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Abstract: Distributed optimization has been well developed in recent years due to its wide applications in machine
learning and signal processing. In this paper, we focus on investigating distributed optimization to minimize a global
objective. The objective is a sum of smooth and strongly convex local cost functions which are distributed over an
undirected network of n nodes. In contrast to existing works, we apply a distributed heavy-ball term to improve the
convergence performance of the proposed algorithm. To accelerate the convergence of existing distributed stochastic
first-order gradient methods, a momentum term is combined with a gradient-tracking technique. It is shown that
the proposed algorithm has better acceleration ability than GT-SAGA without increasing the complexity. Extensive
experiments on real-world datasets verify the effectiveness and correctness of the proposed algorithm.

Key words: Distributed optimization; High-performance algorithm; Multi-agent system; Machine-learning
problem; Stochastic gradient

https://doi.org/10.1631/FITEE.2000615 CLC number: TP14

1 Introduction

Distributed optimization has attracted much at-
tention in many fields, such as wireless sensor net-
works (Yin et al., 2010; Cohen et al., 2017), machine
learning (Xia and Wang, 2004; McMahan et al., 2017;
Liu et al., 2019), and coordinated control (Han et al.,
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2015; Cheng B and Li, 2019). It is evident that prac-
tical problems based on distributed optimization can
be modeled as the minimization of the global objec-
tive function, i.e., solving the problem over a con-
nected network consisting of n agents cooperatively
over a common variable x:

P0 : min
x∈Rn

f (x) =
1

m

m∑

i=1

fi (x),

where fi is only known by agent i to exchange infor-
mation with its neighbor nodes over an undirected
network.

1.1 Literature review

In the literature, distributed optimization has
attracted widespread attention based mainly on the
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Lagrangian, (sub)gradient descent, and Newton’s
methods. As for Lagrangian methods, Boyd et al.
(2011) proposed a classic distributed alternating di-
rection method of multipliers (ADMM) on the basis
of the dual-domain over augmented Lagrangian func-
tions, and many other distributed algorithms (Ling
and Tian, 2010; Erseghe et al., 2011; Cheng S et al.,
2014; Ling and Ribeiro, 2014; Wang B et al., 2018;
Zhang et al., 2019; Guan et al., 2020) have been pro-
posed based on this method. Although distributed
ADMM with a constant step-size has the advantage
of a linear convergence rate for a strongly convex
function, it requires a large amount of calculation
because each node has to optimize a local problem
at each iteration. Unlike the Lagrangian method,
Newton’s method (Bertsekas and Gafni, 1983; Wei
et al., 2013) is a common method to solve uncon-
strained optimization problems due to the advantage
of fast convergence. To simplify the calculation pro-
cess of Newton’s method, the quasi-Newton method
(Eisen et al., 2017) approximates the inverse Hes-
sian matrix or the Hessian matrix using a positive
definite matrix. The (sub)gradient descent method
includes dual average (Duchi et al., 2012; Yuan et al.,
2013; Matthews et al., 2016), distributed gradient de-
scent (DGD) (Mateos et al., 2010; Xu et al., 2015;
Nedić et al., 2017a, 2017b; Xi and Khan, 2017; Xin
et al., 2019c), and stochastic gradient descent (SGD)
methods (Zinkevich et al., 2010). In the pioneering
work of Tsitsiklis et al. (1986), a framework for ana-
lyzing distributed computing models was developed.
Nedić and Ozdaglar (2009) applied this method to
the distributed convex optimization problem in the
network, and achieved convergence of the strongly
convex non-smooth structure. The SGD algorithm
uses only a set of data from the sample to perform
gradient descent, which improves the training speed
of samples and reduces the calculation cost. Stochas-
tic average gradient (SAG) (Schmidt et al., 2017;
Wang Z and Li, 2020), SAGA (Defazio et al., 2014),
and SVRG (Johnson and Zhang, 2013; Tan et al.,
2016) methods have been proposed because the SGD
algorithm can reach only an optimal interval instead
of an optimal value. At each iteration, only one ran-
domly selected gradient of a subfunction is evaluated
at a node, and a variance-reduced stochastic averag-
ing gradient technique is applied to approximate the
gradient of the local objective function. SAG cal-
culates a random vector as the average value of the

random gradient in the previous iterations, where
in the kth iteration, the algorithm stores derivatives
to achieve exact convergence. In addition, based on
SAG, the SAGA algorithm can directly support non-
strongly convex problems, and is adaptive to any in-
herently strong convexity of the problem. Another
algorithm, SVRG, which is performed in a loop, uses
considerably amount of calculation to reduce the in-
fluence of noise, and is better than SGD at achiev-
ing more accurate convergence. GT-SAGA and GT-
SVRG (Xin and Khan, 2020), which are based on
SAGA and SVRG, respectively, achieve accelerated
linear convergence by combining distributed stochas-
tic gradient-tracking methods with variance-reduced
techniques. In addition to the above methods (John-
son and Zhang, 2013; Defazio et al., 2014; Tan et al.,
2016; Schmidt et al., 2017; Wang Z and Li, 2020), the
AB method based on row and column randomization
(Xin and Khan, 2018), its acceleration method, the
ABm algorithm (Xin et al., 2020), and S-AB algo-
rithm (Xin et al., 2019b) have also made significant
contributions to solving the directed network.

1.2 Motivations and contributions

We find that plenty of works are interested in
solving large-scale optimization problems with nu-
merous and complex local objective functions. How-
ever, in distributed settings, distributed algorithms
with exact gradient need massive calculation. There-
fore, plenty of methods such as SAG, SAGA, and
SVRG have been proposed to reduce the cost of full
evaluation and retain the advantage of fast conver-
gence under strongly convex and smooth conditions.
Based on these works, GT-SAGA (Xin and Khan,
2020) combined a gradient-tracking technique with
a variance-reduced technique that accelerates lin-
ear convergence. By introducing the above method
to our work, we propose a new algorithm with a
faster linear convergence rate and provide the concise
proof. We summarize the following contributions in
this paper:

1. Aiming to accelerate the convergence of
stochastic first-order gradient methods (Zinkevich
et al., 2010; Johnson and Zhang, 2013; Defazio et al.,
2014; Tan et al., 2016; Schmidt et al., 2017; Lan
et al., 2018; Wang Z and Li, 2020), we incorporate the
momentum term combining with a gradient-tracking
technique to achieve an accelerated convergence rate
over undirected networks.
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2. Compared with the distributed gradient
methods (Ling and Tian, 2010; Boyd et al., 2011;
Erseghe et al., 2011; Ling and Ribeiro, 2014; Wang B
et al., 2018; Xin and Khan, 2018; Zhang et al., 2019;
Xin et al., 2020) with deterministic gradients, the
proposed algorithm requires much less computation
when facing large-scale dataset optimization prob-
lems, because SGD method can update the model
parameters with just a single training dataset.

