of three- and
four-dimensional signals.

A quaternionic number takes the form of

¢ = qo +iq1 + jgo + kg3, (1)

where ¢p — ¢3 € R, and i,j,k are orthogonal imag-
inary parts obeying the following rules: i2 = j? =
k? = ijk = —1. In this way, the quaternionic algebra
can be regarded as a non-commutative extension of
complex numbers C. When gy = 0, ¢ becomes a pure
quaternion. Let p := iug + jus + kus denote the unit
pure quaternion such that u? = —1. Let H,, be the
field spanned by {1, u}, which is the sub-field of H.
That is, H, = {qlg = qo + pqu.q0,qu € R, p* =
—1}. The quaternion conjugate of a quaternion g is
defined by ¢* = go —ig1 —jg2 — kg3, which implies the
modulus of ¢ € H defined as |¢| = v/q¢* = V/¢¥q =
V@ + ¢+ @3+ 3. From Eq. (1), it follows that a
quaternionic function f : R? — H can be expressed
as f(z,y) = fo(x,y)—i—ifl(w,y)—l—jfg(w,y)—i-kfg(x,y),
where f,, e R,n=0,1,2,3.

Let LP(R?,H) (integer p > 1) be the linear space
of all quaternionic functions in R?, whose quaternion
modulus is LP(R* H) = {f|f : R? — H,|fl, :=

1
(Ja |f (2, y)[Pdady) ™ < oo}.

Based on the quaternion concept, various QFTs
(Ell et al., 2014) and QLCTs (Kou et al., 2013) have
been introduced. For f € L'(R? H), the two-sided
QFT is as follows:

Fr[fl(v,u) = / e v £z, y)e I Wdady. (2)
RQ
The right-sided QFT is as follows:
Fr[f](v,u) == f(x,y)e "me W dady.
RQ

The left-sided QFT is as follows:

FL[f](v,u) = /R2 e_iwe_j“yf(a:,y)da:dy.

QLCTs are the generalizations of QFTs. Let

b

A = < @i dl ) € R?*2 be real matrix parameters
Cq i

with unit determinant, i.e., det(A4;)=a;d; — ¢;b; = 1,

fori=1,2.
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The two-sided QLCT is as follows:

LY (f)(v,u)
Jro Koy, (2, 0) f (2, 9) Ky (y, w)dedy,
b1,b2 £ 0,
fR2 \/_e'
by = 0,by # 0,

Jea K (,0) f (2, du)y/doed %
b1 # 0,62 =0,

.cldlu

f(dv,y) 542 (y’u)dy,

1/2
dx

)

f(dv, du)v/dy\/dze e
by =0, by = 0.

The right-sided QLCT is as follows:
£ = [ K, (2,00, (1, w)dsdy,
The left-sided QLCT is as follows:

. Ky, (2,0) K (y, ) f(z,y)dady.

LY (f) (v, u) ==

Herein kernels Kj‘h and K',i42 of QLCTs are given

. : 2_ 1 dy 2
by Ky, (z,v) = \/121Wel(2b1m e and
1
; (82,2 1,4 dy o
Ky, (y,u) i= el = m v 2 ) Note that

when b; =0 (i = 1,2), QLCT of a function is essen-
tially a chirp multiplication and is of no particular
interest to us. Hence, without loss of generality, we
set b; # 0 (i = 1,2) throughout the paper. It is
significant to note that QLCT converts to its special
cases when we take different matrices A; (i = 1,2).

0 1
10 ), QLCT
is reduced to QFT, where /—1 = e7/4 and /=] =

It A, — ( cosa Slna> and Ay —
—sina
sin 3

cos f3
—sinf cospf
plied by the fixed phase factors e 1%/2 and e1#/2,

QFTs are invertible, and for their inversion theo-
rems, readers can refer to Hu and Kou (2017).
(Hu and Kou, 2017) Suppose that
the quaternionic function f(z,y) satisfies one of the
following conditions:

(1) f and the corresponding QFT both belong
to LY(R?, H).

(2) f € L*(R2,H), if supp (Fulf]) © o1, 0] x
[03,04], where n =R, L, or T, and o; (i = 1,2,3,4)
are real constants, and can be chosen at will.

For example, when A; = As = (

e—in/d.
COS &

), QLCT becomes QFrFT multi-

Lemma 1

Then

f(z,y) = / e Frlf](v, u)ed W dudv.

4 A2

flz,y) = e /DfR[f](MU)ejuyei”dudv.

flz,y) = ﬁ /Dejuyeiw]:L[f](v,u)dudv,

where D = R? for condition (1) and D =
(03, 04] for condition (2).

Lemma 2 (Quaternion Cauchy-Schwarz inequal-
ity) (Kou and Qian, 2005a)  If f,g € L*(R? H),
then Holder’s inequality yields

‘/w f(x7y)9(:c,y)dxdy‘ < /}R2 |f(x,y)g(x,y)| dedy

< [1f Gz 9)l2llg (@, y)lla-
(3)
Lemma 3 (Parseval equality) (Hitzer EMS, 2007)
Set f € L?(R? H). Then we have

[0'1,0'2] X

E:=fllz = =Fnllz, n=TR,L (4

47'[2

3 Sampling theorems for bandlimited
(BL) quaternionic functions

3.1 Sampling theorems for BL quaternionic
functions in the QFT sense

Let f be a quaternionic function defined on T?,

where T = [0, 27t] and T? is the Cartesian product of
T x T. The space LP(T? H) consists of all quater-
nionic functions such that [, |f(z,y)|Pdzdy < oc.
For a function f € L?(T? H), we can define the
right sided quaternion Fourier coefficients as ¢, =
1= Jp2 f(z,y)e""*e7IM¥dzdy. Then the right-sided
quatermon Fourler series can be written as f(z,y) ~
Z;z.o:—oo Zz:—oo C"»mejmyeinz'
Lemma 4 (Bessel’'s inequality) Let
f € L3(T? H). Then Bessel’s inequality holds:
Z;;O:foo Zﬁ_foo |Cn m| > 47-[2 f'[[‘Q |f (v y)|2dxdy <
0.

