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1 Introduction

Sampling theory is one of the most important
mathematical techniques used in communication en-
gineering, information theory, signal analysis, image
processing, and so on (Zayed, 1993; Cheng and Kou,
2019, 2020). Sampling theories of multi-dimensional
real signals in R

N appeared in Zayed (1993). Sam-
pling theories of high-dimensional signals in several
complex variable settings (Kou and Qian, 2005a) and
the Clifford analysis setting (Kou and Qian, 2005b)
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were obtained. Recently, the quaternions, which
are hyper-complex numbers, have been proved to
be an effective tool in quite a few applications of
multi-dimensional signal processing analysis (Jiang
et al., 2016; Zou et al., 2016; Hu and Kou, 2018;
Bahia and Sacchi, 2020; Alon and Paran, 2021), and
account for correlated nature of the signal compo-
nents in a natural way. Meanwhile, numerous novel
tools in multi-dimensional signal and image pro-
cessing have been developed using the quaternion
modeling technique. The representative tools are
quaternion Fourier transforms (QFTs), quaternion
fractional Fourier transforms (QFrFTs), and quater-
nion linear canonical transforms (QLCTs) (Ell et al.,
2014; Kou and Morais, 2014; Chen et al., 2015; Kou
et al., 2017; Lian, 2021). Some important theorems
have been studied, such as the inverse theorems as-
sociated with QFTs and QLCTs (Hu and Kou, 2017)
and convolution theorems associated with QFTs and
QLCTs (Pei et al., 2001; Hitzer E, 2017).

The sampling expansions associated with the
right-sided QFT were studied in Cheng and Kou
(2018), but the main shortcoming of this approach is
that only the right-sided QFT case was considered.
In this study, we study not only the sampling for-
mula associated with the right-sided QFT, but also
the sampling formulas associated with the left- and
two-sided QFTs. Therefore, sampling formulas asso-
ciated with various QLCTs are obtained.

There are five main points in this study: (1) to
study the quaternionic function sampling formulas
bandlimited (BL) to a rectangle that is symmetric
about the origin under various QFTs; (2) to study
the quaternionic function sampling formulas BL to
a rectangle that is not symmetric about the origin
under various QFTs; (3) to explore not only the
sampling formulas using samples of themselves, but
also samples of the partial derivatives and quater-
nion partial and total Hilbert transforms; (4) to
obtain the sampling formulas associated with vari-
ous QLCTs using relationships between QFTs and
QLCTs; (5) to estimate truncation errors of these
sampling formulas.

2 Preliminaries of quaternion, QFTs,
and QLCTs

In this section, we are devoted to the exposition
of basic preliminary materials that are used exten-

sively throughout this paper.
Let H denote the Hamiltonian skew field of

quaternions, which has been proved to provide a nat-
ural framework for a unified treatment of three- and
four-dimensional signals.

A quaternionic number takes the form of

q = q0 + iq1 + jq2 + kq3, (1)

where q0 − q3 ∈ R, and i, j, k are orthogonal imag-
inary parts obeying the following rules: i2 = j2 =

k2 = ijk = −1. In this way, the quaternionic algebra
can be regarded as a non-commutative extension of
complex numbers C. When q0 = 0, q becomes a pure
quaternion. Let μ := iμ1+jμ2+kμ3 denote the unit
pure quaternion such that μ2 = −1. Let Hμ be the
field spanned by {1, μ}, which is the sub-field of H.
That is, Hμ := {q|q = q0 + μqμ, q0, qμ ∈ R, μ2 =

−1}. The quaternion conjugate of a quaternion q is
defined by q∗ = q0− iq1− jq2−kq3, which implies the
modulus of q ∈ H defined as |q| = √

qq∗ =
√
q∗q =√

q20 + q21 + q22 + q23 . From Eq. (1), it follows that a
quaternionic function f : R2 → H can be expressed
as f(x, y) = f0(x, y)+if1(x, y)+jf2(x, y)+kf3(x, y),

where fn ∈ R, n = 0, 1, 2, 3.
Let Lp(R2,H) (integer p ≥ 1) be the linear space

of all quaternionic functions in R
2, whose quaternion

modulus is Lp(R2,H) := {f |f : R2 → H, ‖f‖p :=
(∫

R
|f(x, y)|pdxdy) 1

p < ∞}.
Based on the quaternion concept, various QFTs

(Ell et al., 2014) and QLCTs (Kou et al., 2013) have
been introduced. For f ∈ L1(R2,H), the two-sided
QFT is as follows:

FT[f ](v, u) :=

∫

R2

e−ivxf(x, y)e−juydxdy. (2)

The right-sided QFT is as follows:

FR[f ](v, u) :=

∫

R2

f(x, y)e−ivxe−juydxdy.

The left-sided QFT is as follows:

FL[f ](v, u) :=

∫

R2

e−ivxe−juyf(x, y)dxdy.

QLCTs are the generalizations of QFTs. Let

AAAi =

(
ai bi
ci di

)
∈ R

2×2 be real matrix parameters

with unit determinant, i.e., det(AAAi)=aidi − cibi = 1,

for i = 1, 2.
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The two-sided QLCT is as follows:

Li,j
T (f)(v, u)

:=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
R2 K

i
AAA1

(x, v)f(x, y)K j
AAA2

(y, u)dxdy,

b1, b2 �= 0,
∫
R2

√
d1e

i
c1d1v2

2 f(dv,y)Kj
AAA2

(y,u)
dy,

b1 = 0, b2 �= 0,
∫
R2 K

i
AAA1

(x, v)f(x, du)
√
d2e

j
c2d2v2

2 dx,

b1 �= 0, b2 = 0,

ei
c1d1u2

2 f(dv, du)
√
d1
√
d2e

j
c2d2v2

2 ,

b1 = 0, b2 = 0.

The right-sided QLCT is as follows:

Li,j
R (f)(v, u) :=

∫

R2

f(x, y)K i
AAA1

(x, v)K j
AAA2

(y, u)dxdy.

The left-sided QLCT is as follows:

Li,j
L (f)(v, u) :=

∫

R2

K i
AAA1

(x, v)K j
AAA2

(y, u)f(x, y)dxdy.

Herein kernels K i
AAA1

and K j
AAA2

of QLCTs are given

by K i
AAA1

(x, v) := 1√
i2πb1

e
i(

a1
2b1

x2− 1
b1

vx+
d1
2b1

v2) and

K j
AAA2

(y, u) := 1√
j2πb2

ej(
a2
2b2

y2− 1
b2

yu+
d2
2b2

u2). Note that
when bi = 0 (i = 1, 2), QLCT of a function is essen-
tially a chirp multiplication and is of no particular
interest to us. Hence, without loss of generality, we
set bi �= 0 (i = 1, 2) throughout the paper. It is
significant to note that QLCT converts to its special
cases when we take different matrices AAAi (i = 1, 2).

For example, when AAA1 = AAA2 =

(
0 1

−1 0

)
, QLCT

is reduced to QFT, where
√−i = e−iπ/4 and

√−j =

e−jπ/4. If AAA1 =

(
cosα sinα

− sinα cosα

)
and AAA2 =

(
cosβ sinβ

− sinβ cosβ

)
, QLCT becomes QFrFT multi-

plied by the fixed phase factors e−iα/2 and e−jβ/2.
QFTs are invertible, and for their inversion theo-
rems, readers can refer to Hu and Kou (2017).
Lemma 1 (Hu and Kou, 2017) Suppose that
the quaternionic function f(x, y) satisfies one of the
following conditions:

(1) f and the corresponding QFT both belong
to L1(R2,H).

(2) f ∈ L2(R2,H), if supp (Fn[f ]) ⊂ [σ1, σ2] ×
[σ3, σ4], where n = R, L, or T, and σi (i = 1, 2, 3, 4)

are real constants, and can be chosen at will.