3. In this paper, we present rigorous theoreti-
cal analysis for the proposed algorithm in Section 3.
In addition, extensive experiments are provided to
verify the correctness of theoretical analysis, such as
the distributed logistic regression experiment based
on a real-world dataset, a signal processing oriented
least-square experiment, and distributed quadratic
programming.

Notations used in this paper are summarized as
follows: lowercase bold letters denote vectors, while
uppercase denotes a matrix. The Euclidean norm of
a vector is denoted as ‖·‖, and |||·||| denotes the spec-
tral norm of a matrix. 1n means the n-dimensional
column vector with all ones. For arbitrary matrices
A,B ∈ R

n×n, A⊗B denotes the Kronecker product.
ρ (A) is regarded as the spectral radius of A.

2 Problem formulation and algorithm
development

2.1 Distributed optimization problem

We consider n nodes communicating over an
undirected network G, so that it is capable of ac-
cessing a local cost function at each node i. The goal
is to solve the following optimization problem with
m nodes:

min
x∈Rn

f (x) =
1

m

m∑

i=1

fi
(
xi
)
, fi

(
xi
)
=

1

pi

pi∑

h=1

fh
i

(
xi
)
,

where each local cost fi is averaged by pi constituent
functions

{
fh
i

}pi

h=1
. The number of local samples

is retained by agent i, i ∈ U . The results of the
proposed algorithm are on the basis of the following
assumptions:
Assumption 1 The global objective function
f (x) is strongly convex with strong convexity pa-
rameter μ; i.e., ∀x,y ∈ R

p, we have

(∇f (x)−∇f (y)
)T

(x− y) ≥ μ‖x− y‖2. (1)

Assumption 2 Each local objective function fh
i

has Lipschitz continuous gradient with Lipschitz con-
stant Lf > 0; i.e., ∀x,y ∈ R

p, we have
∥∥∇fh

i (x)−∇fh
i (y)

∥∥ ≤ Lf ‖x− y‖ , (2)

where Lf > μ > 0.
Assumption 3 The weight matrix W is doubly
stochastic and associated with the undirected net-
work G.

Let σ indicate the spectral norm of the matrix
W − 1

m1m1T
m . According to Assumption 3, we have

σ < 1, i.e., σ =
∥∥W − 1

m1m1T
m

∥∥ < 1. In addition,
we denote P := maxi {pi}, p := mini {pi}.
Remark 1 These three assumptions are standard
in recent literature.

2.2 Algorithm development

Previous work on the DGD method updates two
vectors xi

k,y
i
k ∈ R

p at each node i, where xi
k is the

local estimate of the global minimizer and yi
k is an

auxiliary variable:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xi
k+1 =

m∑

j=1

wijx
j
k − αyi

k,

yi
k+1 =

m∑

j=1

wijy
j
k +∇fi

(
xi
k+1

)−∇fi
(
xi
k

)
.

(3)
Following Algorithm 1, we assume that the gra-

dient of agent i at the kth iteration is updated as
shown in Fig. 1.

When gi
k is updated, the ∇f tik

i

(
v
i,tik
k+1

)
entry in

the gradient table is replaced with ∇f tik
i

(
xi
k

)
, while

others remain unchanged:

∇f j
i

(
vi,j
k+1

)
← ∇f j

i

(
vi,j
k

)
,

j =
{
j | j = 1, 2, · · · , ti, j 
= tik

}
.

( )1 ,1i
i kf∇ v ( )2 ,2i

i kf∇ v ( ),i i
k kt i t
i kf∇ v ( ),i it i t

i kf∇ v

( )i
kt i
i kf∇ x

( )1 ,1
1

i
i kf +∇ v ( )2 ,2

1
i

i kf +∇ v ( ),
1

i i
k kt i t
i kf +∇ v ( ),

1
k kt i t
i kf +∇ v

Fig. 1 Gradient updating of agent i in the kth

iteration
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Therefore, one can obtain the updated formula as
follows:

pi∑

j=1

∇f j
i

(
vi,j
k+1

)
=

pi∑

j=1

∇f j
i

(
vi,j
k

)
+∇f tik+1

i

(
xi
k

)

−∇f tik+1

i

(
v
i,tik
k

)
.

(4)

Algorithm 1 The proposed algorithm at each node
i

Initialization: x0
i ; z

1
i,j = x0

i , ∀j ∈ {1, 2, · · · , pi}; α > 0;
{w̃ij}nj=1; y

0
i = g0

i = ∇fi
(
x0
i

)

for k = 0, 1, 2, · · · do
Choose tik+1 uniformly from local sample set
{1, 2, · · · , pi} at random
Update the variable gi

k+1 as

gi
k+1 =∇f

tik+1
i

(
xi
k+1

)−∇f
tik+1
i

(
v
i,tik+1

k+1

)

+
1

pi

∑pi

j=1
∇fj

i

(
vi,j
k+1

)

Update the variable yi
k+1 as

yi
k+1 =

∑m

j=1
wijy

j
k + gi

k+1 − gi
k

if j=tik+1 then
vi,j
k+1 = xi,j

k

else
vi,j
k+1 = vi,j

k

end if
end for

3 Convergence analysis of the proposed
algorithm

We aim to introduce unified analysis for the pro-
posed algorithm that relies on the following dynam-
ical system, with g0 = y0 and ∀k ≥ 0:

xk+1 = Wxk − αyk + β (xk − xk−1) , (5a)

yk+1 = Wyk + gk+1 − gk, (5b)

where W = W ⊗ In and

xk =

⎡

⎢⎢⎢⎣

x1
k

x2
k
...

xm
k

⎤

⎥⎥⎥⎦ ,yk =

⎡

⎢⎢⎢⎣

y1
k

y2
k
...

ym
k

⎤

⎥⎥⎥⎦ , gk =

⎡

⎢⎢⎢⎣

g1
k

g2
k
...

gm
k

⎤

⎥⎥⎥⎦ .