The proof of Lemma 4 is available in the sup-
plementary materials.

Due to Bessel’s inequality, the
right-sided quaternion Fourier series
o o inx,jmy : :
Y oo D oo Cnme€ e will converge in

the sense of L2. Indeed, it can be proved that
the system {e"®e™¥|(n,m) € Z?} is complete in
L?(T?,H). Then with an argument similar to that
in Pan (2000), we have the following lemma:



466 Hu et al. / Front Inform Technol Electron Eng 2022 23(3):463-478

Lemma 5 Let f € L*T%*H),
f(z,y) ~ Yoo 2om— oo Cnme! Ve,
and Sym = Zngzv Zn]\fsz Crm©el"
Then My oo v—oe |f —  Snoumll2 =

My oo, M 00 Jpe [F(2,9) — Sn,ar (2, y)|*dedy = 0.
The Parseval equality holds as

If@plz= DY > leaml®

n=—00 Mm=—0oQ

Definition1 f(x,y) issaid to be a BL signal (func-
tion) of [—o1, 01] X [—02, 02] in the right-sided QFT
sense, i.e., Fr[f](v,u) =0, for |v| > g1 or |u| > 0.

In the following, for simplicity, we use the fol-

lowing abbreviated notations: (o1, 09) :=
[—09,03]. To formulate our sampling formulas, we
need a very important result:
Theorem 1 Suppose f(z,y) = folz,y) +
ifi(z,y) +if2(z,y) + kfs(z,y), f € L? U LY(R? H).
Then the following four statements are equivalent:

(1) Frlfl(v,u) =0, for |v| > o1 or |u| > os.

(2) Fr[fn](v,u) = 0, for |v| > o1 or |u| > o2,

—0,1,2,3.

(3) Frf](v,u) = 0, for |v| > o1 or |u| > o3.

(4) Fr[f)(v,u) = 0, for |v| > o1 or |u| > o2.
Proof
between the first and second statements because
fR[fTL](U?u) = FL[fTL](U?u) = fT[fn](Uau)v where
fn are real functions, n =0,1,2, 3.

(2) = (1). As f € L?>U LY(R? H), then
fn € L2ULY(R% R) and Fr[f](v,u) = Fr[fo](v,u)+
iIFR[f1](v,u) + jFR[f2](v,u) + kFR[f3](v,u), so the
second statement can imply the first statement.

(1) = (2). Because

[—0’17(71]><

It is sufficient to prove the equivalence

f=fo+ifi +if2 +kfs,

—ifi = fo+ifi —jf2 —kfs,
=ify = fo—1ifi +if2 — kfs,
—kfr = fo—1if1 —ife +kfs,

it follows that

fo= i( —ifi —if; —kfx),

fu=F(f = ifi +ifj +kfr),
fo=F(f+ifi —ifj +kfe),
fs=F(f +ifi+if; —kfr).

Taking the right-sided QFT on both sides, we

obtain
Fulfol (v,) =5 (Fal (o, w) ~ iFlf1(w, )

— JFR[)(=v, w)j — KFrlf)(~v, ~u)k),
Frlfa)(v,u) == (Falf](v.w) = iFwlf] (v, ~u)i

IR (0, ) + K[}, ~u)k).
Fulfal(w, w) =2 (Bl (o, w) + 1710, )i
— JFRI)(—v,w)j + kPRI (—v, ~u)k)),
(Bl ) + i), ~w)

+ P[0, w)j — KFR[f) (=0, ~u)k).

Frlfsl(v,u) =

Hence, the first statement implies the second
statement.

Remark (1) We can see from Theorem 1 that
if f € L2ULY(R? H) is BL to (01,02) in the right-
sided QFT sense, then it is also BL to (o1,02) in
the two- and left-sided QFT senses, and vice versa.
In this case, f is said to be BL to (o1,02) in the
QFT sense. (2) If f(z,y) is BL to a rectangle that is
not symmetric about the origin, then the sampling
formulas of f under the various types of QFTs will
be different. We will show them in Theorems 3-5.
Theorem 2 (Sampling theorem for QFTs)  Sup-
pose that f € L?(R? H) is BL to (01, 02) in the QFT
sense. Then f(x,y) can be reconstructed from its
sampled values at the points (27, %), (n,m) € /i

via the following formula:

DS [

. sin(o1(x — xy)) sin(o2(y — ym))
o1(x — zy) 2(Y — Ym)

(5)

where x,, = % and y,, = ”;—;‘ The series converges

in the L? norm, and it is absolutely and uniformly
convergent on any compact subset of R2.

Proof From Hitzer EMS (2007), we have
Fr[fl(v,u) € L?([~01,01] X [~02,02],H). There-
fore, by Lemma 5, we have

v 7T Gy T

oo oo
E g Chme °1e o2,

n=—00 Mm=—0oQ

’
WVt — E E dpr @2 VST
- n’ N )

n/=—ocom’'=—o0
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where
C’n,m
1 91 o2 j PO %4
= Fi , o2 ¢ Vo1 dud
40102 /01 —02 R[f](v U)e He s

(6)
dn’ m’

!
. _jpnm
e]uyewwe o1 e
40’10’2

) sy - 22))

g2

_om/n
1702 dvdu

sm(al

o1
o1 — c,—l”) o (y — %)

From Lemma 1, we have

f(w Y)

= / ./":R[f] (v, u)e" Ve dvdu

=2 > ¥

92 n=—00 m=—00 n/=—00 m/=—00
m/’ B
~el 01 e]u 02 d /m’e U_znewTdvdu
o0
=2 B B > Sl S s
47-[ —91 Y702 np=—ocom=—ocon'=—ocom’'=—oo
eVl Vs ¢ "27[6“’%
sm(al (x — —)) sin(oa( m;”))d q
—Z — vdu
o1(z — F) o2y — =)
oo o0
“EE Y Y G
472 '
n'=—ocom’=—oco
/
sm(al (x — —)) sin(oa(y — 727))
/
o1 ( Zln) oa(y — gzn) ’

(7)
which, in view of Eq. (6), implies Eq. (5). The con-
vergence in Eq. (7) is understood to be in the sense
of L2
absolutely and uniformly on any compact subset of
R? when we apply the quaternion Cauchy-Schwarz
inequality (3) and Egs. (4) and (5).