Then

f(x, y) =
1

4π2

∫

D

eivxFT[f ](v, u)e
juydudv.

f(x, y) =
1

4π2

∫

D

FR[f ](v, u)e
juyeivxdudv.

f(x, y) =
1

4π2

∫

D

ejuyeivxFL[f ](v, u)dudv,

where D = R
2 for condition (1) and D = [σ1, σ2] ×

[σ3, σ4] for condition (2).
Lemma 2 (Quaternion Cauchy-Schwarz inequal-
ity) (Kou and Qian, 2005a) If f, g ∈ L2(R2,H),
then Hölder’s inequality yields
∣∣
∣
∣

∫

R2

f(x, y)g(x, y)dxdy

∣∣
∣
∣ ≤

∫

R2

|f(x, y)g(x, y)| dxdy

≤ ‖f(x, y)‖2‖g(x, y)‖2.
(3)

Lemma 3 (Parseval equality) (Hitzer EMS, 2007)
Set f ∈ L2(R2,H). Then we have

E := ‖f‖2 = 1

4π2
‖Fn‖2, n = T,R,L. (4)

3 Sampling theorems for bandlimited
(BL) quaternionic functions

3.1 Sampling theorems for BL quaternionic
functions in the QFT sense

Let f be a quaternionic function defined on T
2,

where T = [0, 2π] and T
2 is the Cartesian product of

T × T. The space Lp(T2,H) consists of all quater-
nionic functions such that

∫
T2 |f(x, y)|pdxdy < ∞.

For a function f ∈ L2(T2,H), we can define the
right-sided quaternion Fourier coefficients as cn,m =
1

4π2

∫
T2 f(x, y)e

−inxe−jmydxdy. Then the right-sided
quaternion Fourier series can be written as f(x, y) ∼∑∞

n=−∞
∑∞

m=−∞ cn,mejmyeinx.

Lemma 4 (Bessel’s inequality) Let
f ∈ L2(T2,H). Then Bessel’s inequality holds:∑∞

n=−∞
∑∞

m=−∞ |cn,m|2 ≤ 1
4π2

∫
T2 |f(x, y)|2dxdy <

∞.

The proof of Lemma 4 is available in the sup-
plementary materials.

Due to Bessel’s inequality, the
right-sided quaternion Fourier series∑∞

n=−∞
∑∞

m=−∞ cn,meinxejmy will converge in
the sense of L2. Indeed, it can be proved that
the system {einxejmy|(n,m) ∈ Z

2} is complete in
L2(T2,H). Then with an argument similar to that
in Pan (2000), we have the following lemma:
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Lemma 5 Let f ∈ L2(T2,H),

f(x, y) ∼ ∑∞
n=−∞

∑∞
m=−∞ cn,mejmyeinx,

and SN,M =
∑N

n=−N

∑M
m=−M cn,mejmyeinx.

Then limN→∞,M→∞ ‖f − SN,M‖2 =

limN→∞,M→∞
∫
T2 |f(x, y)− SN,M (x, y)|2dxdy = 0.

The Parseval equality holds as

‖f(x, y)‖2 =

∞∑

n=−∞

∞∑

m=−∞
|cn,m|2.

Definition 1 f(x, y) is said to be a BL signal (func-
tion) of [−σ1, σ1]× [−σ2, σ2] in the right-sided QFT
sense, i.e., FR[f ](v, u) = 0, for |v| > σ1 or |u| > σ2.

In the following, for simplicity, we use the fol-
lowing abbreviated notations: (σ1, σ2) := [−σ1, σ1]×
[−σ2, σ2]. To formulate our sampling formulas, we
need a very important result:
Theorem 1 Suppose f(x, y) = f0(x, y) +

if1(x, y) + jf2(x, y) + kf3(x, y), f ∈ L2 ∪ L1(R2,H).

Then the following four statements are equivalent:
(1) FR[f ](v, u) = 0, for |v| > σ1 or |u| > σ2.

(2) FR[fn](v, u) = 0, for |v| > σ1 or |u| > σ2,

n = 0, 1, 2, 3.
(3) FL[f ](v, u) = 0, for |v| > σ1 or |u| > σ2.

(4) FT[f ](v, u) = 0, for |v| > σ1 or |u| > σ2.

Proof It is sufficient to prove the equivalence
between the first and second statements because
FR[fn](v, u) = FL[fn](v, u) = FT[fn](v, u), where
fn are real functions, n = 0, 1, 2, 3.

(2) =⇒ (1). As f ∈ L2 ∪ L1(R2,H), then
fn ∈ L2∪L1(R2,R) and FR[f ](v, u) = FR[f0](v, u)+

iFR[f1](v, u) + jFR[f2](v, u) + kFR[f3](v, u), so the
second statement can imply the first statement.

(1) =⇒ (2). Because

⎧
⎪⎪⎨

⎪⎪⎩

f = f0 + if1 + jf2 + kf3,

−ifi = f0 + if1 − jf2 − kf3,

−jfj = f0 − if1 + jf2 − kf3,

−kfk = f0 − if1 − jf2 + kf3,

it follows that

⎧
⎪⎪⎨

⎪⎪⎩

f0 = 1
4 (f − ifi − jfj − kfk),

f1 = −i
4 (f − ifi + jfj + kfk),

f2 = −j
4 (f + ifi − jfj + kfk),

f3 = −k
4 (f + ifi + jfj − kfk).

Taking the right-sided QFT on both sides, we

obtain

FR[f0](v, u) =
1

4

(
FR[f ](v, u)− iFR[f ](v,−u)i

− jFR[f ](−v, u)j− kFR[f ](−v,−u)k
)
,

FR[f1](v, u) =
−i

4

(
FR[f ](v, u)− iFR[f ](v,−u)i

+ jFR[f ](−v, u)j + kFR[f ](−v,−u)k
)
,

FR[f2](v, u) =
−j

4

(
FR[f ](v, u) + iFR[f ](v,−u)i

− jFR[f ](−v, u)j + kFR[f ](−v,−u)k
)
,

FR[f3](v, u) =
−k

4

(
FR[f ](v, u) + iFR[f ](v,−u)i

+ jFR[f ](−v, u)j− kFR[f ](−v,−u)k
)
.

Hence, the first statement implies the second
statement.
Remark (1) We can see from Theorem 1 that
if f ∈ L2 ∪ L1(R2,H) is BL to (σ1, σ2) in the right-
sided QFT sense, then it is also BL to (σ1, σ2) in
the two- and left-sided QFT senses, and vice versa.
In this case, f is said to be BL to (σ1, σ2) in the
QFT sense. (2) If f(x, y) is BL to a rectangle that is
not symmetric about the origin, then the sampling
formulas of f under the various types of QFTs will
be different. We will show them in Theorems 3–5.
Theorem 2 (Sampling theorem for QFTs) Sup-
pose that f ∈ L2(R2,H) is BL to (σ1, σ2) in the QFT
sense. Then f(x, y) can be reconstructed from its
sampled values at the points (nπσ1

, mπ
σ2

), (n,m) ∈ Z
2,

via the following formula:

f(x, y) =

∞∑

n=−∞

∞∑

m=−∞

[

f(xn, ym)

· sin(σ1(x− xn))

σ1(x− xn)

sin(σ2(y − ym))

σ2(y − ym)

]

,

(5)

where xn = nπ
σ1

and ym = mπ
σ2

. The series converges
in the L2 norm, and it is absolutely and uniformly
convergent on any compact subset of R2.
Proof From Hitzer EMS (2007), we have
FR[f ](v, u) ∈ L2([−σ1, σ1] × [−σ2, σ2],H). There-
fore, by Lemma 5, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

FR[f ](v, u) =

∞∑

n=−∞

∞∑

m=−∞
C̃n,me

iv nπ
σ1 e

jumπ
σ2 ,

ejuyeivx =

∞∑

n′=−∞

∞∑

m′=−∞
dn′,m′e

jum′π
σ2 e

iv n′π
σ1 ,
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where

C̃n,m

=
1

4σ1σ2

∫ σ1

−σ1

∫ σ2

−σ2

FR[f ](v, u)e
−jumπ

σ2 e−iv nπ
σ1 dvdu

=
4π2

4σ1σ2
f
(
− nπ

σ1
,−mπ

σ2

)
,

(6)

dn′,m′

=
1

4σ1σ2

∫ σ1

−σ1

∫ σ2

−σ2

ejuyeivxe−iv n′π
σ1 e−jum′π

σ2 dvdu

=
sin(σ1(x− n′π

σ1
))

σ1(x− n′π
σ1

)

sin(σ2(y − m′π
σ2

))

σ2(y − m′π
σ2

)
.

