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Abstract: Self-supervised depth estimation approaches present excellent results that are comparable to those of the
fully supervised approaches, by employing view synthesis between the target and reference images in the training
data. ResNet, which serves as a backbone network, has some structural deficiencies when applied to downstream
fields, because its original purpose was to cope with classification problems. The low-texture area also deteriorates
the performance. To address these problems, we propose a set of improvements that lead to superior predictions.
First, we boost the information flow in the network and improve the ability to learn spatial structures by improving
the network structures. Second, we use a binary mask to remove the pixels in low-texture areas between the target
and reference images to more accurately reconstruct the image. Finally, we input the target and reference images
randomly to expand the dataset and pre-train it on ImageNet, so that the model obtains a favorable general feature
representation. We demonstrate state-of-the-art performance on an Eigen split of the KITTI driving dataset using
stereo pairs.
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1 Introduction

The technology for obtaining accurate and dense
depth maps from two-dimensional (2D) images is a
valuable and fundamental task that has extensive ap-
plications in three-dimensional (3D) reconstruction,
augmented reality (Newcombe et al., 2011), map-
ping and localization, robotics navigation (Desouza
and Kak, 2002), and autonomous driving (Menze and
Geiger, 2015). The traditional approaches to gain-
ing depth have relied mainly on the assumption that
multiple perspectives are available, including binoc-
ular, multi-view stereo, shape-from-X, and structure

‡ Corresponding author
* Project supported by the Key R&D Program of Guangdong
Province, China (No. 2019B01015000) and the National Natural
Science Foundation of China (No. 61902201)

ORCID: Wanpeng XU, https://orcid.org/0000-0003-0966-6207
c© Zhejiang University Press 2022

from motion, but the high computational complexity
of traditional approaches affects the matching effect,
especially for low-texture scenes.

Depth estimation approaches based on active
sensing, such as laser imaging detection and ranging
(LIDAR), structured light projection, and time-of-
flight (TOF) measurement, obtain accurate depth
information directly. Although these sensors have
high accuracy, they still have shortcomings. For in-
stance, the LIDAR sensor is expensive and can ob-
tain only sparse depth maps. The TOF camera can
be used only for indoor scenes and to obtain depth
information for short distances.

Ordinary cameras are widely used due to their
high resolution and low price. With the enhancement
of deep learning in the field of geometry, researchers
automatically infer high-quality color depth maps
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from monocular input images, and remarkable re-
sults have been achieved using images paired with
depth maps as the input. Obtaining a lot of depth
annotations is costly and time-consuming, so it lim-
its the application of such methods.

As an alternative, self-supervised methods,
which exploit view synthesis in the training data
using monocular sequences (Zhou TH et al., 2017)
or stereo pairs (Godard et al., 2017), have shown
promising results, even compared to the methods
that are supervised with ground-truth depth.

However, ResNet, which was designed for clas-
sification cases, is employed by the best practice as
the backbone network, but it has some structural
defects when applied to the downstream field. For
instance, the network reception field is too small to
cope with dynamic scenes and occlusion. Conse-
quently, the downstream applications adopt a series
of improvements such as using pyramid representa-
tion to increase the size of the receiving field, adding
masks to handle occlusion, and using more expensive
“spatial attention.” Inspired by He et al. (2016a) and
Duta et al. (2020), we embrace the improved infor-
mation flow propagation and learning space features,
to build a new depth estimation backbone network.

No pixels that violate camera motion assump-
tions are traditionally expected when using stereo
pairs as the input for self-supervised methods. How-
ever, the low-texture area deteriorates the perfor-
mance. We exploit an auto-masking loss to ignore
those pixels and to improve the accuracy of depth
estimation. Fig. 1 shows a single image and the
depth estimation outcome of our model.

(a) (b)

Fig. 1 Our depth prediction results on the KITTI
dataset using Eigen split: (a) original images; (b)
depth maps predicted by our models

Our main contributions are as follows: (1) An
improved network architecture that performs self-
supervised monocular depth estimation using stereo
pairs is proposed to better propagate information
through the network’s layers. (2) A novel disparity

consistency loss ignores the training pixels of im-
ages in the low-texture area. Together, these im-
provements produce scores that outperform self-
supervised methods using rectified stereo pairs on
the KITTI dataset (Eigen and Fergus, 2015). Fig. 2
shows our overall consideration.