However, Eq. (5) is readily seen to converge

If f(z,y) is BL to a rectangle that is not sym-
metric about the origin, then the sampling formula
is as follows:
Theorem 3
QFT)

(Sampling theorem for two-sided
If f € L*(R?H) and Fr[f](v,u) = 0,

for |v — vg| > o1 or |u — ug| > o2, we have

- ¥

n=—0o0 Mm=—00

[ ivg(x—xp) ((En,ym)equ(y_ym)

012 — Zn) sinc

- sinc

o2(y — ym)‘| )
Tt
(8)

The series converges in the L? norm, and it is ab-

solutely and uniformly convergent on any compact
subset of R2.

Proof Because Fr[f](v,u) = 0, for |[v — vo| >
o1 or |u — ug| > o2, then e~V f(z,y)e I"0¥ is BL
to (01,02). Hence from Theorem 2, by substituting
e 1% f(x, y)e
we obtain sampling formula (8).

Theorem 4 (Sampling theorem for right-sided
QFT) If f e L*R%H) and Fr[f](v,u) = 0,

for |v — vg| > o1 or |u — ug| > o2, we have

—Juoy for f(z,y) in sampling series (5),

f(z,y)

-y YU

n=—oo0 m=—0oo

+ (=2, ym)e @) sin(ug(y — yum))s]

g1 ({,E - wn)SinCU2 (y - ym)
Tt

wg(zfzn)

xrmym COS(Uo(y - ym))

- sinc

(9)
The series converges in the L? norm. Moreover, it
converges absolutely and uniformly on any compact
subset of R2.

Proof From the assumption of f, we have

f(z,y)
1 o1+vo o2+uo i .
:R/_ (/ FR[f](v,u)e]“ydu) e dw.

o1+vo —o2+ug

7izvdx —

Frlf] (v, w)e’™¥du, for v — vg| < o1, we

Because Fy[fl(v,y) = [ f(z,y)e
1 [oz2tuo
27t J—os+tug
have

~ivoTngine TT = n) (@ = 2n) .

f(z,y)e

=3 flewy

) (10)
y>e—imv0 e—iwvdx) e—jyudy —
assume 9(y)
Then Fj[g](u)

Because [p ([ f(z
Frlfllv  +  wvo,u),

Jg [z y)e i moe v dy, = 0.
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For |u — ug| > o2, we have
/f(x,y)efizvgefivzdz
Z /f T ym 1zvgeflmvdx (11)

m=—0o0

. sinc (UQ(y - ym)) ejuo(yfym)'
™

Applying }“I{i to both sides of Eq. (11) at point
ZT,, we have

flap,y)eionwe

= 3 (Ftemsamde ™ costunty — )
e | (12)
# F( ) sin(un(y )
sine22W = Ym)
7T

By substituting f(z,,y)e " in the above
equation into Eq. (10), we obtain Eq. (9).

Theorem 5 (Sampling theorem for left-sided

QFT) If f e L3(R?*H) and FL[f](v,u) = 0,
for v — vg| > o1 or |u — ug| > o2, we have

fz,y)
= Z Z (ej““(y*ym)f(gcn,ym)cos(vo(x—xn))

eI sin(vg (2 = 20))if (20, ~Yim) )

.o —xy) .
+ S1nc S1nc
T

02(yY = Ym)
- .

(13)
The series converges in the L? norm. Moreover, it
converges absolutely and uniformly on any compact
subset of R2.
Proof  Using an argument similar to the proof of
Theorem 4, we can easily carry out the proof of this
theorem.

Next, we will introduce the quaternion partial
and total Hilbert transforms (Bulow and Sommer,
2001; Kou et al., 2017) associated with QFTs, and de-
rive the sampling formula using samples of its quater-
nion partial and total Hilbert transforms. In addi-
tion, the sampling formula using the samples of its
partial derivatives is derived. Then, the sampling
rate can be reduced by taking multiple types of sam-
ples simultaneously.

Definition 2 Let f € L? U L'(R? H). Then the
quaternion partial Hilbert transform #H; of f along
the z and y axes and the quaternion total Hilbert

transform Hy along the x and y axes of f are given
by

Halrl@) = [ L%t 0.,
il )y / ULLAT
Mol () = pvg [ %dtds,a.e..
Let
Half)(e,) = Half () @),
Hy 11w, ) 2= HalF) (@, )(w),
Hwy[f](xay) = H?[f(? )](!&y)

Using the analogous definition of the quaternion
analytic signal given in Bulow and Sommer (2001)
and Hahn and Snopek (2005), we have the following
quaternion analytic signal associated with Fr:
Lemma 6 Let f € L?(R?* R). Then we have

Fr[He[fl)(v,u) = Frlf](v, —u)(—i)sgn(v),
Fr[Hy[fl(v,u) = Frlf](v,u)(=))sgn(u),
Fr[Haylf]] (v, u) = Fr[f](v, —u)ijsgn(u)sgn(v).
The quaternion analytic signal is defined by
fU=F +Hal fl(,y)i + Hy [f1(=2, )]
+ Hay[f](—2,y)k.

Moreover,
Fr[f(v,u) = (1 + sgn(u))(1 + sgn(v)) Fr[f](v, w).

Theorem 6 If f € L?(R? H) and Fr|[f](v,u) =0,
for |v| > o1 or |u| > o3, we have

Z Z (x cos Z2™ cos 1.X
(e s Ym) 9 5
. Yo . 01X,
— Ha [f] (xru ym> Cos 72 Sl 012
oY, X,
- Hy [f] (In, ym) S1n 72 cos 012
N S D
+Hmy[f] (fL'na ym) sSin 2 in 12
. 1 Nn . Ug?m
- SInc SInc s
us 27
(14)
where ffn = 2:'17" , gm = 221271  Xn - oy _

Ty, and ffm =Y — Um-
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Proof  If f € L?(R? H), then f, € L?*(R% R),
k=0,1,2,3. It follows that the quaternion analytic
signal f;! takes the form of

fi =+ Hal il (2, v)i+ Hy [fi] (=2, )]
+ Haylfr] (=2, y)k.

