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Abstract: To deal with the threat of the new generation of electronic warfare, we establish a non-cooperative
countermeasure game model to analyze power allocation and interference suppression between multistatic multiple-
input multiple-output (MIMO) radars and multiple jammers in this study. First, according to the power allocation
strategy, a supermodular power allocation game framework with a fixed weight (FW) vector is constructed. At the
same time, a constrained optimization model for maximizing the radar utility function is established. Based on the
utility function, the best power allocation strategies for the radars and jammers are obtained. The existence and
uniqueness of the Nash equilibrium (NE) of the supermodular game are proved. A supermodular game algorithm
with FW is proposed which converges to the NE. In addition, we use adaptive beamforming methods to suppress
cross-channel interference that occurs as direct wave interferences between the radars and jammers. A supermodular
game algorithm for joint power allocation and beamforming is also proposed. The algorithm can ensure the best
power allocation, and also improves the interference suppression ability of the MIMO radar. Finally, the effectiveness
and convergence of two algorithms are verified by numerical results.
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1 Introduction

With the continuous development of modern
electronic warfare (EW), all countries are updat-
ing and improving their own weapons and equip-
ment (Stephens, 1996). As the main participants
in EW, new radar systems, including multiple-input
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multiple-output (MIMO) radar, cognitive radar,
multistatic radar, and imaging radar, have become
the main research and development direction of var-
ious countries. In particular, MIMO radar will
be gradually applied to modern military conflicts.
Multistatic MIMO radar combines the advantages of
MIMO and multistatic radars, and it will become the
main research direction of the next-generation radar
system. It not only has superior target detection
and tracking ability, but also exhibits wide coverage
and strong interference suppression abilities (Her-
shey, 1990; Chernyak, 1998; Li J and Stoica, 2009).

Suppression jamming and deceptive jamming
are the main jamming strategies in actual electronic
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countermeasures (ECMs) (Yu et al., 2019). Sup-
pression jamming usually uses a high-power noise
waveform to break down radar electronic protection
measures. Its main purpose is to reduce the echo
signal quality of the radar receiver, so the radar can-
not perform target detection and tracking well. De-
ception jamming uses mainly the false target infor-
mation to confuse the radar, so it does not confirm
the distance or angle of the real target in the re-
ceived echo information (Tang B et al., 2016). To
improve target detection and tracking ability, radar
systems need new anti-jamming strategies to deal
with different types of jamming. In view of the gam-
ing relationship between jamming and anti-jamming,
decision makers on both sides need to change their
own strategies to deal with the changing real-time
battlefield information.

Recently, many studies have analyzed the com-
munication network using game theory, which is
mainly about the development of autonomous,
anonymous, and flexible mobile networks. In fact,
network devices can construct a low-complexity dis-
tributed algorithm that makes independent and rea-
sonable strategic decisions concerning the coopera-
tion and competition behaviors of network entities
(Saad et al., 2009; Dahrouj and Yu, 2010; Moragrega
et al., 2013). Game theory has also been applied to
different aspects of radar research, including radar
waveform design (Piezzo et al., 2013; Han and Ne-
horai, 2016; Panoui et al., 2016), radar countermea-
sures (Bachmann et al., 2011; Norouzi and Norouzi,
2012; Song et al., 2012; Deligiannis et al., 2016b;
Wang and Zhang, 2019), target detection and track-
ing (Gogineni and Nehorai, 2012; Chavali and Ne-
horai, 2013; Tang L et al., 2013; Lan et al., 2015;
Bogdanović et al., 2018; Niu et al., 2018), radar re-
source allocation (Sun et al., 2014; Chen et al., 2015;
Deligiannis et al., 2016a, 2017; Shi et al., 2018; Liu
et al., 2019; Yuan et al., 2019; Li ZJ et al., 2020; Shi
et al., 2020a, 2021; Yi et al., 2020), and radar com-
munication integration (Rihan and Huang, 2018; Shi
et al., 2019a, 2019b, 2020b). Han and Nehorai (2016)
considered the frequency-hopping waveform of collo-
cated MIMO radar using game theory. The joint de-
sign of amplitude and frequency-hopping coding was
used to meet the performance requirements of wave-
form design. Meanwhile, two joint algorithms were
proposed and they converged to the ε-approximate
equilibrium. Similarly, a non-cooperative game the-