2 Related works

Here, we review the literature relevant to
the monocular depth estimation. Related works
are divided into supervised methods (which super-
vise training using ground-truth depth) and self-
supervised approaches (which supervise training us-
ing the internal relationships of the data).

2.1 Supervised methods

Without a second image for triangulation, depth
estimation seems to be an ill-posed problem since a
single image can project to multiple plausible depths.
In response to this problem, learning-based methods
have demonstrated the powerful ability to fit predic-
tive models taking images paired with depth maps
as the input.

Eigen et al. (2014) proposed a two-scale deep
neural network. The coarse network was used to
predict the overall information, and the fine net-
work was used to optimize local information. Eigen
and Fergus (2015) changed the prediction of depth
information only to the simultaneous prediction of
depth, normal, and label. Laina et al. (2016) re-
moved the fully connected layer directly, using a
structure similar to the pre-trained network struc-
ture instead. The entire network was regarded as
an encoder-decoder process. Other algorithms, in
the form of combining non-parametric scene sam-
pling (Karsch et al., 2012), local predictions (Sax-
ena et al., 2009), and end-to-end supervised learning
(Eigen et al., 2014), have been explored. Optical
flow (Wang Y et al., 2018) and stereo estimation
(Kendall et al., 2017; Ummenhofer et al., 2017) have
the best results among learning-based approaches.
Recently, a growing number of researchers have em-
ployed weakly supervised training data, including
sparse ordinal depths (Zoran et al., 2015; Chen WF
et al., 2016), known object sizes (Wu et al., 2018),
unpaired synthetic depth data (Atapour-Abarghouei
and Breckon, 2018; Zou et al., 2018), or supervised
appearance matching terms (Zhan et al., 2018). All
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Fig. 2 Illustration of our deep estimation model architecture
Given one input image, the improved encoder, with weights on ImageNet, generates high-level representation. The encoder
yields multi-scale disparity maps aligned with the left and right frames of a stereo pair. Model training is performed and
combined with disparity smoothness loss and image reconstruction loss

these approaches still need to collect other annota-
tions or additional depth maps.

Synthesizing training data is an alternative
method (Mayer et al., 2018). It is hard to gener-
ate photorealistic synthetic images because a domain
gap exists between synthetic and real images. Fur-
thermore, it is not easy to produce large amounts
of synthetic data that include different real-world
appearances and movements. Due to their fully su-
pervised nature, the above methods require ground
truth during training, but it is not realistic to obtain
ground truth in various environments.

2.2 Self-supervised methods

Learning to predict depth without labels is a
powerful concept, thanks to the geometrical relation-
ships between multiple captures of the same scene.
As an alternative, self-supervised monocular depth
estimation methods train models using image recon-
struction as the supervisory signal, which exploits
the monocular sequence or stereo pairs as the input.

2.2.1 Stereo depth estimation

Žbontar and LeCun (2016) first trained the con-
volutional neural network using stereo pairs to dis-
place the matching cost calculation. Various ap-
proaches have produced results superior to those of
fully supervised methods. Garg et al. (2016) pre-
dicted continuous disparity values; Xie et al. (2016)
used the discrete depth model to tackle the multi-
view synthesis; Luo WJ et al. (2016) treated this

task as a multi-class classification problem; Godard
et al. (2017) increased the left-right depth consis-
tency constraint. Stereo-based algorithms have been
extended with generative adversarial networks (Luo
WJ et al., 2016) and semi-supervised data (Kuzni-
etsov et al., 2017), and for real-time use (Poggi et al.,
2018). Recently, Watson et al. (2019) explored semi-
global matching (SGM) as additional supervision for
the single image depth estimation task, achieving ex-
cellent results.

2.2.2 Monocular depth estimation

The other method is to exploit monocular video
for training with adjacent frames as supervisory sig-
nals. Although this method has fewer restrictions,
it must estimate the pose between adjacent frames
while estimating the depth. Performance may be de-
teriorated when there is object motion in the scene.