From Lemma 6, we have Fr[fi](v,u) = (1 +

sgn(0)) (1 + sgn(u))Fulfil (v,0); that is to say, f0
is BL to [0, 01] x [0,02]. It follows from Theorem 4
that

fi(z,y)

Z Z |:fk xruym '015" cos 02;/7”

n=—00 Mm=—00

UQ?m (15)

Lo X,
jZidn

+ [ (=T, Ym)e” "7 sin

i

02 Ym

- sinc
27

1An .
S111C
Tt

Noting that fi(z,y) is the real part of fi(z,v),
with some straightforward calculations, we can de-
rive the sampling formula of fi as

fe(z,y)
X, Yon
Z Z [fk (Tn, Um COS012 COS(722

n=—oo0 m=—0o0

X, ool
2
Ul)zn

0s 5

o % X,
+ Moy [f5] By o) sin 22 n 012

Xn
— Ha [fk] (ffn, ﬂm) sin a1 cos

— Hy [fi) @n, Gin) sin 2

g1 Xn U2Ym

sinc
27

- sinc

Because f = fo+if1 +jf2 +kf3, then sampling
formula (14) holds for f.

From Theorems 1 and 6, we have the following
corollary:
Corollary 1 If f € L?(R? H), then f(x,y) can
be reconstructed from the samples of its quaternion
partial and toltal Hilbert transforms, if one of the
following conditions holds:

(1) Fr[f](v,u) =0, for |v| > o1 or |u| > 09,

(2) .FT[f](’U?’U/) = 07 for |’U| > 01 0or |’U,| > 02,

(3) Frlfl(v,u) = 0, for |v| > o1 or |u|] > o3.
fz,y)

Z Z { Ty Ym,) COS 02;/7” cos Ul;("

n=—oo0 m=—0o0

S~ Yo . 01X,
— Ho[f1(Tn, Ym) cos 022 sin 012
N S X,
- Hy [f](xnv ym) S o2 co 012
N s
+ va[f](xna ym) sin 22 Sin 012
. Ul)?n . UQ?m
- SInc Sinc .
27t

(16)
In the following, we derive the sampling formula in-
volving the samples of the original function and its
partial derivatives. Some lemmas are needed first:

Lemma 7 (Hitzer EMS, 2007) If felL?n
C™ I (R?H) and g(,y) = Gl € L*(R?,H),
we have
Frlgl(v,u) = ()" Fr[f] (v, u)(ju)™

where n,m € Z.
Lemma 8 (Marvasti, 2001)

el = el (v,t) + pvey (v,t), v € (—o,0),
where p = ipg +jpe +kus is the unit pure quaternion

such that p2 = —1, for special cases of =1, j, or k.

g

el (v, t) = (1— M(1

_ e—pa’tsgn(v) ) ) eutv .

65(U,t) _ /J'Sg:(v> (e—patsgn(v) _ 1)@““’,

Here, ¢x(v,t) = ex(v — o,t), for v € (0,0) and
k = 1,2. Both functions may be expanded in their
o-periodic boundedly converging Fourier series on
(—o,0)/{0}; that is to say,

> t— 2%\ 2 zkm
e (v,t) = Z (SincUT> S
k=—oc0
> t— 2km\” 2k ko
Gg(vyt) = Z (SinC%) (t — TT[) e*sz .
k=—oc0

If f € L2 N C%(R2,H) is BL to

of of o*f 2 (T2
a5 oy 9505 € L (R*,H), then the

Theorem 7

((717(72>, and
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following sampling formula holds:

f(z,y)
Z Z [ Tns Ym) +(I—5n)g—£(’fn,z7m)

n=—oo0 m=—0o0

+(y —@m%@n,@n) (2= Fn)y — )
2 01T
)| (sine (5~ )
g9 2
. (sinc (2—73 — m)) . (17)

Proof  From the assumption of f, we can recover
f from its QFT domain as follows:

o1 o)
flz,y) = %/Ul /02 e Fr (v, u)e’ dvdu.

(18)

From Lemma 8, assume e'*® = € (v,z) +

e (v, z) and & = € (u,y) + jé,(u,y). After sub-
stituting these equations into Eq. (18), we obtain

4 f(x,y)
/ / (v, ) Fr (v, u)eJ (u,y)dvdu

—|—/ / é (v, 2) Fr (v, w)je (u, y)dvdu
+/ / ieh (v, ) Fr (v, u)el (u, y)dvdu
/ / ieh (v, ) Fr (v, w)jé, (u, y)dvdu.

Using Lemmas 7 and 8, with straightforward
calculations, we have sampling formula (17).

3.2 Sampling theorems for BL quaternion
functions in the QLCT sense

f € L*(R? H) is said to be a BL signal (func-
tion) to [—o1,01] X [—02,02] (short for (o1,02)) in
the two-sided QLCT sense, if EITJ [f](v,u) = 0, for
[v| > o1 or |Ju| > o2.

Theorem 8 Suppose f € L2?(R% H) and
LYfl(w,u) = 0, for |v| > o1 or |u] > oo
Assume g = el@17°/(21) f(g 4)ela2v*/(2b2)  Then
Frlgl(v,u) =0, for [v| > gL or |[u] > F2.