From Lemma 1, we have

f(x, y)

=
1

4π2

∫ σ1

−σ1

∫ σ2

−σ2

FR[f ](v, u)e
juyeivxdvdu

=
1

4π2

∫ σ1

−σ1

∫ σ2

−σ2

∞∑

n=−∞

∞∑

m=−∞

∞∑

n′=−∞

∞∑

m′=−∞
C̃n,m

· eiv nπ
σ1 eju

mπ
σ2 dn′,m′eju

m′π
σ2 eiv

n′π
σ1 dvdu

=
1

4π2

∫ σ1

−σ1

∫ σ2

−σ2

∞∑

n=−∞

∞∑

m=−∞

∞∑

n′=−∞

∞∑

m′=−∞
C̃n,m

· eiv nπ
σ1 eju

mπ
σ2 eju

m′π
σ2 eiv

n′π
σ1

· sin(σ1(x− n′π
σ1

))

σ1(x− n′π
σ1

)

sin(σ2(y − m′π
σ2

))

σ2(y − m′π
σ2

)
dvdu

=
4σ1σ2

4π2

∞∑

n′=−∞

∞∑

m′=−∞
C̃−n′,−m′

· sin(σ1(x− n′π
σ1

))

σ1(x− n′π
σ1

)

sin(σ2(y − m′π
σ2

))

σ2(y − m′π
σ2

)
,

(7)
which, in view of Eq. (6), implies Eq. (5). The con-
vergence in Eq. (7) is understood to be in the sense
of L2. However, Eq. (5) is readily seen to converge
absolutely and uniformly on any compact subset of
R

2 when we apply the quaternion Cauchy-Schwarz
inequality (3) and Eqs. (4) and (5).

If f(x, y) is BL to a rectangle that is not sym-
metric about the origin, then the sampling formula
is as follows:
Theorem 3 (Sampling theorem for two-sided
QFT) If f ∈ L2(R2,H) and FT[f ](v, u) = 0,

for |v − v0| > σ1 or |u− u0| > σ2, we have

f(x, y) =
∞∑

n=−∞

∞∑

m=−∞

[

eiv0(x−xn)f(xn, ym)eju0(y−ym)

· sincσ1(x− xn)

π
sinc

σ2(y − ym)

π

]

.

(8)
The series converges in the L2 norm, and it is ab-
solutely and uniformly convergent on any compact
subset of R2.

Proof Because FT[f ](v, u) = 0, for |v − v0| >
σ1 or |u − u0| > σ2, then e−iv0xf(x, y)e−ju0y is BL
to (σ1, σ2). Hence from Theorem 2, by substituting
e−iv0xf(x, y)e−ju0y for f(x, y) in sampling series (5),
we obtain sampling formula (8).

Theorem 4 (Sampling theorem for right-sided
QFT) If f ∈ L2(R2,H) and FR[f ](v, u) = 0,

for |v − v0| > σ1 or |u− u0| > σ2, we have

f(x, y)

=

∞∑

n=−∞

∞∑

m=−∞

[
f(xn, ym)eiv0(x−xn) cos(u0(y − ym))

+ f(−xn, ym)e−iv0(x−xn) sin(u0(y − ym))j
]

· sincσ1(x− xn)

π
sinc

σ2(y − ym)

π
.

(9)
The series converges in the L2 norm. Moreover, it
converges absolutely and uniformly on any compact
subset of R2.

Proof From the assumption of f , we have

f(x, y)

=
1

4π2

∫ σ1+v0

−σ1+v0

(∫ σ2+u0

−σ2+u0

FR[f ](v, u)e
juydu

)
eivxdv.

Because F i
R[f ](v, y) :=

∫
R
f(x, y)e−ixvdx =

1
2π

∫ σ2+u0

−σ2+u0
FR[f ](v, u)e

juydu, for |v − v0| ≤ σ1, we
have

f(x, y)e−iv0x =
∞∑

n=−∞
f(xn, y)e

−iv0xnsinc
σ1(x− xn)

π
.

(10)

Because
∫
R

( ∫
R
f(x, y)e−ixv0e−ixvdx

)
e−jyudy =

FR[f ](v + v0, u), assume g(y) =∫
R
f(x, y)e−ixv0e−ixvdx. Then F i

R[g](u) = 0.
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For |u − u0| > σ2, we have
∫

R

f(x, y)e−ixv0e−ivxdx

=
∞∑

m=−∞

∫

R

f(x, ym)e−ixv0e−ixvdx

· sinc
(
σ2(y − ym)

π

)
eju0(y−ym).

(11)

Applying F−i
R to both sides of Eq. (11) at point

xn, we have

f(xn, y)e
−ixnv0

=
∞∑

m=−∞

(
f(xn, ym)e−ixnv0 cos(u0(y − ym))

+ f(−xn, ym)eixnv0 sin(u0(y − ym))j

)

· sincσ2(y − ym)

π
.

(12)

By substituting f(xn, y)e
−ixnv0 in the above

equation into Eq. (10), we obtain Eq. (9).
Theorem 5 (Sampling theorem for left-sided
QFT) If f ∈ L2(R2,H) and FL[f ](v, u) = 0,

for |v − v0| > σ1 or |u− u0| > σ2, we have

f(x, y)

=

∞∑

n=−∞

∞∑

m=−∞

(
eju0(y−ym)f(xn, ym) cos(v0(x− xn))

+ e−ju0(y−ym) sin(v0(x− xn))if(xn,−ym)
)

· sincσ1(x− xn)

π
sinc

σ2(y − ym)

π
.

(13)
The series converges in the L2 norm. Moreover, it
converges absolutely and uniformly on any compact
subset of R2.
Proof Using an argument similar to the proof of
Theorem 4, we can easily carry out the proof of this
theorem.

Next, we will introduce the quaternion partial
and total Hilbert transforms (Bulow and Sommer,
2001; Kou et al., 2017) associated with QFTs, and de-
rive the sampling formula using samples of its quater-
nion partial and total Hilbert transforms. In addi-
tion, the sampling formula using the samples of its
partial derivatives is derived. Then, the sampling
rate can be reduced by taking multiple types of sam-
ples simultaneously.

Definition 2 Let f ∈ L2 ∪ L1(R2,H). Then the
quaternion partial Hilbert transform H1 of f along
the x and y axes and the quaternion total Hilbert
transform H2 along the x and y axes of f are given
by

H1[f(·, y)](x) := p.v.
1

π

∫

R

f(t, y)

x− t
dt, a.e.,

H1[f ](x, ·)(y) := p.v.
1

π

∫

R

f(x, t)

y − t
dt, a.e.,

H2[f(·, ·)](x, y) := p.v.
1

π2

∫

R2

f(t, s)

(x − t)(y − s)
dtds, a.e..

Let

Hx[f ](x, y) := H1[f(·, y)](x),
Hy[f ](x, y) := H1[f ](x, ·)(y),

Hxy[f ](x, y) = H2[f(·, ·)](x, y).
Using the analogous definition of the quaternion

analytic signal given in Bulow and Sommer (2001)
and Hahn and Snopek (2005), we have the following
quaternion analytic signal associated with FR:
Lemma 6 Let f ∈ L2(R2,R). Then we have

FR[Hx[f ]](v, u) = FR[f ](v,−u)(−i)sgn(v),

FR[Hy[f ]](v, u) = FR[f ](v, u)(−j)sgn(u),

FR[Hxy[f ]](v, u) = FR[f ](v,−u)ijsgn(u)sgn(v).

The quaternion analytic signal is defined by

fq =f +Hx[f ](x, y)i +Hy[f ](−x, y)j

+Hxy[f ](−x, y)k.

Moreover,

FR[f
q](v, u) = (1 + sgn(u))(1 + sgn(v))FR[f ](v, u).

Theorem 6 If f ∈ L2(R2,H) and FR[f ](v, u) = 0,

for |v| > σ1 or |u| > σ2, we have

f(x, y) =

∞∑

n=−∞

∞∑

m=−∞

[

f(x̃n, ỹm) cos
σ2Ỹm

2
cos

σ1X̃n

2

−Hx[f ](x̃n, ỹm) cos
σ2Ỹm

2
sin

σ1X̃n

2

−Hy[f ](x̃n, ỹm) sin
σ2Ỹm

2
cos

σ1X̃n

2

+Hxy[f ](x̃n, ỹm) sin
σ2Ỹm

2
sin

σ1X̃n

2

]

· sincσ1X̃n

2π
sinc

σ2Ỹm

2π
,

(14)
where x̃n := 2nπ

σ1
, ỹm := 2mπ

σ2
, X̃n := x −

x̃n, and Ỹm := y − ỹm.
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Proof If f ∈ L2(R2,H), then fk ∈ L2(R2,R),
k = 0, 1, 2, 3. It follows that the quaternion analytic
signal fq

k takes the form of

fq
k =fk +Hx[fk](x, y)i +Hy[fk](−x, y)j

+Hxy[fk](−x, y)k.