3.1 Preliminaries

We denote Fk as the history of the dynamical
system generated by

{
tis
}s≤k−1

i=1,2,··· ,m. To simplify the
subsequent analysis, we use the following notations:

x̄k =
1

m

(
1T
m ⊗ In

)
xk,

ȳk =
1

m

(
1T
m ⊗ In

)
yk,

ḡk =
1

m

(
1T
m ⊗ In

)
gk,

∇F (xk) =
[(∇f1

(
x1
k

))T
, . . . , (∇fm (xm

k ))
T
]T

,

∇F̄ (xk) =
1

m

(
1T
m ⊗ In

)∇F (xk) .

Lemma 1 ∀k ≥ 0, it holds that

E [ȳk |Fk ] = E [ḡk |Fk ] =
1

m

(
1T
m ⊗ In

)∇F (xk) .

(6)
Proof Multiplying 1T

m by both sides of dynamical
iterating Eq. (5b) yields

ȳk+1 = ȳk + ḡk+1 − ḡk. (7)

Then, recursively updating Eq. (7) reduces to

ȳk = ḡk. (8)

Thus, we obtain

E [ȳk|Fk] = E [ḡk|Fk] . (9)

According to Algorithm 1, there exists

E
[
gi
k|Fk

]

=E

[
∇f tik+1

i

(
xi
k

)−∇f tik+1

i

(
vi
k

)
+∇fi

(
vi
k

) ∣∣∣Fk

]

=
1

pi

pi∑

h=1

∇fh
i

(
xi
k

)− 1

pi

pi∑

h=1

∇fh
i

(
vi
k

)
+∇fi

(
vi
k

)

=
1

pi

pi∑

h=1

∇fh
i

(
xi
k

)− 1

pi

pi∑

h=1

∇fh
i

(
vi
k

)
+

1

pi

pi∑

h=1

∇fh
i

(
vi
k

)

=
1

pi

pi∑

h=1

∇fh
i

(
xi
k

)

=∇fi
(
xi
k

)
.

Therefore, it is straightforward to obtain

E [ḡk|Fk] =
1

m
(1m ⊗ In)∇f (xk) . (10)

Combining Eqs. (9) and (10) completes the proof.
Lemma 2 Let Assumption 3 hold. ∀x ∈ R

mn, the
inequality holds as follows:

‖Wx−W∞x‖ ≤ σ ‖x−W∞x‖ , (11)

where 0 < σ < 1 is a constant.
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Proof According to the definition of W∞, we
know that W∞ = WW∞ and ‖W −W∞‖ < 1.
Therefore,

‖Wx−W∞x‖
= ‖(W −W∞) (x−W∞x)‖
≤‖W −W∞‖ ‖x−W∞x‖ = σ ‖x−W∞x‖ ,

where W∞ (x−W∞x) = 0 is used in the inequal-
ity, and σ = ‖W −W∞‖ is used to complete the
proof.
Lemma 3 Let Assumption 2 hold. Considering
dynamical system (5), ∀k ≥ 0, it holds that

∥∥∇F̄ (xk)−∇f (x̄k)
∥∥ ≤ Lf√

m
‖xk −W∞xk‖ .

(12)
Proof Recalling the definition of ∇F̄ (xk), it holds
that

∥∥∇F̄ (xk)−∇f (x̄k)
∥∥

=

∥∥∥∥∥
1

m

m∑

i=1

∇fi
(
xi
k

)− 1

m

m∑

i=1

∇fi (x̄k)

∥∥∥∥∥

=
1

m

∥∥∥∥∥

m∑

i=1

∇fi
(
xi
k

)−
m∑

i=1

∇fi (x̄k)

∥∥∥∥∥

=
1

m

m∑

i=1

∥∥∇fi
(
xi
k

)−∇fi (x̄k)
∥∥

≤Lf

m

m∑

i=1

∥∥xi
k − x̄k

∥∥

=
Lf√
m
‖xk −W∞xk‖ ,

where the Lipschitz continuity is used in the inequal-
ity. The proof is completed.
Lemma 4 Suppose that Assumptions 1 and 2 hold.
∀x ∈ R

mn, if 0 < α < 1/Lf , it holds that

‖x− α∇f (x)− x∗‖ ≤ (1− μα) ‖x− x∗‖ , (13)

where 0 < μ ≤ Lf , f (x) is the global objective
function, and we define x∗ as the global optimum,
x∗ = 1m ⊗ x̃∗ ∈ R

mn.

3.2 Auxiliary results

We analyze the convergence of the general dy-
namical system using the following four formulas:

(1) E

[
‖xk −W∞xk‖2

]
, the consensus error in

the network;
(2) E

[
‖x̄k − x̃∗‖2

]
, the optimal gap;

(3) E
[
‖xk − xk−1‖2

]
, the state difference;

(4) E

[
‖yk −W∞yk‖2

]
, the gradient tracking

error.
Lemma 5 Suppose that Assumption 3 holds. Con-
sidering the sequence {xk} yielded by dynamical sys-
tem (5), ∀k ≥ 0, it holds that

E

[
‖xk+1 −W∞xk+1‖2

]

≤1−σ2

2
E

[
‖xk−W∞xk‖2

]
+

4α2

1−σ2
E

[
‖yk−W∞yk‖2

]

+
4β2

1− σ2
E

[
‖xk − xk−1‖2

]

(14)
and

E

[
‖xk+1 −W∞xk+1‖2

]

≤2σ2
E

[
‖xk−W∞xk‖2

]
+4α2

E

[
‖yk−W∞yk‖2

]

+ 4β2
E

[
‖(xk − xk−1)‖2

]
,

(15)
where 0 < μ ≤ Lf , and f (x) is the global objective
function.
Proof Notice that W∞W = WW∞ = W∞ and
‖Imn −W∞‖ = 1. There exists

‖xk+1 −W∞xk+1‖2

≤ (1+η) ‖Wxk−W∞xk‖2

+
(
1+η−1

)(
2α2‖yk−W∞yk‖2+2β2‖xk−xk−1‖2

)
,

where Young’s inequality and Lemma 2 are used.
Setting η as 1−σ2

2σ2 and 1 in the above inequality can
lead to inequalities (14) and (15), respectively.
Lemma 6 Let Assumptions 1–3 hold. Considering
the sequence {xk} yielded by dynamical system (5),
∀k ≥ 0, if 0 < α ≤ 1/Lf , we can obtain

E

[
m‖x̄k+1 − x̃∗‖2

]

≤4α2L2
fE

[
‖xk−W∞xk‖2

]
+4β2

E

[
‖xk−xk−1‖2

]

+
α2

m
E

[
‖∇F (xk)−gk‖2

]
+2E

[
m‖x̄k−x̃∗‖2

]

(16)
and

E

[
m‖x̄k+1 − x̃∗‖2

]

≤ (1−μα)E
[
m‖x̄k−x̃∗‖2

]
+
2αL2

f

μ
E

[
‖xk−W∞xk‖2

]

+
2β2

μα
E

[
‖xk − xk−1‖2

]
+

α2

m2
E

[
‖∇F (xk)− gk‖2

]
.