ory approach was considered in the coding design
of radar networks (Piezzo et al., 2013). Three dif-
ferent non-cooperative game coding algorithms were
proposed to minimize the sidelobe level, and these
algorithms converged to the equilibrium solution of
the game. Based on Piezzo et al. (2013), a novel
game theory framework was constructed to study
the waveform design of distributed MIMO radar in
the presence of clutter. Moreover, the existence and
uniqueness of Nash equilibrium (NE) were strictly
proved using the large midpoint property (LMP)
(Panoui et al., 2016). In the research on radar coun-
termeasures, the interaction between the radars and
jammers was evaluated in a typical and well-studied
cluttered environment. A novel utility function with
joint detection and false alarm probabilities was pro-
posed. It was proved that the utility function satis-
fies the properties of supermodular games and the
existence of pure strategy NE (Bachmann et al.,
2011). Meanwhile, the mutual information criterion
between the radars and jammers was taken as the
utility function (Song et al., 2012). Unilateral, hi-
erarchical, and symmetric games were studied, and
the equilibrium solutions of power allocation were
obtained. Additionally, strategic game theory analy-
sis was applied to the scheduling between the radars
and jammers during peace and war (Norouzi and
Norouzi, 2012). In Tang L et al. (2013), the dy-
namic interactions between a bistatic radar network
and an attacker were modeled as a repeated secu-
rity game. Two learning algorithms were proposed,
and were verified to converge to the set of correlated
equilibria (Tang L et al., 2013). In Gogineni and
Nehorai (2012), the target detection performance of
polarization MIMO radar was investigated based on
game theory. A game polarization target detection
algorithm was proposed that has better performance
than single vertical polarization or horizontal polar-
ization (Gogineni and Nehorai, 2012). At the same
time, with respect to target tracking, a game theo-
retic model for concurrent particle filter and data
association was considered (Chavali and Nehorai,
2013). A particle filter technique for tracking ma-
neuvering targets in the presence of clutter was used
to build a regret-based learning algorithm to find
this game’s equilibrium. Aiming at the problems of
power allocation between radars, a joint beamform-
ing and power allocation technology was considered
in the presence of multiple targets (Deligiannis et al.,
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2016a). The relationship between radars using a
strategic non-cooperative game (SNG) was studied.
Furthermore, a power allocation learning algorithm
was proposed, and it converged to the NE. Based on
the cooperative relationship between radars, a power
allocation strategy for a multistatic radar network in
target tracking was analyzed using cooperative game
theory (Sun et al., 2014; Chen et al., 2015). The per-
formance of the proposed cooperative power alloca-
tion game (PAG) algorithm was better than those of
random power allocation and uniform power alloca-
tion. In radar communication integration research,
the Stackelberg game was used to study the PAG
between radars and communication under spectrum
coexistence (Shi et al., 2019b, 2020b). Furthermore,
aiming at the uncertainty in radar communication
integration, a robust Stackelberg game model was
considered, in which the existence and uniqueness of
the NE were strictly proved. Meanwhile, an itera-
tive power allocation method was proposed, and it
converged to the robust NE (Shi et al., 2019b).

Based on the above research, we study a game
model between a multistatic MIMO radar network
and multiple jammers with multiple targets. We do
not consider the influence of clutter on the radars.
For clarification, we can summarize the main contri-
butions of this paper as follows:

1. Two kinds of supermodular game frameworks
for joint power allocation and beamforming (JPAB)
are established. One is a supermodular PAG frame-
work with a fixed weight (FW) vector, while the
other is a supermodular PAG framework based on
an optimal beamforming weight vector.

2. Based on game theory analysis, the best re-
sponse (BR) functions of the radars and jammers are
obtained. Furthermore, the existence and unique-
ness of NE are strictly proved.

3. The supermodular JPAB game algorithm is
proposed, and it converges to the NE solution. In
addition, the proposed algorithm can significantly
suppress interference compared with other methods.

4. Numerical results are provided to verify the
effectiveness and convergence of the algorithm.

Notations used in this paper are summarized as
follows: (·)T, (·)∗, and (·)H represent the transpose,
conjugate, and conjugate transpose operations, re-
spectively. ‖ · ‖F defines the Frobenius norm, ‖ · ‖
defines the Euclidean norm, and | · | represents the
absolute value. IL is an L×L identity matrix. 1L is

an all-one-vector whose length is L. n(t) is an inde-
pendent and identically distributed Gaussian white
noise at time t, with n(t) ∼ CN(0, σ2

nI).

2 System model

A system model involving multistatic MIMO
radars and multiple jammers with multiple targets
is investigated, as shown in Fig. 1. There are K sep-
arate multistatic radars, and every radar consists of
Mt transmit antennas and Mr receive antennas. In
particular, it is assumed that each radar is set to the
same number of transmit and receive antennas; that
is, M = Mt = Mr. The spacing between adjacent el-
ements is a half wavelength. Multiple jammers emit
jamming signals to decrease the target detection and
tracking ability of the MIMO radars.

Target 1
Target L

Jammer 1

Jammer J

Radar 1
Radar K

Jammer→MIMO radar
Radar k→target→radar i (i ≠ k)
Radar k→target→radar k
MIMO radar→target
Radar k→radar i 

Fig. 1 Multistatic MIMO radars and multiple jam-
mers with multiple targets

For multistatic radars, the precoding wave-
form sequence from the kth radar to the lth tar-
get is sR(kl)(t), where k = 1, 2, · · · ,K, l =

1, 2, · · · , L, and t is the time index of the radar
pulse. Then, the precoding waveform vector
from the kth radar can be expressed as sRk(t) =

[sR(k1)(t), sR(k2)(t), · · · , sR(kL)(t)]
T. In addition, the

MIMO radar waveform vector meets the orthogonal-
ity conditions:

∫
TR

sRk(t)s
H
Rk(t)dt = IL, (1)

where TR denotes the waveform’s pulse width.
The MIMO radar waveforms are uncorrelated

for different targets. Based on acceptable time delays
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τl, the orthogonality satisfies

∫
TR

sR(kl)(t− τkl)s
∗
R(kl′)(t− τkl′ )dt =

{
1, l = l′,
0, l �= l′.