From Lemma 6, we have FR[f
q
k ](v, u) = (1 +

sgn(v))(1 + sgn(u))FR[fk](v, u); that is to say, fq
k

is BL to [0, σ1] × [0, σ2]. It follows from Theorem 4
that

fq
k (x, y)

=

∞∑

n=−∞

∞∑

m=−∞

[
fq
k (x̃n, ỹm)ei

σ1
˜Xn
2 cos

σ2Ỹm

2

+ fq
k (−x̃n, ỹm)e−i

σ1
˜Xn
2 sin

σ2Ỹm

2
j

]

· sincσ1X̃n

2π
sinc

σ2Ỹm

2π
.

(15)

Noting that fk(x, y) is the real part of fq
k (x, y),

with some straightforward calculations, we can de-
rive the sampling formula of fk as

fk(x, y)

=
∞∑

n=−∞

∞∑

m=−∞

[
fk(x̃n, ỹm) cos

σ1X̃n

2
cos

σ2Ỹm

2

−Hx[fk](x̃n, ỹm) sin
σ1X̃n

2
cos

σ2T̃m

2

−Hy[fk](x̃n, ỹm) sin
σ2Ỹm

2
cos

σ1X̃n

2

+Hxy[fk](x̃n, ỹm) sin
σ2Ỹm

2
sin

σ1X̃n

2

]

· sincσ1X̃n

2π
sinc

σ2Ỹm

2π
.

Because f = f0 + if1 + jf2 +kf3, then sampling
formula (14) holds for f .

From Theorems 1 and 6, we have the following
corollary:
Corollary 1 If f ∈ L2(R2,H), then f(x, y) can
be reconstructed from the samples of its quaternion
partial and toltal Hilbert transforms, if one of the
following conditions holds:

(1) FR[f ](v, u) = 0, for |v| > σ1 or |u| > σ2,

(2) FT[f ](v, u) = 0, for |v| > σ1 or |u| > σ2,

(3) FL[f ](v, u) = 0, for |v| > σ1 or |u| > σ2.

f(x, y)

=

∞∑

n=−∞

∞∑

m=−∞

[
f(x̃n, ỹm) cos

σ2Ỹm

2
cos

σ1X̃n

2

−Hx[f ](x̃n, ỹm) cos
σ2Ỹm

2
sin

σ1X̃n

2

−Hy[f ](x̃n, ỹm) sin
σ2Ỹm

2
cos

σ1X̃n

2

+Hxy[f ](x̃n, ỹm) sin
σ2Ỹm

2
sin

σ1X̃n

2

]

· sincσ1X̃n

2π
sinc

σ2Ỹm

2π
.

(16)
In the following, we derive the sampling formula in-
volving the samples of the original function and its
partial derivatives. Some lemmas are needed first:
Lemma 7 (Hitzer EMS, 2007) If f ∈ L2 ∩
Cm+n(R2,H) and g(x, y) := ∂n+mf

∂nx∂my ∈ L2(R2,H),

we have

FT[g](v, u) = (iv)nFT[f ](v, u)(ju)
m,

where n,m ∈ Z.
Lemma 8 (Marvasti, 2001)

eμvt = εμ1 (v, t) + μvεμ2 (v, t), v ∈ (−σ, σ),

where μ = iμ1+jμ2+kμ3 is the unit pure quaternion
such that μ2 = −1, for special cases of μ = i, j, or k.

εμ1 (v, t) =

(
1− |v|

σ

(
1− e−μσtsgn(v)

)
)
eμtv.

εμ2 (v, t) =
μsgn(v)

σ

(
e−μσtsgn(v) − 1

)
eμtv.

Here, εk(v, t) = εk(v − σ, t), for v ∈ (0, σ) and
k = 1, 2. Both functions may be expanded in their
σ-periodic boundedly converging Fourier series on
(−σ, σ)/{0}; that is to say,

εμ1 (v, t) =

∞∑

k=−∞

(
sinc

σt− 2kπ

2π

)2

e
μ2kπv

σ .

εμ2 (v, t) =

∞∑

k=−∞

(
sinc

σt− 2kπ

2π

)2(
t− 2kπ

σ

)
e

μ2kπv
σ .

Theorem 7 If f ∈ L2 ∩ C2(R2,H) is BL to
(σ1, σ2), and ∂f

∂x ,
∂f
∂y ,

∂2f
∂x∂y ∈ L2(R2,H), then the
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following sampling formula holds:

f(x, y)

=

∞∑

n=−∞

∞∑

m=−∞

[
f(x̃n, ỹm) + (x− x̃n)

∂f

∂x
(x̃n, ỹm)

+ (y − ỹm)
∂f

∂y
(x̃n, ỹm) + (x− x̃n)(y − ỹm)

· ∂2f

∂x∂y
(x̃n, ỹm)

] (
sinc

(σ1x

2π
− n

))2

·
(
sinc

(σ2y

2π
−m

))2

.

(17)
Proof From the assumption of f , we can recover
f from its QFT domain as follows:

f(x, y) =
1

4π2

∫ σ1

−σ1

∫ σ2

−σ2

eivxFT(v, u)e
juydvdu.

(18)
From Lemma 8, assume eivx = εi1(v, x) +

ivεi2(v, x) and ejuy = εj1(u, y) + jεj2(u, y). After sub-
stituting these equations into Eq. (18), we obtain

4π2f(x, y)

=

∫ σ1

−σ1

∫ σ2

−σ2

εi1(v, x)FT(v, u)ε
j
1(u, y)dvdu

+

∫ σ1

−σ1

∫ σ2

−σ2

εi1(v, x)FT(v, u)jε
j
2(u, y)dvdu

+

∫ σ1

−σ1

∫ σ2

−σ2

iεi2(v, x)FT(v, u)ε
j
1(u, y)dvdu

+

∫ σ1

−σ1

∫ σ2

−σ2

iεi2(v, x)FT(v, u)jε
j
2(u, y)dvdu.

Using Lemmas 7 and 8, with straightforward
calculations, we have sampling formula (17).

3.2 Sampling theorems for BL quaternion
functions in the QLCT sense

f ∈ L2(R2,H) is said to be a BL signal (func-
tion) to [−σ1, σ1] × [−σ2, σ2] (short for (σ1, σ2)) in
the two-sided QLCT sense, if Li,j

T [f ](v, u) = 0, for
|v| > σ1 or |u| > σ2.

Theorem 8 Suppose f ∈ L2(R2,H) and
Li,j
T [f ](v, u) = 0, for |v| > σ1 or |u| > σ2.

Assume g = eia1x
2/(2b1)f(x, y)eja2y

2/(2b2). Then
FT[g](v, u) = 0, for |v| > σ1

b1
or |u| > σ2

b2
.

Proof From the definition of the two-sided QLCT,
we obtain

FT[g]

(
v

b1
,
u

b2

)

=
1√
i2πb1

ei(
d1
2b1

v2)Li,j
T [f ](v, u)

1√
j2πb2

ej(
d2
2b2

u2).

Theorem 9 If f ∈ L2(R2,H) is BL to (σ1, σ2) in
the two-sided QLCT sense, then the following sam-
pling formula for f holds:

f(x, y)

=

∞∑

n=−∞

∞∑

m=−∞
ei

a1s2n−a1x2

2b1 f(sn, tm)ej
a2t2m−a2y2

2b2

· sincσ1(x− sn)

b1π
sinc

σ2(y − tm)

b2π
,

where sn = nb1π
σ1

and tm = mb2π
σ2

. The series con-
verges in the L2 norm. Moreover, it converges abso-
lutely and uniformly on any compact subset of R2.