(17)
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Proof According to dynamical iterating Eq. (5a)
and recalling the definition of x̄k+1, we know that
x̄k+1 = x̄k − αȳk + β (x̄k − x̄k−1):

E

[
‖x̄k+1 − x̃∗‖2

]

=E

[
‖x̄k − αȳk + β (x̄k − x̄k−1)− x̃∗‖2

]

=E

[
‖α (∇f (x̄k)− ḡk) + β (̄xk − x̄k−1)‖2

]

+2
〈
x̄k−α∇f (̄xk)−x̃∗, α(∇f(x̄k)−ḡk)+β(̄xk−x̄k−1)

〉

+ ‖x̄k − α∇f (x̄k)− x̃∗‖2,

where [ȳk |Fk ] = ∇F̄ (xk) is employed. Then we
expand E

[∥∥α (∇f (x̄k − ḡk)) + β (x̄k − x̄k−1)
∥∥
]

as
follows:

E

[
‖α (∇f (x̄k)− ḡk) + β (x̄k − x̄k−1)‖2

]

=
∥∥α
[∇f (x̄k)−∇F̄ (xk)

]
+ β (x̄k − x̄k−1)

∥∥2

+ α2
E

[∥∥∇F̄ (xk)− ḡk
∥∥2
]

≤2α2L2
f

m
‖xk −W∞xk‖2 + 2β2

m
‖xk − xk−1‖2

+
α2

m2
E

[
‖∇F (xk)− gk‖2

]
,

since
〈
α∇f (x̄k)− α∇F̄ (xk) + β (x̄k − x̄k−1),

α∇F̄ (xk)− αḡk
〉
= 0.

Next, we simplify

2
〈
x̄k − α∇f (x̄k)− x̃∗,

α∇f (x̄k)− αF̄ (xk) + β (x̄k − x̄k−1)
〉

=2
∥∥x̄k − α∇f (x̄k)− x̃∗∥∥
∥∥α∇f (x̄k)− αF̄ (xk) + β (x̄k − x̄k−1)

∥∥

≤ 1

λ

∥∥x̄k − α∇f (x̄k)− x̃∗∥∥2

+ λ
∥∥α∇f (x̄k)− αF̄ (xk) + β (x̄k − x̄k−1)

∥∥2.

Setting λ as (1− μα)/(μα) and 1 can lead to inequal-
ities (16) and (17), respectively, which completes the
proof.
Lemma 7 Considering the sequences {xk}k≥0 and
{yk}k≥0 yielded by dynamical system (5), ∀k ≥ 0, if
0 < α ≤ 1/Lf , the inequality holds as follows:

E

[
‖xk+1 − xk‖2

]

≤ (16 + 16α2L2
f

)
E

[
‖xk −W∞xk‖2

]

+16α2L2
fE

[
m‖x̄k−x̃∗‖2

]
+16α2

E

[
‖∇F (xk)−gk‖2

]

+16α2
E

[
‖yk−W∞yk‖2

]
+2β2

E

[
‖xk − xk−1‖2

]
.

(18)

Proof From dynamical iterating Eq. (5a), we have

E

[
‖xk+1 − xk‖2

]

≤E
[
‖(W−Imn)(xk−W∞xk)−αyk+β(xk−xk−1)‖2

]

≤2E
[
‖(W − Imn) (xk −W∞xk)− αyk‖2

]

+ 2β2
E

[
‖xk − xk−1‖2

]

≤16E
[
‖xk −W∞xk‖2

]
+ 4α2

E

[
‖yk‖2

]

+ 2β2
E

[
‖xk − xk−1‖2

]
.

(19)
Let Assumption 2 hold. Then one can obtain

‖yk‖
≤‖yk−W∞yk‖+ ‖∇F (xk)−gk‖+ Lf ‖xk−x∗‖
≤‖yk −W∞yk‖+ ‖∇F (xk)− gk‖
+ Lf ‖xk −W∞xk‖+

√
mLf ‖x̄k − x̃∗‖ ,

where we used ȳk = ḡk, ∀k ≥ 0, for squaring the
above inequality to obtain

‖yk‖2 ≤4‖yk −W∞yk‖2 + 4‖∇F (xk)− gk‖2

+ 4L2
f‖xk−W∞xk‖2 + 4L2

fm‖x̄k−x̃∗‖2.
(20)

Therefore, inequality (18) can be proved by plugging
inequality (20) into inequality (19).
Lemma 8 Let Assumptions 2 and 3 hold. Regard-
ing the sequence {yk} yielded by dynamical iterating
Eq. (5b), ∀k ≥ 0, if 0 < α ≤ 1/

(
4
√
2Lf

)
, it holds

that

E

[
‖yk+1 −W∞yk+1‖2

]

≤
(
1 + σ2

2
+

32α2L2
f

1− σ2

)
E

[
‖yk −W∞yk‖2

]

+
33L2

f

1− σ2
E

[
‖xk −W∞xk‖2

]

+
4L2

fβ
2

1− σ2
E

[
‖xk − xk−1‖2

]

+
4

1− σ2
E

[
‖∇F (xk+1)− gk+1‖2

]

+
L2
f

1− σ2
E

[
m‖x̄k − x̃∗‖2

]

+
4 + 32α2L2

f

1− σ2
E

[
‖∇F (xk)− gk‖2

]
.

(21)
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Proof From inequality (21), we can obtain

E

[
‖yk+1 −W∞yk+1‖2

]

=E

[
‖(W −W∞) (yk −W∞yk)

+ (Imn −W∞) (gk+1 + gk)‖2
]
.