(2)
If a target echo is not completely orthogonal to the
corresponding transmit waveform, the background
noise will increase and the grating lobes will appear
after the matched filtering. In this way, it will inter-
fere with the radar’s target detection ability.

The signal sequence transmitted by the kth

radar to the lth target can be written as

xR(kl)(t) = wt(kl)sR(kl)(t), (3)

where wt(kl) is the M × 1 transmit beamforming
weight vector from the kth radar to the lth target.
Then, all the transmitted signals of the kth radar
can be obtained:

xRk(t) =

L∑
l=1

wt(kl)sR(kl)(t). (4)

Thus, the reflected signals of the kth radar from
the angle θkl of the lth target are

yR(kl)(t) = βlw
H
t(kl)a(θkl)sR(kl)(t), (5)

where βl defines the lth target reflection coefficient.

Then, the received signals of the kth radar are

ỹRk(t) =
K∑
i=1

L∑
l=1

ht(kil)sR(il)(t) +
J∑

j=1

ct(jk)sJ(jk)(t)

+

K∑
i�=k

L∑
l=1

gt(kil)sR(il)(t) + n(t), (6)

where ht(kil) is the channel vector for describing the
channel response of the signal transmitted by the ith

radar, reflected by the lth target, and received by
the kth radar, gt(kil) is the channel vector of the cor-
responding lth target signal transmitted by the ith

radar and received by the kth radar, and ct(jk) is the
channel vector of the jamming signal received by the
kth radar and transmitted by the jth jammer. Hence,
the channel equations for transmitting/receiving sig-

nals are written as (Deligiannis et al., 2016a)

ht(kil) = b(θkl)w
H
t(il)a(θil)βkil, (7a)

hr(kil) = a(θil)w
H
r(kl)b(θkl)βkil, (7b)

gt(kil) = b(θrad(ki))w
H
t(il)a(θrad(ik)), (7c)

gr(kil) = a(θrad(ki))w
H
r(il)b(θrad(ik)), (7d)

ct(jk) = b(θkj)w
H
t(jk)a(θjk)

√
pJ(jk), (7e)

cr(jk) = a(θjk)w
H
r(kj)b(θkj)

√
pJ(jk), (7f)

wherewr(kl) is the M×1 receive beamforming weight
vector of the kth radar to the lth target, βkil is the
radar cross section (RCS) reflection coefficient pass-
ing through the lth target from the ith radar to the
kth radar, pJ(jk) denotes the transmitted power of
the jth jammer after suppressed by the kth radar, θkl
represents the direction of arrival (DOA) from the
lth target to the kth radar, θrad(ki) is the direct direc-
tion angle from the ith radar to the kth radar, θjk is
the DOA from the jth jammer to the kth radar, a(θ)
and b(θ) are the transmitting and receiving steering
vectors of the kth radar respectively, which can be
defined as

a(θ) =
[
1, ejd

2π
λ sin θ, · · · , ej(Mt−1)d 2π

λ sin θ
]T

, (8a)

b(θ) =
[
1, ejd

2π
λ sin θ, · · · , ej(Mr−1)d 2π

λ sin θ
]T

, (8b)

where d is the array element spacing which is consid-
ered to be the same for all radars. Besides, sJ(jk)(t)
indicates the jamming signal from the jth jammer
to the kth radar in Eq. (6). Similarly, the jammer
transmits the same signal as the radar does. Thus,
the jamming waveform transmitted by the jth jam-
mer to the kth radar is

sJ(jk) =

L∑
l=1

wjklsR(kl), (9)

where wjkl denotes the weight coefficient of the jam-
ming signal from the jth jammer to the kth radar
corresponding to the lth target. In this way, if the
jamming signal is deceptive jamming, then it can be
intensive false target jamming. If the jamming sig-
nal is suppression jamming, then it can be blanket
jamming of white noise.

Although the receiver can obtain the desired
target signal using matched filtering, there are jam-
ming and cross-channel interference signals. Thus,
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the matched filtering for the lth target echo is per-
formed to obtain

zR(kl) =

K∑
i=1

L∑
n=1

ht(kil)ρklin(τln) +

J∑
j=1

ct(jk)ρklj(τlj)

+

K∑
i�=k

L∑
n=1

gt(kil)ρklin(τln) + n, (10)

where ρklin(τln) is the correlation factor between the
lth target waveform transmitted by the ith radar and
the corresponding nth target signal returning to the
kth radar, and ρklj(τlj) is the correlation factor be-
tween the jamming signal of the jth jammer and the
signal transmitted from the kth radar to the lth tar-
get. Using beamforming, the desired output signal
of the kth radar, which corresponds to the lth target,
is

Zdes(kl) = wH
r(kl)ht(kkl). (11)