Proof Theorem 8 implies that e
ia1x2

2b1 f(x, y)e
ja2y2

2b2

is BL to (σ1

b1
, σ2

b2
) in the QFT sense. So, applying

Theorem 2 to e
ia1x2

2b1 f(x, y)e
ja2y2

2b2 , we obtain the final
results.

Similarly, we obtain the following sampling se-
ries of f involving the function and its partial
derivatives:
Theorem 10 If f ∈ L2 ∩ C2(R2,H) is BL to
(σ1, σ2) in the two-sided QLCT sense, and xf, yf, ∂f

∂x ,

y ∂f
∂x ,

∂f
∂y , x

∂f
∂y ,

∂2f
∂x∂y ∈ L2(R2,H), then the following

sampling series for f holds:

f(x, y)

=

∞∑

n=−∞

∞∑

m=−∞

[

ei
a1s̃2n
2b1 f(s̃n, t̃m)ej

a2˜t2m
2b2 + (x− s̃n)

·
[
ei

a1 s̃2n
2b1

∂f

∂x
(s̃n, t̃m)ej

a2˜t2m
2b2 + i

a1s̃n
b1

ei
a1 s̃2n
2b1

· f(s̃n, t̃m)e
j
a2˜t2m
2b2

]
+ (y − t̃m)

[
e
i
a1 s̃2n
2b1

∂f

∂y
(s̃n, t̃m)

· ej
a2˜t2m
2b2 + ei

a1s̃2n
2b1 f(s̃n, t̃m)ej

a2˜t2m
2b2 j

a2t̃m
b2

]

+ (x − s̃n)(y − t̃m)

[
ei

a1 s̃2n
2b1

∂2f

∂x∂y
(s̃n, t̃m)ej

a2˜t2m
2b2

+ i
a1s̃n
b1

ei
a1 s̃2n
2b1

∂f

∂y
(s̃n, t̃m)ej

a2˜t2m
2b2

+ ei
a1 s̃2n
2b1

∂f

∂x
(s̃n, t̃m)ej

a2˜t2m
2b2 j

a2t̃m
b2

+ i
a1s̃n
b1

ei
a1 s̃2n
2b1 f(s̃n, t̃m)ej

a2˜t2m
2b2 j

a2 t̃m
b2

]]

·
(
sinc

(
σ1x

2b1π
− n

))2(
sinc

(
σ2y

b22π
−m

))2

,

where s̃n = 2nb1π
σ1

and t̃m = 2mb2π
σ2

. The series con-
verges in the L2 norm. Moreover, it converges abso-
lutely and uniformly on any compact subset of R2.
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In the following, to derive the sampling series
for f using the samples of its Hilbert transform as-
sociated with QLCT, we introduce the generalized
partial and total Hilbert transforms for the two-sided
QLCT in Kou et al. (2017).

Definition 3 Let f ∈ L2 ∪ L1(R2,H). Then f

along the x and y axes of the generalized quaternion
partial Hilbert transforms Hx

AAA1
and Hy

AAA2
and along

the x and y axes of the generalized quaternion total
Hilbert transform Hxy

AAA1AAA2
are given by

Hx
AAA1

[f ](x, y) := p.v.
e−i

a1x2

2b1

π

∫

R

ei
a1t2

2b1 f(t, y)

x− t
dt, a.e.,

Hy
AAA2

[f ](x, y) := p.v.
1

π

∫

R

f(x, t)ej
a2t2

2b2

y − t
dte−j

a2y2

2b2 , a.e.,

Hxy
AAA1AAA2

[f ](x, y) := p.v.
e−i

a1x2

2b1

π2

·
∫

R2

e
i
a1t2

2b1 f(t, s)e
j
a2s2

2b2

(x− t)(y − s)
dtdse−j

a2y2

2b2 , a.e..

Lemma 9 If f ∈ L2(R2,H), assume g(x, y) =

e ia1x
2

2b1
f(x, y)e

ja2y2

2b2 . Then we have

Hx[g](x, y) = e
i
a1x2

2b1 Hx
AAA1

[f ](x, y)e
j
a2y2

2b2 ,

Hy[g](x, y) = ei
a1x2

2b1 Hy
AAA2

[y](x, y)ej
a2y2

2b2 ,

Hxy[g](x, y) = e
i
a1x2

2b1 Hxy
AAA1AAA2

[f ](x, y)e
j
a2y2

2b2 .

Proof We give only the proof of the first relation-
ship; the other two relationships can be proved in a
similar manner. By definition, we have

Hx[g](x, y)

= p.v.
1

π

∫

R

ei
a1t2

2b1 f(t, y)

x− t
ej

a2y2

2b2 dt

= p.v.
1

π
ei

a1x2

2b1

∫

R

e−i
a1x2

2b1
ei

a1t2

2b1 f(t, y)

x− t
ej

a2y2

2b2 dt

= ei
a1x2

2b1 Hx
AAA1

[f ](x, y)ej
a2y2

2b2 ,

which completes the proof.
Theorem 11 If f ∈ L2(R2,H) is BL to (σ1, σ2)

in the two-sided QLCT sense, then the following

sampling series for f holds:

f(x, y)

=

∞∑

n=−∞

∞∑

m=−∞

[
ei

a1(s2n−x2)

2b1 f(s̃n, t̃m)ej
a2(t2m−y2)

2b2

· cos σ2T̃m

2b2
cos

σ1s̃n
2b1

− ei
a1(s2n−x2)

2b1 Hx
AAA1

[f ](s̃n, t̃m)

· ej
a2(t2m−y2)

2b2 cos
σ2T̃m

2b2
sin

σ1S̃n

2b1
− e

i
a1(s2n−x2)

2b1

· Hy
AAA2

[f ](s̃n, t̃m)e
j
a2(t2m−y2)

2b2 sin
σ2T̃m

2b2
cos

σ1S̃n

2b1

+ ei
a1(s2n−x2)

2b1 Hxy
AAA1AAA2

[f ](s̃n, t̃m)ej
a2(t2m−y2)

2b2

· sin σ2T̃m

2b2
sin

σ1S̃n

2b1

]
sinc

σ1S̃n

2b1π
sinc

σ2T̃m

2b2π
,

(19)
where S̃n = x− s̃n and T̃m = y − t̃m.

Proof From Theorem 8, g(x, y) =

e
ja2y2

2b2 f(x, y)e
ia1x2

2b1 is BL to [−σ1

b1
, σ1

b1
] × [−σ2

b2
, σ2

b2
] in

the QFT sense. Applying sampling series (16) to
g(x, y), we obtain

g(x, y)

=

∞∑

n=−∞

∞∑

m=−∞

[

g(x̃n, ỹm) cos
σ2T̃m

2
cos

σ1S̃n

2

−Hx[g](x̃n, ỹm) cos
σ2T̃m

2
sin

σ1S̃n

2

−Hy[g](x̃n, ỹm) sin
σ2T̃m

2
cos

σ1S̃n

2

+Hxy[g](x̃n, ỹm) sin
σ2T̃m

2
sin

σ1S̃n

2

]

· sincσ1S̃n

2π
sinc

σ2T̃m

2π
.

Substituting the relationships in Lemma 9 and

g(x, y) = e
ja2y2

2b2 f(x, y)e
ia1x2

2b1 in the above sampling
series of g, we obtain sampling series (19).

f ∈ L2(R2,H) is a BL function to (σ1, σ2) in the
two-sided QLCT sense, which does not mean that f
is a BL function to (σ1, σ2) in the right- or left-sided
QLCT. It is natural to ask, if f is a BL function to
(σ1, σ2) in the right-sided QLCT sense, how could we
reconstruct it from its sampled values at the point
(nπσ1

, mπ
σ2

), (n,m) ∈ Z
2. This problem is carried out

by the following theorem:
Theorem 12 If f ∈ L2(R2,H) is BL to (σ1, σ2)
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in the right-sided QLCT sense, i.e.,

Li,j
R [f ](v, u) = 0, for |v| > σ1 or |u| > σ2,

then the following sampling series for f holds:

f(x, y)

=

∞∑

n=−∞

∞∑

m=−∞

[
f(sn, tm)√

2πb1i
ei

a1s2n
2b1 cos

a2(t
2
m − y2)

2b2

+

∫

R

f(−sn + x, tm)√
2πb1i

ei
a1(sn−x)2

2b2 l(x)dx

· sin a2(t
2
m − y2)