Then we employ ‖Imn −W∞‖ = 1 and Young’s
inequality to set η as (1− σ2)/(2σ2) in the above
equality, and obtain

E

[
‖yk+1 −W∞yk+1‖2

]

≤1 + σ2

2
E

[
‖yk −W∞yk‖2

]

+
2

1− σ2
E

[
‖gk+1 − gk‖2

]
.

(22)

Next we expand E

[
‖gk+1 − gk‖2

]
as

E

[
‖gk+1 − gk‖2

]

≤2E
[
‖gk+1−∇F (xk+1)‖2

]
+2E

[
‖∇F (xk)−gk‖2

]

+ 2E
[
‖∇F (xk+1)−∇F (xk)‖2

]

+ 4E
[
〈gk+1 −∇F (xk+1) ,∇F (xk)− gk〉

]

≤2L2
fE

[
‖xk+1−xk‖2

]
+2E

[
‖gk+1−∇F (xk+1)‖2

]

+2E
[
‖∇F (xk)−gk‖2

]
,

(23)
where in inequality (23), we use the fact that

E

[
〈gk+1 −∇F (xk+1) ,∇F (xk)− gk〉

]
= 0.

Using the bound of inequality (23) in inequality (22),
we obtain inequality (21), which completes the proof.
Lemma 9 Considering {rk}, the following holds:

E [rk+1] ≤
(
1− 1

P

)
E [rk] +

2

p
E

[
m‖x̄k − x̃∗‖2

]

+
2

p
E

[
‖xk −W∞xk‖2

]
.

(24)
Proof From Algorithm 1, if j = tik+1, then vi,j

k+1 =

xi,j
k+1 and vi,j

k+1 = vi,j
k . Then we can obtain

E [rk+1]

=
1

pi

∑pi

j=1
E

[∥∥∥vi,j
k+1 − x̃∗

∥∥∥
2
]

=
1

pi

∑pi

j=1
E

[(
1− 1

pi

)∥∥∥vi,j
k+1−x̃∗

∥∥∥
2

+
1

pi

∥∥xi
k−x̃∗∥∥2

]

=

(
1− 1

pi

)
rik +

1

pi

∥∥xi
k − x̃∗∥∥2

≤
(
1− 1

P

)
rik +

2

p

∥∥xi
k − x̄k

∥∥2 + 2

p
‖x̄k − x̃∗‖2.

In the next lemma, we derive an upper bound
on E

[
‖gk −∇F (xk)‖2

]
, and then define rik =

1
pi

∑pi

j=1

∥∥∥vi,j
k − x̃∗

∥∥∥ and rk =
∑m

i rik, recalling that
P = maxi{pi} and p = mini{pi}.
Lemma 10 Let Assumption 2 hold. Considering
the sequence {gk} yielded by dynamical system (5),
∀k ≥ 0, the inequality is obtained as follows:

E

[
‖gk −∇F (xk)‖2

]

≤4L2
fE

[
‖xk −W∞xk‖2

]

+ 4L2
fE

[
m ‖x̄k − x̃∗‖2

]
+ 2L2

fE [rk] .

(25)

Proof Recalling Algorithm 1, we obtain

E

[∥∥gi
k −∇fi

(
xi
k

)∥∥2
]

=E

[∥∥∥∥∇f
qik
i

(
xi
k

)−∇f qik
i

(
vi
k

)−∇fi
(
xi
k

)

+
1

pi

pi∑

j=1

∇f j
i

(
vi,j
k

)∥∥∥∥
2
]

≤E
[∥∥∥∇f tik

i

(
xi
k

)−∇f tik
i

(
vi
k

)∥∥∥
2
]

=
1

pi

pi∑

j=1

∥∥∥∇f j
i

(
xi
k

)−∇f j
i (x̃

∗)+∇f j
i (x̃

∗)−∇f j
i

(
vi
k

)∥∥∥
2

≤2 ∥∥∇fi
(
xi
k

)−∇fi (x̃∗)
∥∥2+2

∥∥∥∇f j
i (x̃

∗)−∇f j
i

(
vi
k

)∥∥∥
2

≤2L2
f

∥∥xi
k − x̃∗∥∥2 + 2L2

f

∥∥vi
k − x̃∗∥∥2

≤4L2
f

∥∥xi
k − x̄k

∥∥2 + 4L2
f ‖x̄k − x̃∗‖2 + 2L2

fr
i
k.

Corollary 1 Let Assumptions 2 and 3 hold. Con-
sidering the sequence {gk}k≥0 yielded by dynamical
system (5), ∀k ≥ 0, we can obtain

E

[
‖gk+1 −∇F (xk+1)‖2

]

≤
(
8L2

fσ
2+

4L2
f

p
+16L2

fα
2L2

f

)
E

[
‖xk−W∞xk‖2

]

+16L2
fα

2
E

[
‖yk−W∞yk‖2

]
+32L2

fβ
2
E

[
‖xk−xk−1‖2

]

+

(
2+

1

p

)
4L2

fE

[
m ‖x̄k−x̃∗‖2

]
+

(
1− 1

P

)
2L2

fE[rk]

+
4L2

fα
2

m
E

[
‖∇F (xk)− gk‖2

]
.

(26)
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Proof From Lemma 10, it is straightforward to
obtain

E

[
‖gk+1 −∇F (xk+1)‖2

]

≤4L2
fE

[
‖xk+1 −W∞xk+1‖2

]

+ 4L2
fE

[
m ‖x̄k+1 − x̃∗‖2

]
+ 2L2

fE [rk+1] .

Then, we can expand the above inequality by plug-
ging inequalities (15), (16), and (24), from Lemmas
5, 6, and 9, respectively, which completes the proof.

3.3 Main results

To summarize, the bound of the gradient vari-
ance is obtained to process the inequality, which
is obtained from dynamical system (5), and then
we start to derive the convergence rate of the
proposed algorithm. First, the upper bounds
on E

[
‖gk−∇F (xk)‖2

]
and E

[
‖gk+1−∇F (xk+1)‖2

]

are obtained from Lemma 10 and Corollary 1, respec-
tively, and then ∀k ≥ 0, we have

E

[
‖yk+1 −W∞yk+1‖2

]

≤
(
32σ2+

16

p
+55+

2

m

)
L2
f

1−σ2
E

[
‖xk−W∞xk‖2

]

+
132L2

fβ
2

1−σ2
E

[
‖xk−xk−1‖2

]

+
L2
f

1−σ2

(
18− 8

P
+

1

m

)
E[rk]

+

(
1+σ2

2
+
96α2L2

f

1−σ2

)
E

[
‖yk−W∞yk‖2

]

+
L2
f

1− σ2

(
53 +

16

p
+

2

m

)
E

[
m ‖x̄k − x̃∗‖2

]
.