Proof From the definition of the two-sided QLCT,
we obtain

Frlg] (;)_17 %)
1

_ (55 0%) pi]
\/me ! T [f](v,u)

J(2b2 )

1
\/j27’[b2

Theorem 9  If f € L*(R? H) is BL to (01, 02) in
the two-sided QLCT sense, then the following sam-
pling formula for f holds:

f(z,y)

al'n.
=Yy

nN=—oo0 m=—0oo

o1(x — sn)smcag(y —tm)
17T bgTE

i asty, —azy?
(sn, tm)e 22

- sinc

_ mbgT[
o2

verges in the L? norm. Moreover, it converges abso-

The series con-

where s,, = ”311” and t,,

lutely and uniformly on any compact subset of R2.

iag a2 faoy2

Proof Theorem 8 implies that e 2b, f(z, y)e%

is BL to (Z—ll, Z—j) in the QFT sense. So, applying

iaqa? iany2

Theorem 2 to e G} f(z, y)e%
results.

, we obtain the final

Similarly, we obtain the following sampling se-
ries of f involving the function and its partial
derivatives:

Theorem 10 If fe L?nC*R%H) is BL to

(01, 02) in the tW(Q) sided QLCT sense, and z f, y f, 9L 3>
ygi, g;} xg;;? aiay € L?(R%,H), then the following
sampling series for f holds:

f(z,y)

ii

n=—oo0 m=—0o0

.a152 ~ agt,
e' 2h f(gn,tm)e] 2+ (v — 5,)

f ~ ]aQF?ﬂ .algn ialgi
. e == (Sp,tm)e’ 22 +i——e 20
o~ iazt . ialé‘% of _ ~
: f(smtm)e 2b2 + (y - tm) e 8_(Sn7tm)
.a i?n .a §$L _ .a F?n iy
R N R CI e jazbt’"}
2
~ a133, 32f o~ asty,
RS UEL] B e FERAERE
.A1S8n 2L af ~ 7 ]a2?2m
1 1 ——(8Sp,tm)e’ b2
bl 6y( " m)
§$L — a F?n
+ e 21b1 8_(5n7tm)e] gb? a2tm
ba
1Spn {“%n ]azfm a2t~m
+i e 2 f(Spy,ty)e 22 ]
1 bo
2 2
. a1 . 02y
<[ sinc [ =— —n sinc [ —— —m ,
( (21?17r )) ( (b227T ))
where s,, = @ and t,, = %. The series con-

verges in the L? norm. Moreover, it converges abso-
lutely and uniformly on any compact subset of R2.



Hu et al. / Front Inform Technol Electron Eng 2022 23(3):463-478 471

In the following, to derive the sampling series
for f using the samples of its Hilbert transform as-
sociated with QLCT, we introduce the generalized
partial and total Hilbert transforms for the two-sided
QLCT in Kou et al. (2017).

Definition 3  Let f € L? U L'(R?,H). Then f
along the z and y axes of the generalized quaternion
partial Hilbert transforms % and H and along
the = and y axes of the generalized quaternion total
Hilbert transform 7}’ , are given by

Laqax? Laqt2
e_IQITl elQlTl t
H, ()@, y) = pv. / F69) 4t e,
R

xr—t

J b5 agy?
Ha, (@, y —pv—/f(wt dte 722 ae
R
et
Hy A, [fl(z,y) ==p.v =

If f € L*(R% H), assume g(z,y) =
jagy?
i, y)e B

Lemma 9

. Then we have

Halg) (2, y) = 20 1 [fl(@,y)e o,
Hylg)(x,y) = =0 MYy [y](z, y)e 2,

a2y2

sz [g](iE, y) = eiWHZylAz [f](xv y)eJ 2z,

Proof We give only the proof of the first relation-
ship; the other two relationships can be proved in a
similar manner. By definition, we have

Halg)(z,y)
2
S caze?
— / e fty) jBe 4
T R x—t
1 jers? capa? ei%f(t ) azu?
120y 7@6.1 265 dt

—pv—e 261
T r—t

L

R
jaae? sagy?

= e Hy, [f](z, y)e’ =,

which completes the proof.
Theorem 11 If f € L*(R?,H) is BL to (01, 02)
in the two-sided QLCT sense, then the following

sampling series for f holds:

f(z,y)
jeala—a® o Lap(3,—v?)
E E [ 2171 f(ST“ tm)eJ 2b5
nN=—oo m=—od
Tm algn ial(Si*rz) ~
- oS cos —e 21 HGL [fl(sn,tm
S0 811G )
caz(th, —v*) 09T, . 015, jo1(p —a?)
- e 262 coSs Sin —e 201
2bs 2bq
~ M O'QTm Ulsn

-HY Spytm)e T 22 sin cos
AQ[f]( mny m) 2b2 2b1
ca1(sZ—a?) ~ L ag (2, —y?)

+e HZ:ZAz [f] (gnv tm)e'] 2b2

. .01 §n .. 01 gn . UQTm
- S11 Sin S111C Simc
2b2 2b1 2b17’[ 2b27’[ ’

(19)
where S,, =z — 5,, and T,, :y—fm
Proof From Theorem 8, g(z,y) =
jagy? iaq a2
e 2 f(z,y)e P is BL to [~ 2%, O] x [~22, @] in

' By ba ? o
the QFT sense. Applying bampling series (16) to
g(z,y), we obtain

g(x Y)
n=—o0 m=—00 T“ym 2 2
T T . 015,
— Mo [g) @ i) cos 5 sin T
~ o~ . O'QTVm (jlgn
_Hy[g](xn7ym) sm 5
. 0T . 015,
FHoy (9] (s Gom) sin = n 12
. ~n . Ugfm
- S1nc sinc
27

Substituting the relationships in Lemma 9 and

jaoy? iaqa?
g(z,y) = e s flx,y)e 1 in the above sampling

series of g, we obtain sampling series (19).

f € L?(R? H) is a BL function to (o1, 02) in the
two-sided QLCT sense, which does not mean that f
is a BL function to (o1, 02) in the right- or left-sided
QLCT. It is natural to ask, if f is a BL function to
(01, 02) in the right-sided QLCT sense, how could we
reconstruct it from its sampled values at the point
(55, 25), (n,m) € Z2. This problem is carried out
by the following theorem:

Theorem 12 If f € L*(R%,H) is BL to (01, 02)
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in the right-sided QLCT sense, i.e.,