2b2
j

]
sinc

σ1(x− sn)

b1π
sinc

σ2(y − tn)

b2π
,

(20)

where l(x) := 1
2π

∫
R
ei

a1v2

b1 e−ivxdv = 1
2π

(√
πb1
a1

· cos( b1x2

4a1
− 1

4π) + i
√

πb1
a1

cos( b1x
2

4a1
+ 1

4π )

)
(ai, bi >

0, i = 1, 2). The series converges in the L2 norm.
Moreover, it converges absolutely and uniformly on
any compact subset of R2.
Proof Because

f(x, y)

=

∫ σ1

−σ1

[∫ σ2

−σ2

Li,j
R (v, u)K i

AAA−1
2

(u, y)du

]
K i

AAA−1
1

(v, x)du,

then we have

f(x, y)e
i
a1x2

2b1

=

∫ σ1

−σ1

[ ∫ σ2

−σ2

Li,i
R (v, u)K j

AAA−1
2

(u, y)du
e−i

d1v2

2b1√
2πb1i

]
ei

vx
b1 dv,

which implies that hy(x) = f(x, y)e
i
a1x2

2b1 is a σ1

b1
BL

function with respect to x in the QFT sense. Hence,
we can recover hy(x) from the samples at point tm
via the following formula:

f(x, y)ei
a1x2

2b1 =
∞∑

n=−∞
f(sn, y)e

i
a1s2n
2b1 sinc

σ1(x− sn)

b1π
.

(21)
Because f ∈ L2(R2,H) and Li,j

R [f ](v, u) =∫
R

(∫
R
f(x, y)K i

AAA1
(x, v)dx

)
K j

AAA2
(y, u)dy, using the

relationship between kernels of QFT and QLCT, we
obtain

Li,j
R [f ](v, u)

=F j
R

∫

R

f(x, y)K i
AAA1

(x, v)dx
e
j
a2y2

2b2√
2πb2j

ue
j
d2u2

2b2

b2
.

Then, from the assumption of Li,j
R [f ], gv(y) =

∫
R
f(x, y)K i

AAA1
(x, v)dx 1√

2πb2j
e
j
a2y2

2b2 is a σ2

b2
BL func-

tion with respect to y in the QFT sense. Therefore,
we can recover gv(y) from the samples at point tm
via the following formula:

∫

R

f(x, y)K i
AAA1

(x, v)dx

=

∞∑

m=−∞

∫

R

f(x, tm)K i
AAA1

(x, v)dxe
j
a2(t2m−y2)

2b2

· sincσ2(y − tm)

b2π
.

Multiplying both sides of the above equality by

e−i
a1v2

2b1 , we have
∫

R

f(x, y)
ei

a1x2

2b1 e−ixv
b1√

2πb1i
dx

=

∞∑

m=−∞

∫

R

f(x, tm)K i
AAA1

(x, v)dx

· ej
a2(t2m−y2)

2b2 e−i
a1v2

2b1 sinc
σ2(y − tm)

b2π
,

∫

R

f(x, y)
e
i
a1x2

2b1 e
−ixv

b1√
2πb1i

dx

=

∞∑

m=−∞

[∫

R

f(x, tm)
ei

a1x2

2b1 e−i xv
b1√

2πb1i
dx cos

a2(t
2
m − y2)

2b2

+

∫

R

f(x, tm)
e
i
a1x2

2b1 e
−ixv

b1 e
i
a1v2

b1√
2πb1i

dx

· sin
(
a2(t

2
m − y2)

2b2

)
j

]
sinc

σ2(y − tm)

b2π
.

Taking the inverse quaternion Fourier transform
1
2πF−i

R on both sides at point xn = πn
σ1

and using the

fact that l(x) := 1
2π

∫
R
e
i
a1v2

b1 e−ivxdv = 1
2π

(√
πb1
a1

·cos
(

b1x
2

4a1
− 1

4π

)
+i
√

πb1
a1

cos
(

b1x
2

4a1
+ 1

4π

))
(ai, bi >

0, i = 1, 2), we obtain

f(sn, y)
ei

a1s2n
2b1√

2πb1i

=

∞∑

m=−∞

[
f(sn, tm)

e
i
a1s2n
2b1√
2πb1i

cos
a2(t

2
m − y2)

2b2

+

∫

R

f(−sn + x, tm)
ei

a1(sn−x)2

2b1√
2πb2j

l(x)dx

· sin
(
a2(t

2
m − y2)

2b2

)
j

]
sinc

σ2(y − tm)

b2π
.
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Substituting it into Eq. (21), we obtain sampling
series (20).

4 Error analysis

4.1 Truncation errors associated with QFT

Truncation error occurs naturally in applica-
tions, because only a finite number of samples are
given in practice. For f ∈ L2(R2,H) which is BL to
(σ1, σ2) in the QFT sense, let R1N,M ,R2N,M , and
R3N,M denote the truncation errors of f(x, y):

R1N,M(x, y)

:=f(x, y)−
N∑

n=−N

M∑

m=−M

f(nh1,mh2)

· sin (σ1(x− nh1))

σ1 (x− nh1)

sin (σ2(y −mh2))

σ2 (y −mh2)
,

(22)

where h1 := π/σ1 and h2 := π/σ2,

R2N,M(x, y)

:=f(x, y)−
N∑

n=−N

M∑

m=−M

[
f(x̃n, ỹm) cos

σ2Ỹm

2

· cos σ1X̃n

2
−Hx[f ](x̃n, ỹm) cos

σ2Ỹm

2
sin

σ1X̃n

2

−Hy[f ](x̃n, ỹm) sin
σ2Ỹm

2
cos

σ1X̃n

2

+Hxy[f ](x̃n, ỹm) sin
σ2Ỹm

2
sin

σ1X̃n

2

]

· sincσ1X̃n

2π
sinc

σ2Ỹm

2π
,

(23)
R3N,M(x, y)

:=f(x, y)−
K1(x)+N∑

n=K1(x)−N

K2(y)+M∑

m=K2(y)−M

[
f(n2h1,m2h2)

+ (x− n2h1)
∂f

∂x
(n2h1,m2h2)

+ (y −m2h2)
∂f

∂y
(n2h1,m2h2)

+ (x− n2h1)(y − ỹm)
∂2f

∂x∂y
(n2h1,m2h2)

]

·
(
sinc

( x

2h1
− n

))2(
sinc

( y

2h2
−m

))2

,

(24)
where x̃n = n2h1, ỹm = m2h2, X̃n = x− n2h1, Ỹm =

y − m2h2,
1

2h1
− 1

2 < K1(x) ≤ 1
2h1

+ 1
2 ,

1
2h2

− 1
2 <

K2(y) ≤ 1
2h2

+ 1
2 , and (K1(x),K2(y)) are integer

points nearest to the truncation error observation
point (x, y). The following lemmas are used to
prove the estimation of truncation errors R1N,M and
R2N,M .
Lemma 10 (Splettstösser et al., 1981)

(
+∞∑

n=−∞

∣
∣
∣∣
sin(σ(x − nπ

σ ))

σ(x − nπ
σ )

∣
∣
∣∣

2
) 1

2

≤ 2,

where σ > 0.

Lemma 11 (Jagerman, 1966)

⎛

⎝
∑

|n|>N

∣
∣
∣
∣
sin(σ1(x− nh1))

σ1(x − nh1)

∣
∣
∣
∣

2
⎞

⎠

1
2

≤ | sin(σ1x)|
σ1

(
2N

(Nh1)2 − x2

) 1
2

,

where |x| < Nh1.

Theorem 13 For f ∈ L2(R2,H) which is BL
to (σ1, σ2) in the QFT sense, let R1N,M be defined
by Eq. (22), where |x| < Nh1, |y| < Mh2, N ≥ 1,
M ≥ 1,

KN =

⎛

⎝h2
1

∑

|n|>N

+∞∑

m=−∞
|f(nh1,mh2)|2

⎞

⎠

1
2

,

LM =

⎛

⎝h2
2

∑

|m|>M

+∞∑

n=−∞
|f(nh1,mh2)|2

⎞

⎠

1
2

,

JN,M =

⎛

⎝h2
1h

2
2

∑

|m|>M

∑

|n|>N

|f(nh1,mh2)|2
⎞

⎠

1
2

.