(27)
Second, we refine the following inequality by

applying the upper bound on E

[
‖gk −∇F (xk)‖2

]

from Lemma 10: ∀k ≥ 0,

E

[
‖xk+1 − xk‖2

]

≤ (16 + 80α2L2
f

)
E

[
‖xk −W∞xk‖2

]

+2β2
E

[
‖xk−xk−1‖2

]
+16α2

E

[
‖yk−W∞yk‖2

]

+ 80α2L2
fE

[
m ‖x̄k − x̃∗‖2

]
+ 32α2L2

fE [rk] .

(28)

Next, combining inequalities (17) and (25) yields

E

[
m ‖x̄k+1 − x̃∗‖2

]

≤ (1− μα)E
[
m ‖x̄k+1 − x̃∗‖2

]

+
2αL2

f

μ
E

[
‖xk −W∞xk‖2

]

+
2β2

μα
E

[
‖xk−xk−1‖2

]
+
α2

m
4L2

fE

[
‖xk−W∞xk‖2

]

+ 4
α2

m
L2
fE

[
m ‖x̄k − x̃∗‖2

]
+ 2

α2

m
L2
fE [rk]

≤
(
1− μα+

4L2
fα

2

m

)
E

[
m ‖x̄k − x̃∗‖2

]

+ αL2
f

(
2

μ
+

4α

m

)
E

[
‖xk −W∞xk‖2

]

+
2β2

μα
E

[
‖xk − xk−1‖2

]
+ 2

α2

m
L2
fE [rk]

≤
(
1− μα+

4L2
fα

2

m

)
E

[
m ‖x̄k − x̃∗‖2

]

+ αL2
f

(
2

μ
+

4α

m

)
E

[
‖xk −W∞xk‖2

]

+
2β2

μα
E

[
‖xk − xk−1‖2

]
+

2L2
fα

2

m
E [rk] .

If 0 < α ≤ 1/(2μ), then 2/μ + 4α/m ≤ 4/μ;
if 0 < α ≤ μm/(8L2), then 1 − μα + 4L2

fα
2/m ≤

1 − μα/2. Therefore, we can obtain the following
inequality:

E

[
m ‖x̄k+1 − x̃∗‖2

]

≤
(
1− μα

2

)
E

[
m ‖x̄k − x̃∗‖2

]

+
4αL2

f

μ
E

[
‖xk −W∞xk‖2

]

+
2β2

μα
E

[
‖xk − xk−1‖2

]
+

2L2
fα

2

m
E [rk] .

(29)

Now we combine inequalities (14), (24), (27),
and (28) with inequality (29) as a linear matrix to
prepare for the subsequent derivation.
Proposition 1 Let Assumptions 1–3 hold. ∀k ≥ 1,
the following inequality holds entry-wise:

Jk+1 ≤ GαJk, (30)

where Jk ∈ R
5 is given by

Jk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

E

[
‖xk −W∞xk‖2

]

E

[
‖xk − xk−1‖2

]

E

[
‖yk −W∞yk‖2

]

E

[
m‖x̄k − x̃∗‖2

]

E [rk]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and Gα ∈ R
5×5 is given at the bottom of this page,

where a1 = 16/p + 55 + 2/m, a2 = 16/p + 53 +

2/m, a3 = 18 − 8/P + 1/m. Obviously, it is fea-
sible to obtain the range of α to satisfy ρ (Gα) < 1.
To achieve this, we go to the next lemma.
Lemma 11 Let H ∈ R

d×d and x ∈ R
d be non-

negative matrix and positive vector, respectively.
For γ > 0, if Hx ≤ γx, then ρ (H) ≤ |||H |||x∞ ≤ γ.
Theorem 1 Let Assumptions 1–3 hold. If step-
size α satisfies 0 < α < p

P
(1−σ2)

2

549QLf
, the proposed

algorithm is linearly convergent.
Proof Let positive vector δ = [δ1, δ2, δ3, δ4, δ5]

T.
The linear matrix inequality holds as follows:

Gαδ < δ,

which can be equivalently written as the following
inequalities:

0 <
1− σ2

2
− 4β2

1− σ2

δ2
δ1
− 4α2

1− σ2

δ3
δ1

, (31)

0 <
(
1− 2β2

)− (16 + 80α2L2
f

) δ1
δ2
− 16α2 δ3

δ2

− 80α2L2
f

δ4
δ2
− 32α2L2

f

δ5
δ2

,

(32)

0 <

(
1− σ2

2
− 96α2L2

f

1− σ2

)
δ3−

L2
f

1− σ2

(
32σ2+ a1

)
δ1

− L2
f

1− σ2
a2δ4 −

L2
f

1− σ2
a3δ5,

(33)

0 <
μα

2
− 4αL2

f

μ

δ1
δ4
− 2β2

μα

δ2
δ4
− 2L2

fα
2

m

δ5
δ4

, (34)

0 <
1

P
− 2

p

δ1
δ5
− 2

p

δ4
δ5

. (35)

It is evident that for the right-hand sides (RHSs)
of inequalities (31)–(35) to be positive, we can bound
the range of α. First, we are supposed to fix vector
δ, which is positive and independent of α and β. We

can set δ1 = 1, δ2 = 17, and Q = Lf/μ, and the
following inequality is obtained from inequality (34):

2β2

μα

δ2
δ4

<
μα

2
− 4αL2

f

μ

δ1
δ4
− 2L2

fα
2

m

δ5
δ4

. (36)

Because the RHS of inequality (36) is positive, it is
straightforward that

δ4 >
8L2

f

μ2
δ1 = 8Q2. (37)

Therefore, we set δ4 = 80Q2, and obtain the follow-
ing inequality because the RHS of inequality (35) is
positive:

δ5 >
2P

p
(δ1 + δ4) =

2P

p
+

160P

p
Q2. (38)

We denote δ5 = 164PQ2/p. Then, from inequal-
ity (33), we obtain

132L2
fβ

2

1− σ2
δ2 +

96α2L2
f

1− σ2
δ3

<
1− σ2

2
δ3 −

(
105L2

f

1− σ2
δ1 +

71L2
f

1− σ2
δ4 +

19L2
f

1− σ2
δ5

)
.