LE[f)(w,u) =0, for [v] > o1 or |u] > 05,

then the following sampling series for f holds:

f(z,y)

o0 oo

f(snytm) joash as(t
= E E ‘e 21 cos —2—7 2~
\/27’[()11

nN=—oom=—oo
27Tb11

/f
_as(t2, = y?)

o S .
. SlIl J S1nc Sinc
20, ]

o — )2
Sn+flf t )6141(627117239)

02 (y - tn)
b27'[
(20)

where I(z) = 5= [o o emvrdy = %< /Z_bll

bix bl blz
- cos( 2L 4@1 i/ B2t cos(F ))

0,7 = 1,2). The series converges in the L? norm.
Moreover, it converges absolutely and uniformly on

(ai, b; >

any compact subset of R2.
Proof

[z, y)
_/c:l [/02 L (v, u) K (u, y)du} K}y (v,2)du,

—0o

Because

then we have

.a112

f(x,y)e =

/ . [/ L, () efidlbf} i
= (v, u) K7, (U, y)du———=—=|¢ b1 dv,
—0o1 —o2 " A21 27Tbll

. a 172
which implies that h,(z) = f(z,y)e 1 isa 7+ BL
function with respect to x in the QFT sense. Hence,
we can recover hy(x) from the samples at point ¢,
via the following formula:

(o122 ja152
flx,y)e' 2o Z f(sn,y)e 21 sine 7R o)

n=—oo

( _Sn)
bim
(21)
Because f € L*(R*H) and Ly[f](v,u) =
Jo (g [z, y) Ky (z,0)dz) K (y,u)dy, using the
relationship between kernels of QFT and QLCT, we
obtain

LY (v, )

cagy? dou?
e 203 ue] by

\ 27Tb2j b2

zf%{ /]R f(z, y)Kj‘h (z,v)dx

Then, from the assumption of E i1, g

w(y) =
2

Je [z, y) Ky (z, v)dxme] P s a 72 BL func-

tion with respect to y in the QFT sense. Therefore,

we can recover ¢,(y) from the samples at point ¢,
via the following formula:

[ 1KY (@)
Z /f (2,tm) Ky, (, v)dxe.%(t;’;y :

m=—0o0
. sincL(y ~tm) )
bQT[

Multlplylng both sides of the above equality by

alv

e 251 | we have
/f e 2b1 e iﬁl efie o
x x
y 27Tb11
Z /f:z:t KAI(I v)dx
m=—0oQ
a 2 - . a ’U2 —
e e )e_1 %, Sinc_crz(?é tm)‘,
27T
e 2171 671b1 ee
x x
/f y 27Tb11
e Tl 2 — g2
Uf“ e N os 22(tm — V%)
27Tb11 2b2

m=—0o0

2
Laqv
el

2
e 2b1 e lble by
(x,tm dx
/f \/27’[1)11

- sin (Lt%_ y2>) j} sinc 22 = tm).

2 b27'[
Taking the inverse quaternion Fourier transform
5=F5 ' on both sides at point x,, = 7 and using the

2
Lajv .
1 1= o—ive _ 1 7thy
o Jp€ T ey = 271(\/ a1
ccos (2 L) 4 ”bl cos (4 L (ai,b; >
4a1 47t 4a1 47t (e

0, i = 1,2), we obtain

2

fact that I(z) :=

o
f(Smy)\/Tbll
cays2
= e as(ty, — y*)
= n7tm o
P [f ) s 20
.a1<sn )2
2by
n tm l(z)d
/ Flosa 4. t0) e (@)
2 — —tm
Sln (%bzy)) J:| Sll’lC2(yb277r).
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Substituting it into Eq. (21), we obtain sampling
series (20).

4 Error analysis
4.1 Truncation errors associated with QFT

Truncation error occurs naturally in applica-
tions, because only a finite number of samples are
given in practice. For f € L?(R? H) which is BL to
(01,02) in the QFT sense, let R1n a7, R2n 0, and
R3y,a denote the truncation errors of f(x,y):

RlN ]\/[(LL' y)
_f :,C y ZN Z f nhl,mhg (22>
sin (o1 (z — nhy)) sin (o2(y — mhz))
o1 (x —nhy) o2 (y — mhy)
where hy :=1t/0q and hg := 71/ 09,
R2n M (2, y)
N M o }7
24m
—fxy _Z_: _z_: [ :cn,ymcos 5
)A(:n ~ ~ Ym )A(:n
ccos 22 Ho[f1(Zn, Ym) cos UQT sin 012
o Y X,
- Hy[f] (l’n, ym) sin z COS z
2 2
o Y X,
ey 1T sin 725 sin 15
. 15(:” . GQ}A}m
- sinc sinc ,
T 27
(23)
R3N71\/[(£E y)
(z)+ Ka(y)+M
SR SR [f<n2h1,m2h2>
n=Ki(z)-N m=K2(y)—
+ (LL' — nghl)a—i(nghl,mghg)
0
+ (y — maha) == (n2h1, mahs)

dy
2

0
8x—éfy(n2hl’ m2h2)]

(e =) (sl =)
(24)

where Z,, = nohy, Jm = maha, X, = & — nohy, Yy, =
y—mahy, g — 3 < Ki(@) < g5 + 5095, — 3 <
Ky(y) < ﬁ + 3, and (K1(z), K2(y)) are integer

+ (& = n2h1)(y — Um)

points nearest to the truncation error observation

point (x,y). The following lemmas are used to
prove the estimation of truncation errors R1y ps and
R2N71\/[ .

Lemma 10 (Splettstosser et al., 1981)

(8 ) =

n=—oo

sin(o(z — 22))

o(x — Ma)
o

where o > 0.

Lemma 11 (Jagerman, 1966)

[V

>

[n|>N

_ [sin(@12)] ON 5
- g1 (Nh1)2 — I2 ’

where |z| < Nh;.