SfMLearner fulfills a pioneering achievement
(Zhou TH et al., 2017) for this work, training the
depth estimation network and pose estimation net-
work separately. This manner was boosted by
employing multi-task learning (Zou et al., 2018),
point-cloud alignment (Mahjourian et al., 2018), and
differentiable direct visual odometry (DVO) (Luo
CX et al., 2020). Multiple motion masks (Vijaya-
narasimhan et al., 2017) were also employed to train
a sophisticated model. To handle moving objects,
optical flow was used to explain the moving object
(Zhan et al., 2018). Casser et al. (2019) and Gordon
et al. (2019) employed segmentation masks to han-
dle potential moving objects. Aleotti et al. (2018)
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proposed a generative adversarial network model to
tackle the monocular scenario. Three-dimensional
consistency was considered in Chen YH et al. (2019).
A minimum reprojection loss was proposed by Go-
dard et al. (2019) in response to occlusion using
auto-masking loss. Guizilini et al. (2020) exploited a
3D convolution module to save the spatial structure.
Zhou LP and Kaess (2020) proposed a new visual
odometry method, which uses structural rules in the
artificial environment.

3 Methods

In this section, we describe our improved monoc-
ular depth estimation network architecture in detail.
It is designed to infer the depth maps more precisely
from a single image in a self-supervised manner. In
addition, we introduce the loss function based on the
binary mask and ignore low-texture pixels between
the stereo pairs. Finally, we expand the dataset by
randomly inputting the left and right images.

3.1 Network architecture

Although the efficiency and effectiveness of
depth estimation are greatly improved, it is a bet-
ter practice to use ResNet as the basis of transfer
learning. ResNet is designed for classification in-

stances. In most cases, it has some structural flaws
when applied to downstream domains. For exam-
ple, the receptive field of the network is too small
to tackle occlusion and moving objects. In response
to this situation, and inspired by He et al. (2016a)
and Duta et al. (2020), we improve information flow
through the network and boost the ability to acquire
spatial information.

3.1.1 Improved information flow through the
network

He et al. (2016a) stacked several residual build-
ing blocks (ResBlocks), as shown on the left in Fig. 3.
The ResBlock is composed of one 3×3 convolutional
layer, two 1×1 convolutional layers, three batch nor-
malization (BN) layers, and three rectified linear unit
(ReLU) layers. However, at the end of each Res-
Block bottleneck, there is a ReLU, which may have
an unfavorable effect on the spread of information by
zeroing the negative signal that may also be an im-
portant weight for backpropagation. This drawback
had been overcome in He et al. (2016b) by getting
rid of the last ReLU amid each ResBlock bottleneck.

Leaving the main path completely free when al-
lowing feature maps to pass the network in an un-
controlled way will create two main dilemmas. First,
there are no BN layers after addition. Thus, with

+

BN

ReLU

conv1×1

ReLU

BN

conv3×3

ReLU

BN

conv1×1

conv1×1

ReLU

BN

conv3×3

ReLU

BN

conv1×1

ReLU

BN

+

BN

conv1×1

ReLU

BN

conv3×3

ReLU

BN

conv1×1

+

conv1×1

ReLU

BN

conv3×3

ReLU

BN

conv1×1

ReLU

BN

ReLU

BN

Start ResBlock Middle ResBlock End ResBlock

BN BN

+

x[l] x[l] x[l] x[l]

x[l+1] x[l+1] x[l+1] x[l+1]

Fig. 3 Improved ResBlocks: ResNet ResBlocks (left) and our approach (right)



Xu et al. / Front Inform Technol Electron Eng 2022 23(5):777-789 781

the continuous stacking of blocks, the final signal
will become increasingly “non-standard” and cause
learning to be difficult. Second, without any non-
linear mechanism in the main path, the learning ca-
pability will be limited. Given these two problems,
to stabilize the signal, we employ the approach pro-
posed in Duta et al. (2020) to ensure that each stage
has only one nonlinear mechanism, which is placed
after a BN layer at the end of the ResBlock.