The target detection and tracking abilities of
radars will be affected by cross-channel and multi-
jammer interference. In this way, the waveform cor-
responding to the lth target of the kth radar uses
adaptive beamforming to suppress interference as
follows:

Zinter(kl) =

K∑
i=1

L∑
n�=l

wH
r(kl)ht(kil)ρklin(τln)

+

J∑
j=1

wH
r(kl)ct(jk)ρklj(τlj)

+

K∑
i�=k

L∑
n=1

wH
r(kl)gt(kil)ρklin(τln) + n,

(12)

where n represents the Gaussian white noise.
γR(kl) is the signal-to-interference-plus-noise ra-

tio (SINR) of the kth radar corresponding to the lth

target, written as

γR(kl) =

∥∥Zdes(kl)

∥∥2∥∥Zinter(kl)

∥∥2 . (13)

In this section, the system model is built. In
the following section, the supermodular PAG is con-
structed, and the existence and uniqueness of the NE
will be strictly proved.

3 Supermodular PAG with FW

3.1 Basic game formulation

A supermodular PAG framework is constructed
in the presence of multiple targets between multi-
static MIMO radars and multiple jammers. We
study the suppression of jamming from the radar
side, and clutter is not considered. The radars and
jammers are the main players in the game, and their
corresponding power can be regarded as the game
strategies. The utility function is defined as a loga-
rithmic function. The main purpose of MIMO radars
is to maximize the utility function. Therefore, the
game framework can be defined as

G1 = {P1,S1,U1}. (14)

(1) Player: P1 = PR1 × PJ1, where
PR1 = {Radark|k = 1, 2, · · · ,K} and PJ1 =

{Jammerj |j = 1, 2, · · · , J};
(2) Strategy: S1 = SR1 × SJ1, where SR1 ={

pR(kl)|pRk =
[
pR(k1), pR(k2), · · · , pR(kL)

]T} and

SJ1 =
{
pJ(jk)|pJk =

[
pJ(1k), pJ(2k), · · · , pJ(Jk)

]T};

(3) Utility function: U1 =
{
UR(klj)

}
.

3.2 Power allocation optimization and NE
analysis

In view of the interference effects of multiple
jammers on multistatic MIMO radars, we need ef-
fective methods to suppress interference. In ad-
dition, a reasonable power allocation strategy is
helpful in modifying radar’s ability to suppress the
jamming signal, which improves the radar’s ability
to detect and track targets. To obtain the radar
power allocation strategy, we normalize the radar
beamformer weight vectors as ŵt(kl) =

wt(kl)

‖wt(kl)‖ and

ŵt(jk) =
wt(jk)

‖wt(kl)‖ , and also denote σ̂2 = σ2

‖wt(kl)‖2 .

Therefore, the SINR can be rewritten as

γR(kl) =

∣∣∣wH
r(kl)ĥt(kkl)

∣∣∣2pR(kl)∣∣∣wH
r(kl)ĉt(jk)

∣∣∣2pJ(jk) + η̂R(kl)

. (15)

Furthermore, the total interference received by the
kth radar corresponding to the lth target can be writ-
ten as follows:

IR(kl) =
∣∣∣wH

r(kl)ĉt(jk)

∣∣∣2pJ(jk) + η̂R(kl), (16)



622 He and Su / Front Inform Technol Electron Eng 2022 23(4):617-629

where ĉt(jk) = b(θkj)ŵ
H
t(jk)a(θjk),

η̂R(kl) =
K∑
i�=k

L∑
n=1

∣∣∣wH
r(kl)ĥt(kin)

∣∣∣2pR(in) +

L∑
n�=l

∣∣∣wH
r(kl)ĥt(kkn)

∣∣∣2pR(kn) +
J∑

q �=j

∣∣∣wH
r(kl)ĉt(qk)

∣∣∣2pJ(qk)
+

K∑
i�=k

L∑
n=1

∣∣∣wH
r(kl)ĝt(kin)

∣∣∣2pR(in) + σ̂2.

Then, from Eqs. (15) and (16), the following
results can be obtained:

γR(kl) =

∣∣∣wH
r(kl)ĥt(kkl)

∣∣∣2pR(kl)

IR(kl)
, (17)

∂γR(kl)

∂pR(kl)
=

∣∣∣wH
r(kl)ĥt(kkl)

∣∣∣2
IR(kl)

=
γR(kl)

pR(kl)
, (18)

∂γR(kl)

∂pJ(jk)
= −

pR(kl)

∣∣∣wH
r(kl)ĥt(kkl)

∣∣∣2
∣∣∣wH

r(kl)ĉt(jk)

∣∣∣2
I2R(kl)

.