Theorem 13 For f € L*(R? H) which is BL
to (o1,02) in the QFT sense, let R1y y be defined
by Eq. (22), where || < Nhy, |y| < Mhg, N > 1,
M>1,

sin(o1(x — nhy)) ‘2
0'1(1' — nhl)

[SIE

f(nhy,mho)|* |,

+oo
= (1YY

[n|>N m=—cc

By S

|m|>M n=—o0

[MES

L]\/[ = nh17mh2 | B

[V

Iy = | hih3 Y D | f(nhy,mhy)?

[m|>M |n|>N
Then

|R1N’M(I,y)| < Il(xvyvN) + IQ(Ivva)

. 2. VMN
72\/((Nh1)? = a?)(Mh2)? = y?)’

where
2V2N K
Li(z,y,N) := | sin(oy2)| —————
7T (Nh1)2—$2
V2 M Ly
L(x,y, M) = sin(o —_—.
2(,y, M) | sin(o2y)] Gl

The proof of Theorem 13 is available in the sup-
plementary materials.

Further estimates of |R1y, (2, y)| may be ob-
tained by estimating quantities Ky, Las, and Jy .



474 Hu et al. / Front Inform Technol Electron Eng 2022 23(3):463-478

An immediate consequence of R2y ps(x, y) is the
following theorem which can be obtained by some
arguments similar to Theorem 13:

Theorem 14 Let R2n,a be defined by Eq. (24),
|I| < Nh1,|y| < Mh2,N >1,M>1,

[SE

1 =
Kiy=5 (1 Y > [fi@nha2mho)* )

|n|>N m=—co

(S

+oo
, 1
Liv=5 3 D D |fi@nha,2mho)* )
[m|>M n=-—o0
3
Jinar== | Bih3 > > [fi(2nhy,2mho)*|

[m|>M |n|>N

where i = 2,3,4,5, fo = f, fs = Ha[f], fa = Hy[f],
and f5 = Hay[f]. Then
[R2n a(z, y)|

<Sy(z,y) + S3(z,y) + Saz,y) + S5(z,y),
where

Si(z,y,N)

2\/W

0’1!E
/ Nh1

2\/ (ozy) _ Ljm
SlIl
rr V(Mhy)2 — 42
N 2V MN Jinm

TR ) (e - )
Herein, j = 2,3,4, 5.

Before estimating R3n as(z,y), there is a need
to point out that BL quaternionic function f(z1, 22)
has been proved to be a quaternion holomorphic
function (Hu and Kou, 2018), which is holomorphic
in two variables (z1, 22):
%f(zhzﬂ = va(21722)8%2 =0,
where z1 € H;, H; = {21]21 = x1 + ix2, 21,22 € R},
29 € Hj, H; = {22|22 =y +jy2,91,Y2 € R}, Bifl =
o +18i‘2, and 322 = 5+
error R3y a(x,y) is given by

Then truncation

R3n m(2,y)
B fla, 22) sing(%)d N sin%%)
B — 2(z2m 27T = 27
c; (22 —y)sin”(37) y i
(1) sin® (377)

f 2w le— 2 "
¢, (21 — x)sin (m) ust

f(Zl,Zg)
7{ ?{ (21— 2)(22 — ) sm‘z(%)sirﬂ(%)dzldz2
sin (2h2)
27j
(25)

Here Cj, shown in Fig. 1, is a simple closed contour
enclosing both the point z; = = and the zero point
z1 = nhy for all integers K1 (z)—N < n < Ky(z)+N.
C; shown in Fig. 1 is also a simple closed contour
enclosing both the point zo = y and the zero point
2o = mhy for all integers Ka(y) — M <m < Ka(y)+
M.

The proof of Theorem 14 is available in the sup-
plementary materials.

<= 2_1_[ K (x)+ N 1\2m
‘1(1/()()0_1 [/X+ +2]¢71

Y

<
X
X

(Ketn)-m-3 |20
2)o, (b)
Fig. 1 The simple closed contours Cj (a) and Cj (b)

C; and Cj belong to H; and Hj planes respectively, and are
used to calculate the truncation error bound R3n, ar(z,y)

Theorem 15 If quaternionic function f(x,y) is BL
to (r101,7202) in the QFT sense, where 0 < r; <
1 (i =1,2) and |f(x,y)| < C, for (z,y) € R?* and
C > 0, then an upper bound for the truncation error

YTt : Tt
sin (2h ) S111 (_2h1)

7tM sin(mry) 7N sin(7ry)
T2 T1

sin (g2) o ()|

7tN sin(7try) M sin(7trs)
T1 T2

R3y,a at point (z,y) is given by

2 2

2C 2C

IR3n, 0 (2, )| <

4c

Before giving the proof of Theorem 15, we need

the following lemma:
Lemma12 If f € L?(R? H) is BL to (o1, 02), then

(1) £ (21, 22)| < Cre™Ile2l%2l,
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(2) |f(217y1)| S Cledl\zl\’
(3) | f (1, 22)| < Cre2lz2l,

where Cy = & [7} fUQ | Fr (v, u)|dvdu.
The proof of Lemma 12 is available in the sup-
plementary materials.

From this lemma, using the technique in Yao
and Thomas (1966), we obtain Theorem 15.

4.2 Truncation errors associated with QLCT

If f(x,y) is BL to (01,02) in the two-

sided QLCT sense, Lemma 8 implies that
elara®/(201) f (g g))eia=y®/(202) js BL to (=7 %) in

the two-sided QFT sense. So, we have the follow-
ing truncation errors in the QLCT sense from Theo-
rems 13-15. Let RlN,M, R2N,M7 and R3N,JV[ denote
the truncation errors of f(x,y) as follows (Assume
]vll = b17'E/0'1 and ]vlg = bgT[/Ug) :