(39)
Because the RHS of inequality (39) is positive, the
following inequality is obtained:

δ3 >
2L2

f

(1− σ2)
2

(
105 + 5680Q2 +

3116PQ2

p

)
.

(40)
Because 105 + 5680Q2 + 3116PQ2/p < 8901PQ2/p,

we can set δ3 =
18 050L2

f

(1−σ2)2
PQ2

p . Until now, we have
fixed values of δ1–δ5 as follows:

δ1 = 1, δ2 = 17, δ3 =
18050L2

f

(1− σ2)
2

PQ2

p
,

δ4 = 80Q2, δ5 =
164PQ2

p
.

(41)

The range of α that satisfies forward inequalities can

Gα =

⎡

⎢⎢⎢⎢⎢⎢⎣

1−σ2

2
4β2

1−σ2
4α2

1−σ2 0 0

16 + 80α2L2
f 2β2 16α2 80α2L2

f 32α2L2
f

L2
f

1−σ2

(
32σ2 + a1

) 132L2
fβ

2

1−σ2
1+σ2

2 + 96α2

1−σ2

L2
f

1−σ2 a2
L2

f

1−σ2 a3
4αL2

f

μ
2β2

μα 0 1− μα
2

2L2
fα

2

m
2
p 0 0 2

p 1− 1
P

⎤

⎥⎥⎥⎥⎥⎥⎦
.
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thus be found. From inequality (31), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

4β2

1− σ2
δ2 <

1− σ2

2
δ1 − 4α2

1− σ2
δ3,

α2 <

(
1− σ2

)2

8

δ1
δ3

.

Then we have

α <

√
(1− σ2)

2

8

δ1
δ3

=

√
(1− σ2)

2

8

(1− σ2)
2

18050L2
f

=

(
1− σ2

)2

380

√
p√

PQ
.

(42)

From inequality (32), we obtain

α<

√
1

80L2
fδ1 + 16δ3 + 80L2

fδ4 + 32L2
fδ5

⇐ α<

√√√√
1(

80+16 18 050PQ2

(1−σ2)2p
+6400Q2+ 5248PQ2

p

)
L2
f

⇐ α<

√
(1−σ2)2 p

300528PQ2L2
f

⇔ α<
1−σ2

12
√
2087

√
p√

PQLf

.

(43)
From inequality (33), we can obtain

96α2L2
f

1−σ2
δ3<

1−σ2

2
δ3−

L2
f

1−σ2
(105δ1+71δ4+19δ5)

⇐ 96α2L2
f

1−σ2
δ3<

1−σ2

2
δ3−

L2
f

1−σ2

8901PQ2

p

⇐ 96α2L2
f

1− σ2
<

1−σ2

2
− 8901

(
1−σ2

)

18050
=

62
(
1−σ2

)

9025

⇔ α <

√
31
(
1− σ2

)

380
√
3Lf

.

(44)
Finally, we can obtain the following inequality by
applying inequality (34):

4L2
fα

μm
δ5 < δ4 −

8L2
f

μ2
δ1 − 4β2

μ2α2
δ2.

Then we can obtain inequalities as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

α <
μm

4L2
f

δ4
δ5
− 2m

μ

δ1
δ5

,

α <
m

4QLf

80p

164P
− 2m

μ

p

164PQ2
,

α <
9

82

p

P

m

QLf
.

(45)

Therefore, α satisfies

α < ᾱ � min

{(
1− σ2

)2

380

√
p√

PQ
,

1− σ2

12
√
2087

√
p√

PQLf

,

√
31
(
1− σ2

)

380
√
3Lf

,
m

QLf

9p

82P

}

⇐ α <
p

P

(
1− σ2

)2

549QLf
.

Next, we set α = p
P

(1−σ2)2

560QLf
according to the previous

range of α to obtain β. First, from inequality (31),
we have

4β2

1−σ2
δ2 <

1−σ2

2
− 4

1−σ2

18050

(1−σ2)
2

p

P

(
1− σ2

)4

313600

=
1− σ2

2
− p

P

361
(
1− σ2

)

1568

⇐ 4β2

1− σ2
δ2 <

9× 47
(
1− σ2

)

1568

p

P

⇐β <
3
√
47
(
1− σ2

)

56
√
34

√
p√
P
.

(46)
Second, from inequality (32), we have

2β2δ2 <δ2 − 16δ1 − 80L2
fδ1α

2 − 16δ3α
2

− 80L2
fδ4α

2 − 32L2
fδ5α

2

⇐ 2β2δ2 <1− p2

P 2

(
1− σ2

)4

3920Q2
− p

P

361
(
1− σ2

)2

392

− p2

P 2

47
(
1− σ2

)4

1568
− p

P

82
(
1− σ2

)4

4900

⇐β <

√
1259

(
1− σ2

)

280
√
17

√
p√
P
.

(47)
Then from inequality (33), we have

132L2
fβ

2

1−σ2
δ2 <

1−σ2

2
δ3−

105L2
f

1−σ2
δ1−

96α2L2
f

1−σ2
δ3

− 71L2
f

1− σ2
δ4 −

19L2
f

1− σ2
δ5

⇐ 132L2
fβ

2

1− σ2
δ2 <

9025L2
f

1− σ2

PQ2

p
− 361

196

PQ2

p

8904L2
f

1− σ2

⇔ β <

√
59√

1122

√
PQ√
p

.

(48)
Finally, from inequality (34), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4β2

μ2α2
δ2 < δ4 −

8L2
f

μ2
δ1 −

4L2
fα

μm
δ5,

β <

√
69
(
1− σ2

)2

560
√
68

p

PQ
.