(19)
For the supermodular PAG, we construct a log-

arithmic utility function as follows:

UR(klj)(pR(kl), pJ(jk))

= ln(γR(kl) − γmin
R(kl))− εklpR(kl) +

J∑
q=1

ωqkpJ(qk),

(20)

where γmin
R(kl) is the minimum SINR threshold, and εkl

and ωqk are the linear price factor coefficients, which
are positive numbers. Thus, the PAG optimization
model is established by maximizing the utility func-
tion as follows:

min
pJk

max
pRk

L∑
l=1

UR(klj)(pR(kl), pJ(jk)) (21a)

s.t. γmin
R(kl) ≤ γR(kl), ∀l, (21b)

0 ≤ pR(kl) ≤ pmax
R(kl), ∀l, (21c)

1LpRk ≤ pTotRk , (21d)

0 ≤ pJ(jk) ≤ pmax
J(jk), ∀j, (21e)

1JpJk ≤ pTotJk , (21f)

where pmax
R(kl) is the maximum transmitted power of

the kth radar to the lth target, pmax
J(jk) is the maximum

power of the jth jammer to the kth radar, pTotRk is the
total transmitted power of the kth radar, and pTotJk

is the total power from all the jammers to the kth

radar.

To obtain the best power allocation strategies
for the radars and jammers, the utility function is
used to solve the BR functions of both sides. In
this way, radars and jammers can allocate the power
based on the BR strategies of the game. To maximize
the radar’s effectiveness, it is necessary to change its
power allocation strategy to suppress the interfer-
ence. The BR strategy of the kth radar to the lth

target is as follows:

p∗R(kl) = arg max
pR(kl)

UR(klj)(pR(kl), pJ(jk)). (22)

Therefore, the closed-form BR function of the kth

radar corresponding to the lth target can be obtained
from Eq. (22) (the solution process is provided in the
supplementary materials). We can obtain the result
as follows:

p∗R(kl) =
γmin
R(kl)IR(kl)∣∣∣wH
r(kl)ĥt(kkl)

∣∣∣2
+

1

εkl
. (23)

To obtain the jammer’s BR strategy, we use the util-
ity function to obtain the BR function. Therefore,
the BR strategy of the jth jammer corresponding to
the kth radar is

p∗J(jk) = arg min
pJ(jk)

UR(klj)(pR(kl), pJ(jk)). (24)

According to Eq. (24), we can obtain the
quadratic equation of one unknown variable (the so-
lution process is provided in the supplementary ma-
terials). We can obtain Eq. (25), given at the top of
the next page.

Based on the quadratic root formula of one vari-
able, we can obtain the BR closed-form solution of
the jammers. To guarantee the nonnegativity of the
power, we keep only the positive solution (26), given
at the top of the next page.

According to Eqs. (16) and (26), we can obtain
the BR closed-form solution from the jth jammer to
the kth radar as

p∗J(jk) =
1∣∣∣wH

r(kl)ĉt(jk)

∣∣∣2
(
I∗R(kl) − η̂R(kl)

)
. (27)

Thus, the optimal power allocation strategies for
the radars and jammers are obtained. According to
the game theory, we can determine the NE solution of
the game between the radars and jammers, as shown
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I2R(kl) −
pR(kl)

∣∣∣wH
r(kl)ĥt(kkl)

∣∣∣2
γmin
R(kl)

IR(kl) +
pR(kl)

∣∣∣wH
r(kl)ĥt(kkl)

∣∣∣2
∣∣∣ŵH

r(kl)ĉt(jk)

∣∣∣2
ωjkγmin

R(kl)

= 0. (25)

I∗R(kl) =
pR(kl)

∣∣∣wH
r(kl)ĥt(kkl)

∣∣∣2
2γmin

R(kl)

+

√√√√√√
⎛
⎜⎝
pR(kl)

∣∣∣wH
r(kl)ĥt(kkl)

∣∣∣2
2γmin

R(kl)

⎞
⎟⎠

2

−
pR(kl)

∣∣∣wH
r(kl)ĥt(kkl)

∣∣∣2
∣∣∣wH

r(kl)ĉt(jk)

∣∣∣2
ωjkγmin

R(kl)

. (26)

in Fig. 2. The NE solution of the game means that
no player can profit more by changing its unilateral
strategy.

pR(kl)

p J
(jk

)

pJ(jk)
max

BRR(pJ(jk))

BRJ(pR(kl))

NE

(0, 0)

pR(kl)
max

Fig. 2 Nash equilibrium (NE) for the supermodular
power allocation game

To show that G1 is a supermodular game with
a pure strategy NE solution, three properties of the
supermodular game need to be satisfied: (1) The
strategy set is a compact subset; (2) BR strategies
of the utility function for all players are continuously
differentiable; (3) The utility function satisfies the
increasing difference in the relationship between the
strategies of the players.

Obviously, the first two properties can be sat-
isfied through the proposed game framework in this
study. The third property can also be satisfied, and is
equivalent to the second-order mixed partial deriva-
tive of the utility function of the strategies of both
sides. The derivative result is greater than or equal

to zero:
∂U2

R(klj)(pR(kl), pJ(jk))

∂pJ(jk)∂pR(kl)
≥ 0. (28)

The proof of inequality (28) is provided in the
supplementary materials.
Lemma 1 The utility function of the game has
supermodularity, satisfying inequality (28).

Furthermore, the proposed game has supermod-
ularity, and has pure strategy NE. Therefore, the ex-
istence of NE is satisfied. Next, the uniqueness of
NE is proved using the standard function definition.
The standard function satisfies the following three
properties:

(1) Positivity. The function is strictly positive;
that is, F (x) > 0.