Rin, (@, )
N M
jo1(s
Yoo € BT flsntm) (26)
N m=—M
ap (4, —v%) _ _
€ 2t2”2y sincal(x ")sincgz(y tm)»
b1 bomt
R2y m(,y)
N M ay(sy—z<) .
=f(z,y) — Z Z |:e1 201 f(gn,tm)
n=—Nm=-M
a F — T a 5271'2
o 2(t2b2 y<) COSO' Tm o 01Sn _el 1(2%1 )
2b2 2b1
~ ag(t2,—v?) UQT 0,137
H Snytm)e BI) cOoS m n
Al[f](sn m) 2%y %5
jorlsy == as(ty, —y°)
—e 2b7 ’]_[:{42 [f](sm tm)e] 55
. UQTm 0'1§n Lo1Gn =) oy -
sin T c 2% 267 HA1A2[f](5n,tm)
a2(t§27§7y) . U2Tvm 0'1§n
€ 2 Sin
2b2 2b1
. S, . O’QTm
- SInc S1nc y
2b1 2boTt
(27)
R3n.m

ialgi o~ jagt
— § E e 201 f(5n7tm)e 20o
[n|<N |m|<M

.alsn 8 —~ agt

+ (z —3,) [e 251 8—x(smtm)eJ 20"

sinc ar n i sinc 2y _ m i

2b17’[ b227'[ '
Corollary 2 Suppose that f € L?(R?,H) is BL to
(01,02) in the two-sided QLCT sense. Let filN)M

be defined by Eq. (26), where |z| < Nhi,|y| <
Mhy, N >1,M > 1,

[SIES

+oo
RN If by, mho)? |

[n|>N m=—cc

+oo
L= B3 >, 3

|m|>M n=—o0

[MES

f(hy,mho)* |,

[V

jN,M: h%% Z Z |f(n7ll,m7l2)|2

[m|>M |n|>N

Then

S j1($,y7N) +j2($7y,M)

N 2Jn ., VMN

ﬂ2\/((N7Ll)2 —a?)((Mh2)? - ¢?)

|R1N,M(way)|

where
v 2N K
Il(x7y7N) = (0;_‘%) ‘ N )
L (Nhy)? — a2
y 22 M L
Iy(z,y, M) = sin (Ubiy) ‘$
2 ( i

Corollary 3  Let f{2N)M be defined by Eq. (27),
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|z| < Nha,|y| < Mhy, N >1,M > 1,

[N

“+o0
. 1. y o
Kiy =5 | 1 S Ifi@nhy2mho) |,
[n|>N m=—c0
1
1 R ’
Liar = 5 | 13 SN 1fi@nhy, 2mhn)* ]
[m|>M n=—o0
1
1 2
Jin =7 hih3 > > fi(2nhy,2mho)? |

[m|>M |n|>N

where 1 = 27374757f2 = f7f3 = Hil[f]7f4 =
HY,[f], and f5 = Hy 4 [f]. Then we have

IR2n,0(, y)]
<Sa(z,y) + S3(z,y) + Sa(z,y) + Ss5(z,y),

where
a9 = 2V ()|
Vg

2\/2M' . <a2y> ' Lju

+ ——sin| =— | | ——m————=
m 2bo (Mh3)? —y?
. 2V MN Jjn

TR a2 — )

Herein, j = 2,3, 4, 5.

Corollary 4 If quaternionic function f(z,y) is BL
to (ri01/b1,r202/b2) in the QFT sense, where 0 <
ri <1 (i=1,2)and |f(z,y)| < C, for (z,y) € R?
and C' > 0, then an upper bound for the truncation
error Iv{?)N,M at point (x,y) is given by

2C

2 2
. YTt : T
sin (2}32) ' 2C| sin <2E1) ‘

M sin(7tra) 7N sin(7try)
r2 r1

2
: Tt : YTt
11 = 11 =

7tN sin(7try) M sin(7trs)
T1 T2

IR3n, (2, y)| <

4C

5 Examples

In this section, we use mainly sampling for-
mula (8) in Theorem 3 to produce a high-resolution
image from its corresponding low-resolution version.
The quality of the high-resolution image is measured
by the structural similarity index measure (SSIM)

and feature similarity index measure (FSIM) in Al-
gorithm 1.

By Figs. 2 and 3, our sampling formula can re-
cover the color image from low to high resolution.
The quantitative measurements in Table 1 show the
effectiveness of the proposed sampling formula.

Algorithm 1 Image reconstruction

1: Input the test color image f(t1,t2) and convert the color
image into the quaternion form.

2: The test image is downsampled by factor 2.

3: Generate a high-resolution (HR) image from the down-
sampled image by Eq. (8).

4: Compute the SSIM and FSIM to evaluate the quality of
the generated HR image.

Fig. 2 Reconstructed images for Lena, flower, and
bird by Algorithm 1

The first row shows the original images. The second row
shows the degraded images with the resolution of 128X 128.
The third row shows the rec

onstructed images

Fig. 3 Reconstructed images for house, pepper, and
horse by Algorithm 1

The first row shows the original images. The second row
shows the degraded images with the resolution of 128X 128.
The third row shows the reconstructed images

Table 1 SSIM and FSIM values of the reconstructed
images

Image SSIM FSIM
Lena 0.9440 0.8912
Flower 0.9554 0.9495
Bird 0.9462 0.9353
House 0.9357 0.8822
Pepper 0.9559 0.8953
Horse 0.8531 0.8751
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6 Conclusions

First, by Lemma 1, if the quaternionic function
is bandlimited to a rectangle that is symmetric about
the origin in the right-sided QFTs, then it is also
bandlimited to this rectangle in the left- and two-
sided QFTs, and vice versa. Therefore, if the quater-
nionic function is bandlimited to this rectangle, then
the sampling formula associated with various QFTs
is identical. However, if the quaternionic function
is bandlimited to a rectangle that is not symmetric
about the origin, then the sampling formulas asso-
ciated with various QFTs are different. Second, we
obtained not only the sampling formulas using the
samples, but also the sampling series using samples
of the partial derivatives and quaternion partial and
total Hilbert transforms. Third, the sampling formu-
las associated with various QLCTs were obtained by
the relationships of QFTs and QLCTs. Fourth, the
truncation errors of those sampling formulas were de-
rived. At last, by Algorithm 1, the sampling formula
was applied to color image reconstruction.

In the future, we will apply the sampling series
to color images, and multi-dimensional signals will
be explored.
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