Then

|R1N,M(x, y)| ≤ I1(x, y,N) + I2(x, y,M)

+
2JN,M

√
MN

π2
√
((Nh1)2 − x2)((Mh2)2 − y2)

,

where

I1(x, y,N) :=
2
√
2N

π
| sin(σ1x)| KN√

(Nh1)2 − x2
,

I2(x, y,M) :=
2
√
2M

π
| sin(σ2y)| LM√

(Mh2)2 − y2
.

The proof of Theorem 13 is available in the sup-
plementary materials.

Further estimates of |R1N,M(x, y)| may be ob-
tained by estimating quantities KN , LM , and JN,M .
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An immediate consequence ofR2N,M(x, y) is the
following theorem which can be obtained by some
arguments similar to Theorem 13:
Theorem 14 Let R2N,M be defined by Eq. (24),
|x| < Nh1, |y| < Mh2, N ≥ 1,M ≥ 1,

KiN =
1

2

⎛

⎝h2
1

∑

|n|>N

+∞∑

m=−∞
|fi(2nh1, 2mh2)|2

⎞

⎠

1
2

,

LiM =
1

2

⎛

⎝h2
2

∑

|m|>M

+∞∑

n=−∞
|fi(2nh1, 2mh2)|2

⎞

⎠

1
2

,

JiN,M =
1

4

⎛

⎝h2
1h

2
2

∑

|m|>M

∑

|n|>N

|fi(2nh1, 2mh2)|2
⎞

⎠

1
2

,

where i = 2, 3, 4, 5, f2 = f, f3 = Hx[f ], f4 = Hy[f ],

and f5 = Hxy[f ]. Then

|R2N,M(x, y)|
≤S2(x, y) + S3(x, y) + S4(x, y) + S5(x, y),

where
Sj(x, y,N)

=
2
√
2N

π

∣
∣
∣
∣ sin

(σ1x

2

) ∣∣
∣
∣

KjN√
(Nh1

2 )2 − x2

+
2
√
2M

π

∣
∣
∣
∣ sin

(σ2y

2

) ∣∣
∣
∣

LjM√
(Mh2)2 − y2

+
2
√
MN

π2

JjN,M√(
(Nh1

2 )2 − x2
) (

(Mh2

2 )2 − y2
) .

Herein, j = 2, 3, 4, 5.
Before estimating R3N,M (x, y), there is a need

to point out that BL quaternionic function f(z1, z2)

has been proved to be a quaternion holomorphic
function (Hu and Kou, 2018), which is holomorphic
in two variables (z1, z2):

∂

∂z1
f(z1, z2) = 0, f(z1, z2)

∂

∂z2
= 0,

where z1 ∈ Hi, Hi = {z1|z1 = x1 + ix2, x1, x2 ∈ R},
z2 ∈ Hj, Hj = {z2|z2 = y1 + jy2, y1, y2 ∈ R}, ∂

∂z1
=

∂
∂x1

+ i ∂
∂x2

, and ∂
∂z2

= ∂
∂y2

+ j ∂
∂y2

. Then truncation
error R3N,M(x, y) is given by

R3N,M(x, y)

=

∮

Cj

f(x, z2)

(z2 − y) sin2( z2π2h2
)

sin2( yπ
2h2

)

2πj
dz2 +

sin2( xπ
2h1

)

2πi

·
∮

Ci

f(z1, y)

(z1 − x) sin2( z1π2h1
)
dz1 −

sin2( xπ
2h1

)

2πi

·
∮

Ci

∮

Cj

f(z1, z2)

(z1 − x)(z2 − y) sin2( z1π2h1
) sin2( z2π2h2

)
dz1dz2

· sin
2( yπ

2h2
)

2πj
.

(25)

Here Ci, shown in Fig. 1, is a simple closed contour
enclosing both the point z1 = x and the zero point
z1 = nh1 for all integersK1(x)−N ≤ n ≤ K1(x)+N .
Cj shown in Fig. 1 is also a simple closed contour
enclosing both the point z2 = y and the zero point
z2 = mh2 for all integers K2(y)−M ≤ m ≤ K2(y)+

M.

The proof of Theorem 14 is available in the sup-
plementary materials.

Ci

x

Cj

y

⎛ ⎞− −⎜ ⎟
⎝ ⎠

2
2

1 2π( )
2

2
2

2π( )
⎛ ⎞+ +⎜ ⎟
⎝ ⎠

2
2

1 2π( )
2

⎛ ⎞− −⎜ ⎟
⎝ ⎠

1
1

1 2π( )
2

1
1

2π( )
⎛ ⎞+ +⎜ ⎟
⎝ ⎠

1
1

1 2π( )
2

(a)

(b)

Fig. 1 The simple closed contours Ci (a) and Cj (b)
Ci and Cj belong to Hi and Hj planes respectively, and are
used to calculate the truncation error bound R3N,M (x, y)

Theorem 15 If quaternionic function f(x, y) is BL
to (r1σ1, r2σ2) in the QFT sense, where 0 ≤ ri <

1 (i = 1, 2) and |f(x, y)| ≤ C, for (x, y) ∈ R
2 and

C > 0, then an upper bound for the truncation error
R3N,M at point (x, y) is given by

|R3N,M(x, y)| ≤
2C

∣∣
∣
∣ sin

(
yπ
2h2

) ∣∣
∣
∣

2

πM sin(πr2)
r2

+

2C

∣∣
∣
∣ sin

(
xπ
2h1

) ∣∣
∣
∣

2

πN sin(πr1)
r1

+

4C

∣
∣
∣∣ sin

(
xπ
2h1

)
sin

(
yπ
2h2

) ∣∣
∣∣

2

πN sin(πr1)
r1

πM sin(πr2)
r2

.

Before giving the proof of Theorem 15, we need
the following lemma:
Lemma 12 If f ∈ L2(R2,H) is BL to (σ1, σ2), then

(1) |f(z1, z2)| ≤ C1e
σ1|z1|eσ2|z2|,
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(2) |f(z1, y1)| ≤ C1e
σ1|z1|,

(3) |f(x1, z2)| ≤ C1e
σ2|z2|,

where C1 = 1
4π2

∫ σ1

−σ1

∫ σ2

−σ2
|FR(v, u)|dvdu.

The proof of Lemma 12 is available in the sup-
plementary materials.

From this lemma, using the technique in Yao
and Thomas (1966), we obtain Theorem 15.

4.2 Truncation errors associated with QLCT

If f(x, y) is BL to (σ1, σ2) in the two-
sided QLCT sense, Lemma 8 implies that
eia1x

2/(2b1)f(x, y)eja2y
2/(2b2) is BL to (−σ1

b1
, σ2

b2
) in

the two-sided QFT sense. So, we have the follow-
ing truncation errors in the QLCT sense from Theo-
rems 13–15. Let R̆1N,M , R̆2N,M , and R̆3N,M denote
the truncation errors of f(x, y) as follows (Assume
h̆1 := b1π/σ1 and h̆2 = b2π/σ2) :

R̆1N,M(x, y)

=f(x, y)−
N∑

n=−N

M∑

m=−M

ei
a1(s2n−x2)

2b1 f(sn, tm)

· ej
a2(t2m−y2)

2b2 sinc
σ1(x− sn)

b1π
sinc

σ2(y − tm)

b2π
,

(26)

R̆2N,M(x, y)

=f(x, y)−
N∑

n=−N

M∑

m=−M

[
ei

a1(s2n−x2)

2b1 f(s̃n, t̃m)

· ej
a2(t2m−y2)

2b2 cos
σ2T̃m

2b2
cos

σ1s̃n
2b1

− ei
a1(s2n−x2)

2b1

· Hx
AAA1

[f ](s̃n, t̃m)e
j
a2(t2m−y2)

2b2 cos
σ2T̃m

2b2
sin

σ1S̃n

2b1

− e
i
a1(s2n−x2)

2b1 Hy
AAA2

[f ](s̃n, t̃m)e
j
a2(t2m−y2)

2b2

· sin σ2T̃m

2b2
cos

σ1S̃n

2b1
+ e

i
a1(s2n−x2)

2b1 Hxy
AAA1AAA2

[f ](s̃n, t̃m)

· ej
a2(t2m−y2)

2b2 sin
σ2T̃m

2b2
sin

σ1S̃n

2b1

]