(2) Monotonicity. If x ≥ x′, then F (x) ≥ F (x′).
(3) Scalability. For all a > 1, aF (x) > F (ax).
The BR strategy of the kth radar is derived as

BRR

(
pJ(jk)

)

=
γmin
R(kl)∣∣∣wH

r(kl)ĥt(kkl)

∣∣∣2
(∣∣∣wH

r(kl)ĉt(jk)

∣∣∣2pJ(jk) + η̂R(kl)

)

+
1

εkl
. (29)

The proof of Eq. (29) is provided in the supple-
mentary materials.
Lemma 2 BR function (29) satisfies the three
properties of the standard function.

Therefore, the existence and uniqueness of NE
are satisfied. After many game iterations, power
allocation strategies of both sides converge to the
NE. By replacing the variables in Eq. (29), we can
obtain the iterative radar power allocation formula
as follows:

p
(n+1)
R(kl) =

[
γmin
R(kl)

γR(kl)
p
(n)
R(kl) +

1

εkl

]pmax
R(kl)

0

, (30)
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where n is number of iterations and [x]ba =

max[min[x, b], a]. In addition, according to Eq. (27),
the corresponding iterative jammer power formula
can be obtained as follows:

p
(n+1)
J(jk) =

⎡
⎢⎣ 1∣∣∣wH

r(kl)ĉt(jk)

∣∣∣2
(
I
(n)
R(kl) − η̂

(n)
R(kl)

)
⎤
⎥⎦
pmax
J(jk)

0

.

(31)
Based on the NE analysis of the above PAG, a

reasonable power allocation strategy can help the
radar maximize the utility values of the MIMO
radars in the presence of multiple jammers. In this
study, a supermodular PAG algorithm with an FW
vector is proposed, as summarized in Algorithm 1.

Algorithm 1 Supermodular PAG algorithm with
FW
1: Input: Set the parameters and the initial power
2: For l← 1, L, k ← 1,K

3: Update radar power pR(kl) using inequality (28)
4: End For
5: For k ← 1, K, j ← 1, J

6: Update jammer power p
(n)
J(jk)

using Eq. (29)
7: End For
8: While

∣
∣
∣p

(n+1)
R(kl)

− p
(n)
R(kl)

∣
∣
∣ < ε Stop

9: Output: pR(kl) and pJ(jk)

In general terms, a supermodular PAG frame-
work with FW is constructed. In this framework, we
can obtain BR strategies of both sides of the game,
and prove the existence and uniqueness of the NE.
Based on the BR strategies, a supermodular PAG
algorithm with FW is proposed to help the radar
reduce the influence of jammers.

4 Supermodular game of JPAB

4.1 Basic game formulation

In this subsection, adaptive beamforming is
used to suppress interference. Therefore, a super-
modular PAG framework of JPAB is constructed,
and the corresponding supermodular JPAB game al-
gorithm is proposed to help the radar reduce the in-
fluence of jammers. The framework can be expressed
as

G2 = {P2,S2,U2}. (32)

(1) Player: PR2 = {Radark|k = 1, 2, · · · ,K}
and PJ2 = {Jammerj |j = 1, 2, · · · , J};

(2) Strategy: S2 = SR2 × SJ2, where SR2 ={(
pR(kl),wt(k1)

)|pRk =
[
pR(k1), pR(k2), · · · , pR(kL)

]T
,

wwwt(k) =
[
wt(k1),wt(k2), · · · ,wt(kL)

]T} and

SJ2 =
{
pJ(jk)|pJk =

[
pJ(1k), pJ(2k), · · · , pJ(Jk)

]T};

(3) Utility function: U2 =
{
UR(klj)

}
.

4.2 Beamforming optimization

To improve MIMO radar efficiency, we need to
suppress different kinds of interference, including
cross-channel interference, radar direct wave inter-
ference, and jammer interference. Adaptive beam-
forming can improve its own weight vector based on
the external signal environment and internal pro-
cessing system, and then effectively suppress the in-
terference. There are classical optimal beamformer
methods to solve adaptive weight vectors. These al-
gorithms meet the radar system requirements based
on optimal criteria, including the minimum mean
square error (MMSE), minimum variance distortion-
less response (MVDR), and linearly constrained min-
imum variance (LCMV) (Frost, 1972; Souden et al.,
2010; Yukawa et al., 2013). To determine the beam-
forming weight vector with game theory, the optimal
radar receiving weight vector is obtained using the
MMSE criterion in Deligiannis et al. (2016a). It
can suppress cross-channel interference and strong
clutter, such as a focal point. Although clutter is
not considered, strong clutter can be effectively sup-
pressed by the proposed algorithm. The MVDR and
LCMV criteria are used to obtain the required beam-
forming weight vectors, and have better interference
suppression effects. Next, the beamforming opti-
mization model can be written as follows:

min
wr(kl)

wH
r(kl)RRRZwr(kl) (33a)

s.t. wH
r(kl)ht(kkl) = 1, (33b)

wH
r(kl)gt(kil) = 0, ∀i �= k, (33c)

wH
r(kl)ct(jk) = 0, ∀j, (33d)

where RRRZ =
K∑
i�=1

L∑
n=1

pR(in)ĥt(kin)ĥ
H
t(kin) +

L∑
n�=l

pR(kn)ĥt(kkn)ĥ
H
t(kkn)