(49)



Sun et al. / Front Inform Technol Electron Eng 2021 22(11):1463-1476 1473

Therefore, we obtain the range of β from inequali-
ties (46)–(49) as follows:

β < β̄
Δ
= min

{
3
√
47p

(
1− σ2

)

56
√
34P

,

√
1259p

(
1− σ2

)

280
√
17P

,

√
59√

1122

√
PQ√
p

,

√
69
(
1− σ2

)2

560
√
68

p

PQ

}
,

which completes the proof.
Remark 2 It is worth emphasizing that this study
does not establish explicit expression of the accel-
erated convergence rate from a theoretical point of
view; the acceleration of the proposed algorithm can
be demonstrated only from the practical point of
view. The acceleration in this study can be observed
through a series of experiments because this is still an
open problem in recent literature (Xin et al., 2019a;
Li HQ et al., 2020; Lü et al., 2020; Xin and Khan,
2020; Hu et al., 2021). Therefore, it would be worth-
while to analyze the acceleration from a theoretical
point of view in future work.

4 Experimental results

In this section, we compare the proposed al-
gorithm with other methods by solving some opti-
mization problems, such as the distributed logistic
regression problem, distributed least-squares regres-
sion problem, and distributed quadratic program-
ming problem, to prove the proposed algorithm’s
practicability. The performances of all the tested
algorithms are plotted by 1

m

∑m
i=1

∥∥xi
k − x̃∗∥∥.

4.1 Distributed logistic regression

This subsection illustrates the performance
comparison between different algorithms. We set
N =

∑m
i=1 qi as the number of samples and allocate

qi to m agents on average, i.e., qi = N/m. The
undirected network to distributed logistic regression
problem is given as follows:

x̃∗ =arg min
x̃∈R

n

(γ
2
‖x̃‖2

+

m∑

i=1

qi∑

j=1

log
(
1 + exp

(−bijcTijx̃
)))

,
(50)

where cij ∈ R
n is the jth sample and bij ∈ {1,−1} is

the corresponding binary label. To avoid over-fitting,
we add a regularization term. According to Eq. (50),
the local objective function fi corresponding to P0

is written as follows:

fi (x̃) =
γ

2
‖x̃‖2 +

qi∑

j=1

log
(
1 + exp

(−bijcTijx̃
))
.

(51)

We aim to solve the logistic regression problem
by choosing the Wisconsin breast cancer (diagnos-
tic) dataset in the UCI Machine Learning Repos-
itory (Dua and Graff, 2017). These samples are
from a digitized image of a fine needle aspirate of
a breast mass. By judging the average of distances
from the center to points on the silhouette and the
severity of concave portions of the contour, a pa-
tient’s condition is predicted as malignant or benign.
We randomly choose N = 500 samples from the to-
tal of 683 dataset samples to train the discriminator
x̃ and suppose that samples are equally distributed
to each agent; the rest of the samples are used for
testing. Fig. 2 presents the performance comparison
of the proposed algorithm, GT-SAGA, and EXTRA
over an undirected network. All step-sizes are set
as α = 0.05 and the heavy-ball momentum accelera-
tion term β = 0.05 in all the algorithms is the same.
The accuracy, in the vertical axis of Fig. 3, is the ra-
tio of the number of correct predictions to the total
number of samples in the testing set.

4.2 Least-squares method of distributed sig-
nal processing

This subsection studies a least-squares problem
provided in Li Z et al. (2019), which considers an
undirected network of m = 10 agents for an unknown
signal x̃ ∈ R

n for the optimization problem:

min
x̃∈Rn

f̃ (x̃) �
∑m

i=1

1

2
‖Cix̃− di‖2, (52)
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Fig. 2 Logistic regression over an undirected network
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where the local objective function maintained by
agent i (i = 1, 2, · · · ,m) is given by

fi (x̃) =
1

qi

∑qi

h=1

∥∥Ch
i x̃− dh

i

∥∥2. (53)

From problem (52), we can see that Ci ∈ R
qi×n is

the sensing matrix and that di = Cix̃ + ei is the
measurement, where ei ∈ R

qi is the independent
and identically distributed noise. When qi = 600

and m = 10, Fig. 4 illustrates the proposed algo-
rithm, GT-SAGA, and EXTRA algorithms over an
undirected network to verify the acceleration of the
proposed algorithm.

4.3 Distributed quadratic programming

In this subsection, the problem of quadratic pro-
gramming can be resolved by an undirected network
of m = 10 agents as follows:

min
x̃∈Rn

f̃ (x̃) =

m∑

i=1

x̃TGix̃+ cTi x̃, (54)

where matrix Gi ∈ R
n×n is diagonal and positive

definite and ci ∈ R
n is a randomly generated vector.
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Fig. 3 Comparison of accuracy performance

Number of epochs
0 2 4 6 8 10 12 14 16 18

R
es

id
ua

l

100

10−1

10−2

10−3

10−4

EXTRA α=0.05
GT-SAGA maxiαi=0.05

Proposed algorithm maxiαi=0.05

Fig. 4 Performance comparison over the least-squares
method of distributed signal processing

We assume the dimension n = 10. Then we set the
step-size α = 0.0008 in all the algorithms and the
momentum parameter β = 0.0008. Fig. 5 shows the
acceleration performance of the proposed algorithm
compare to those of GT-SAGA and EXTRA over an
undirected network.
Remark 3 In view of Tables 1–3, one can clearly
see that in different experiments, there are fewer
epochs of the proposed algorithm than those of the
GT-SAGA and EXTRA algorithms under the same
accuracy. This demonstrates that the proposed algo-
rithm accelerates convergence. So, the acceleration
of the proposed algorithm can be verified.
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Fig. 5 Performance comparison over an undirected
network when condition number Q = 500

Table 1 Convergence performance comparison over
logistic regression

Algorithm
Number of epochs

Accuracy=10−2 10−4 10−6

Proposed algorithm 8 22 35
GT-SAGA 16 46 79
EXTRA 193 549 935

Table 2 Convergence performance comparison over
least-squares

Algorithm
Number of epochs

Accuracy=10−1 10−2

Proposed algorithm 3 18
GT-SAGA 6 8
EXTRA 7 20

Table 3 Convergence performance comparison over
the distributed quadratic programming

Algorithm
Number of epochs

Accuracy=10−1 10−2

Proposed algorithm 1472 2747
GT-SAGA 4412 8237
EXTRA 1657 3097
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5 Conclusions

We presented a distributed stochastic algorithm
which is capable of solving large-scale optimization
problems over undirected networks. We showed that
the proposed algorithm achieves accelerated linear
convergence with a constant step-size α. Extensive
experiments on real-world datasets illustrated that
the performance of the proposed algorithm is supe-
rior to those of other comparable algorithms.
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