· sincσ1S̃n

2b1π
sinc

σ2T̃m

2b2π
,

(27)
R̆3N,M

=f(x, y)−
∑

|n|≤N

∑

|m|≤M

[
e
i
a1s̃2n
2b1 f(s̃n, t̃m)e

j
a2˜t2m
2b2

+ (x − s̃n)

[
ei

a1s̃2n
2b1

∂f

∂x
(s̃n, t̃m)ej

a2˜t2m
2b2

+ i
a1s̃n
b1

ei
a1 s̃2n
2b1 f(s̃n, t̃m)ej

a2˜t2m
2b2

]

+ (y − t̃m)

[
ei

a1 s̃2n
2b1

∂f

∂y
(s̃n, t̃m)ej

a2˜t2m
2b2

+ ei
a1s̃2n
2b1 f(s̃n, t̃m)ej

a2˜t2m
2b2 j

a2t̃m
b2

]

+ (x− s̃n)(y − t̃m)

[
e
i
a1 s̃2n
2b1

∂2f

∂x∂y
(s̃n, t̃m)e

j
a2˜t2m
2b2

+ i
a1s̃n
b1

ei
a1 s̃2n
2b1

∂f

∂y
(s̃n, t̃m)ej

a2˜t2m
2b2

+ ei
a1s̃2n
2b1

∂f

∂x
(s̃n, t̃m)ej

a2˜t2m
2b2 j

a2t̃m
b2

+ i
a1s̃n
b1

e
i
a1 s̃2n
2b1 f(s̃n, t̃m)e

j
a2˜t2m
2b2 j

a2 t̃m
b2

]]

·
(
sinc

(
σ1x

2b1π
− n

))2(
sinc

(
σ2y

b22π
−m

))2

.

Corollary 2 Suppose that f ∈ L2(R2,H) is BL to
(σ1, σ2) in the two-sided QLCT sense. Let R̆1N,M

be defined by Eq. (26), where |x| < Nh̆1, |y| <

Mh̆2, N ≥ 1,M ≥ 1,

K̆N =

⎛

⎝h̆2
1

∑

|n|>N

+∞∑

m=−∞
|f(nh̆1,mh̆2)|2

⎞

⎠

1
2

,

L̆M =

⎛

⎝h̆2
2

∑

|m|>M

+∞∑

n=−∞
|f(nh̆1,mh̆2)|2

⎞

⎠

1
2

,

J̆N,M =

⎛

⎝h̆2
1h̆

2
2

∑

|m|>M

∑

|n|>N

|f(nh̆1,mh̆2)|2
⎞

⎠

1
2

.

Then

|R̆1N,M(x, y)| ≤ Ĭ1(x, y,N) + Ĭ2(x, y,M)

+
2J̆N,M

√
MN

π2

√
((Nh̆1)2 − x2)((Mh̆2)2 − y2)

,

where

Ĭ1(x, y,N) :=
2
√
2N

π

∣
∣
∣∣ sin

(
σ1x

b1

) ∣
∣
∣∣

K̆N√
(Nh̆1)2 − x2

,

Ĭ2(x, y,M) :=
2
√
2M

π

∣∣
∣
∣ sin

(
σ2y

b2

) ∣∣
∣
∣

L̆M√
(Mh̆2)2 − y2

.

Corollary 3 Let R̆2N,M be defined by Eq. (27),
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|x| < Nh̆1, |y| < Mh̆2, N ≥ 1,M ≥ 1,

K̆iN =
1

2

⎛

⎝h̆2
1

∑

|n|>N

+∞∑

m=−∞
|fi(2nh̆1, 2mh̆2)|2

⎞

⎠

1
2

,

L̆iM =
1

2

⎛

⎝h̆2
2

∑

|m|>M

+∞∑

n=−∞
|fi(2nh̆1, 2mh̆2)|2

⎞

⎠

1
2

,

J̆iN,M =
1

4

⎛

⎝h̆2
1h̆

2
2

∑

|m|>M

∑

|n|>N

|fi(2nh̆1, 2mh̆2)|2
⎞

⎠

1
2

,

where i = 2, 3, 4, 5, f2 = f, f3 = Hx
AAA1

[f ], f4 =

Hy
AAA2

[f ], and f5 = Hxy
AAA1AAA2

[f ]. Then we have

|R̆2N,M(x, y)|
≤S̆2(x, y) + S̆3(x, y) + S̆4(x, y) + S̆5(x, y),

where

S̆j(x, y,N) =
2
√
2N

π

∣
∣∣
∣ sin

(
σ1x

2b1

) ∣
∣∣
∣

K̆jN√
(Nh̆1

2 )2 − x2

+
2
√
2M

π

∣
∣
∣
∣ sin

(
σ2y

2b2

) ∣
∣
∣
∣

L̆jM√
(Mh2)2 − y2

+
2
√
MN

π2

J̆jN,M√
((Nh̆1

2 )2 − x2)((Mh̆2

2 )2 − y2)
.

Herein, j = 2, 3, 4, 5.
Corollary 4 If quaternionic function f(x, y) is BL
to (r1σ1/b1, r2σ2/b2) in the QFT sense, where 0 ≤
ri < 1 (i = 1, 2) and |f(x, y)| ≤ C, for (x, y) ∈ R

2

and C > 0, then an upper bound for the truncation
error R̆3N,M at point (x, y) is given by

|R̆3N,M(x, y)| ≤
2C

∣∣
∣
∣ sin

(
yπ

2h̆2

) ∣∣
∣
∣

2

πM sin(πr2)
r2

+

2C

∣∣
∣
∣ sin

(
xπ

2h̆1

) ∣∣
∣
∣

2

πN sin(πr1)
r1

+

4C

∣
∣
∣∣ sin

(
xπ
2h̆1

)
sin

(
yπ

2h̆2

) ∣∣
∣∣

2

πN sin(πr1)
r1

πM sin(πr2)
r2

.

5 Examples

In this section, we use mainly sampling for-
mula (8) in Theorem 3 to produce a high-resolution
image from its corresponding low-resolution version.
The quality of the high-resolution image is measured
by the structural similarity index measure (SSIM)

and feature similarity index measure (FSIM) in Al-
gorithm 1.

By Figs. 2 and 3, our sampling formula can re-
cover the color image from low to high resolution.
The quantitative measurements in Table 1 show the
effectiveness of the proposed sampling formula.

Algorithm 1 Image reconstruction
1: Input the test color image f(t1, t2) and convert the color

image into the quaternion form.
2: The test image is downsampled by factor 2.
3: Generate a high-resolution (HR) image from the down-

sampled image by Eq. (8).
4: Compute the SSIM and FSIM to evaluate the quality of

the generated HR image.

Fig. 2 Reconstructed images for Lena, flower, and
bird by Algorithm 1
The first row shows the original images. The second row
shows the degraded images with the resolution of 128×128.
The third row shows the reconstructed images

Fig. 3 Reconstructed images for house, pepper, and
horse by Algorithm 1
The first row shows the original images. The second row
shows the degraded images with the resolution of 128×128.
The third row shows the reconstructed images

Table 1 SSIM and FSIM values of the reconstructed
images

Image SSIM FSIM

Lena 0.9440 0.8912
Flower 0.9554 0.9495
Bird 0.9462 0.9353
House 0.9357 0.8822
Pepper 0.9559 0.8953
Horse 0.8531 0.8751
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6 Conclusions

First, by Lemma 1, if the quaternionic function
is bandlimited to a rectangle that is symmetric about
the origin in the right-sided QFTs, then it is also
bandlimited to this rectangle in the left- and two-
sided QFTs, and vice versa. Therefore, if the quater-
nionic function is bandlimited to this rectangle, then
the sampling formula associated with various QFTs
is identical. However, if the quaternionic function
is bandlimited to a rectangle that is not symmetric
about the origin, then the sampling formulas asso-
ciated with various QFTs are different. Second, we
obtained not only the sampling formulas using the
samples, but also the sampling series using samples
of the partial derivatives and quaternion partial and
total Hilbert transforms. Third, the sampling formu-
las associated with various QLCTs were obtained by
the relationships of QFTs and QLCTs. Fourth, the
truncation errors of those sampling formulas were de-
rived. At last, by Algorithm 1, the sampling formula
was applied to color image reconstruction.

In the future, we will apply the sampling series
to color images, and multi-dimensional signals will
be explored.
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