+ σ2
nI. Let G =

[ht(kkl), gt(k1l), . . . , gt(kKl)︸ ︷︷ ︸
K−1

, ct(1k), · · · , ct(Jk)︸ ︷︷ ︸
J

] and

F = [1, 0, · · · , 0︸ ︷︷ ︸
K−1

, 0, . . . , 0︸ ︷︷ ︸
J

].
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According to optimization model (33), we con-
struct the optimization model constraint in the fol-
lowing matrix form:

min
w

r(kl)

wH
r(kl)RRRZwr(kl) (34a)

s.t. wH
r(kl)G = FH. (34b)

In this way, the Lagrange multiplier method is
used to calculate the following results:

L(wr(kl),κκκ)

=
1

2
wH

r(kl)RRRZwr(kl) +
(
wH

r(kl)G− FH
)
κκκ,

(35)

where κκκ is the Lagrangian multiplier vector. The
gradient of Lagrangian function (35) can be obtained
as

∇wr(kl)
L(ŵr(kl),κκκ) = RRRZwr(kl) +Gκκκ = 0. (36)

Furthermore, the optimal receiving weight vector is
obtained by solving Eq. (36) as

w∗
r(kl) = −RRR−1

Z Gκκκ, (37)

where RRRZ exists and it is a positive definite matrix.
The optimal receiving weight vector is substituted
into the constraint of optimization model (34), and
has the following result:

κκκ = −(GHRRR−1
Z G

)−1
F . (38)

Due to the existence of GHRRR−1
Z G, the positive defi-

niteness of RRRZ , and the full rank of G (Frost, 1972),
the optimal received beamforming weight is obtained
from Eqs. (37) and (38):

w∗
r(kl) = RRR−1

Z G
(
GHRRR−1

Z G
)−1

F . (39)

In addition, the MVDR beamformer weight vector
can be obtained by deforming the LCMV. Accord-
ing to Dahrouj and Yu (2010) and Deligiannis et al.
(2016a), there is a scale coefficient relationship be-
tween the transmitting beamforming weight vector
and the receiving beamforming weight vector:

wt(kl) =
√
δklwr(kl), (40)

where δkl is a scalar factor. This is calculated using
the optimal equality form of SINR inequality con-
straint (21a). Therefore, substituting Eq. (40) into
the SINR equality form in model (21), we have

1

γmin
R(kl)

∣∣∣wH
r(kl)ĥr(kkl)

∣∣∣2δkl −
L∑

n�=l

∣∣∣wH
r(kl)ĥr(kkn)

∣∣∣2δkn
=φR(kl), (41)

where φR(kl) =
K∑
i�=k

L∑
n=1

∣∣∣wH
r(kl)ĥt(kin)

∣∣∣2pR(in) + σ̂2 +

J∑
q=1

∣∣∣wH
r(kl)ĉt(qk)

∣∣∣2pJ(qk) +
K∑
i�=k

L∑
n=1

∣∣∣wH
r(kl)ĝt(kin)

∣∣∣2.
Eq. (41) can be written as the following matrix

form:
Ψkδδδk = φφφk, (42)

where δδδk = [δk1, δk2, · · · , δkL]T, and Ψk ∈
R

L×L and its corresponding elements can be ex-

pressed as [Ψk]ll = 1
γmin
R(kl)

∣∣∣wH
r(kl)hr(kkl)

∣∣∣2, [Ψk]lj =

−
∣∣∣wH

r(kl)hr(kkj)

∣∣∣2, for j �= l.
Therefore, an iterative supermodular JPAB

game algorithm is proposed. The algorithm is sum-
marized in Algorithm 2.

Finally, a supermodular JPAB game framework
is constructed. The multistatic MIMO radar trans-
mitting and receiving weight vectors are obtained,
and the corresponding supermodular JPAB game al-
gorithm is proposed.

Algorithm 2 Supermodular JPAB game algorithm
1: Input: Set the parameters and the initial power
2: For l← 1, L, k ← 1, K

3: Update radar power pR(kl) by inequality (28)
4: Update receiving beamformer weight vector wr(kl)

using Eq. (37)
5: Update transmitting beamformer weight vector wt(kl)

using Eq. (40)
6: End For
7: For k ← 1, K, j ← 1, J

8: Update jammer power p
(n)
J(jk)

using Eq. (29)
9: End For

10: While
∣
∣
∣p

(n+1)
R(kl)

− p
(n)
R(kl)

∣
∣
∣ < ε Stop

11: Output: pR(kl), wt(kl), wr(kl), and pJ(jk)

5 Numerical results

In this section, numerical results are presented
to verify the convergence and effectiveness of the pro-
posed algorithms. It is assumed that each radar has
the same number of transmit and receive array an-
tennas, and that the distance between adjacent ar-
ray elements is a half wavelength. The multistatic
MIMO radars are on the same side, while the targets
and jammers are on the opposite side. When mul-
tiple targets appear in the radar coverage area, the
MIMO radars will accurately detect and track these
targets. Then, the MIMO radars will guide the mis-
sile to strike and destroy the targets. However, to
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decrease the radar’s detection and tracking ability,
the targets need to have super stealth and maneuver-
ability and obtain jamming support from the same
jammers. Therefore, the radars and jammers need
to establish their own reasonable power allocation
strategies in the game and gain the maximum profit.

Our model includes a bistatic MIMO radar net-
work, two jammers, and two targets. On the radar
system side, each radar consists of 24 transmit/
receive antennas. The jammers use noise blanket
jamming to interfere with radar operations. There-
fore, the algorithms’ parameters are set as follows:
The DOAs of the targets’ arrival at the radars are
θ11 = 6°, θ12 = 15°, θ21 = 8°, and θ22 = 32°. The
DOAs between the radars are θrad(12) = 60° and
θrad(21) = −50°. The DOAs of the jammers’ ar-
rival at the radars are θ11 = −60°, θ12 = −40°, θ21 =

−20°, and θ22 = 13°. The minimum SINR thresholds
are γmin

11 = 13 dB, γmin
12 = 14 dB, γmin

21 = 10 dB, and
γmin
22 = 12 dB. The scattering amplitude coefficient of

both targets is set to 1. The maximum power of each
radar is 10. The maximum power of each jammer is
set to 10. The tolerance of iteration difference is 10−8

or the termination step is 30. The price coefficients
are set to ε11 = 0.25, ε12 = 0.3, ε21 = 0.6, ε22 = 0.9,

and ω11 = ω12 = ω21 = ω22 = 0.8. The correla-
tion factor is 0.3. When two targets enter the radar
power coverage, radars and targets become partic-
ipants in the confrontation game. Meanwhile, the
jammers interfere with the radars, which affects the
normal radar operations. The decision makers con-
trol the radars to suppress the interference through
reasonable power allocation strategies.

Fig. 3 shows the simulation results of the su-
permodular power allocation algorithm with FW.
Fig. 3a shows the power allocation of multiple MIMO
radars to different targets. After about 10 iterations,
the algorithm converges to the NE. Fig. 3b shows the
power allocation of two jammers to different radars.
Fig. 3c shows various radar SINRs to the targets,
which eventually converge to the preset minimum
SINR thresholds. Fig. 3d shows the iterative conver-
gence process of bistatic MIMO radar utility func-
tion values. According to the simulation results, the
power allocation strategies of both sides converge to
the NE of the game. In this way, the game play-
ers cannot unilaterally change their power allocation
strategy to enhance their own advantage in the NE.

The influence of clutter on radars, however, is
not considered in this study. For the supermodular
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Fig. 3 Simulation results of the supermodular PAG algorithm with FW: (a) power allocation convergence
for MIMO radars; (b) power allocation convergence for jammers; (c) SINR convergence for MIMO radars;
(d) utility value convergence for MIMO radars
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JPAB game algorithm, we construct MVDR and
LCMV game algorithms. The simulation results
are compared with those of the MMSE algorithm
in Deligiannis et al. (2016a). Fig. 4 shows the re-
ceive beampatterns of different supermodular JPAB
game algorithms. It can be seen from the figure
that different targets are illuminated by multistatic
MIMO radars. These three algorithms can sup-
press the cross-channel interference between radars.
However, for jammer interference, the MMSE and
MVDR game algorithms will show the angle devia-
tion of interference suppression. The LCMV game
algorithm can suppress the interference accurately.
Fig. 5 shows a comparison of power allocation and
utility function values between radars and jammers
of all algorithms at the NE state. It shows that the
MMSE, MVDR, and LCMV game algorithms cause
multiple jammers to use more power than the FW
algorithm under the same radar transmit power. Ad-
ditionally, the utility values of the MMSE, MVDR,
and LCMV game algorithms are larger than that of
the FW algorithm. Finally, simulation results show
that the LCMV game algorithm is better than the
other algorithms.

6 Conclusions

Based on game theory analysis, we studied a
game model of multistatic MIMO radars and mul-
tiple jammers in the presence of multiple targets.
First, a supermodular game framework was estab-
lished, in which radars and jammers were the main
players that carried out power allocation strategies.
The existence and uniqueness of NE of the game
were strictly proved. Furthermore, a supermodular
game algorithm with FW was proposed, and it
converged to the NE. Then, a supermodular JPAB
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Fig. 4 Receive beampatterns: (a) the main beam of radar 1 pointing to target 1; (b) the main beam of radar 1
pointing to target 2; (c) the main beam of radar 2 pointing to target 1; (d) the main beam of radar 2 pointing
to target 2
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game framework was established to better suppress
the interference of multiple jammers. Similarly, a
supermodular JPAB game algorithm was proposed.
To solve the received beamformer weight vector, we
used MVDR and LCMV algorithms. According to
the simulation results, the ability of the interference
suppression and the effectiveness and convergence
of the proposed algorithms were verified.
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