Here we take only 50 layers as an example on
the right of Fig. 3, although this can be extended to
any depth. For the case with 50 layers, the frame-
work has three ResBlocks in stage 1, four in stage 2,
six in stage 3, and three in stage 4. Each stage in-
cludes three types: (1) One Start ResBlock adjusting
the number of channels to align the projection short-
cut; (2) One End ResBlock, followed by a BN and a
ReLU, preparing and stabilizing the signal into the
next stage; (3) Any number of Middle ResBlocks (the
corresponding stage for the case with 50 layers has
[1,2,4,1] Middle ResBlocks), as shown in Fig. 4. Un-
like ResNet, in our method, only four ReLUs on the
main propagation path can retain as many effective
backpropagation nodes as possible while maintaining
the model’s learning ability.

3.1.2 Improved projection shortcut

As we can see in Fig. 5a, the projection short-
cut in ResNet is applied to feature maps to make
element-wise addition, where the channels of feature
maps do not match the output. When the stride of
convolution is set to align the output space size, it
will skip 75% of the feature maps, which will result
in significant information loss. However, the remain-
ing 25% of the feature maps are randomly selected
by conv1×1, and there is no clear standard. When
the output of the projection shortcut is added to the
main path, the noisy output, which contributes half
of the information, injures the information flow.

Our projection shortcut is presented in Fig. 5b.
To select the highest activation, we design a spa-
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Fig. 4 Construction of each main stage

tial projection mapping that consists of a 3×3 max-
pooling layer whose stride is 2, a conv1×1 with
stride 1, and a BN layer. To ensure element-wise
addition on the same spatial window, the kernel size
of the max-pooling is consistent with the conv3×3 of
the ResBlock. In addition to reducing information
loss and signal disturbance, the spatial projection
helps preserve spatial structure information.

We add only a max-pooling layer in each pro-
jection shortcut stage. For a network with dozens
of layers, the added parameters and calculations are
negligible. In contrast, there are only four ReLUs on
the backbone path. With the increase of the network
depth, the spread of information is smoother than
ResNet, and it takes 79 hours, which is 2 hours fewer
than ResNet with the same training parameters. We
will show the training parameters in Section 4.1.

3.1.3 Grouped building block

The bottleneck in ResNet includes two conv1×1
layers, playing the role of controlling the number
of channels. One conv3×3 layer shoulders the re-
sponsibility of learning spatial features. To keep the
computational cost under control, the conv3×3 is al-
located the smallest number of channels, as shown
in Fig. 6a. This approach limits the ability of the
model to learn spatial features.

In our bottleneck, the feature map with the
largest number of channels has been assigned to
the conv3×3. We embrace grouped convolution to
perform the convolution operation independently for
each group. This manner can improve accuracy while
reducing floating-point operations. Inspired by Duta

BN
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BN
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(stride=2)
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Fig. 5 Improved projection shortcut: (a) ResNet
projection shortcut; (b) our projection shortcut
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Fig. 6 Improved bottleneck numbers: (a) ResNet
bottleneck numbers; (b) our bottleneck numbers

et al. (2020), the conv3×3 acquires the maximum
number of channels, as shown in Fig. 6b.

3.2 Training loss

There is no need to consider static frames and
non-rigid motion in the training data when employ-
ing the rectified stereo pairs as the input for training.
However, in low-texture areas, the camera motion
assumptions will still be broken down, and perfor-
mance may be deteriorated. During testing, the
pixels in the low-texture area will be projected to
infinity, and holes will appear there. To train our
improved deep estimation network architecture, we
obtain the final training loss as

Lt =

4∑

s=1

Ls, (1)

where s denotes the sampling round (the feature size,
i.e., the resolution, will be reduced by half in turn).
The total loss must be added up on all scales. In this
study, we use four different resolutions to estimate
the depth.

We define the scale loss Ls (s=1, 2, 3, or 4), a
sum of two main contributions at each scale:

Ls = Lp �Mp + λLsmooth, (2)

where Lp is the appearance matching loss, Lsmooth

is a smoothness term, Mp is a binary mask, and λ

is a hyper-parameter. The left or right image is fed
into the convolutional neural network randomly for
calculation.

1. Appearance matching loss
Depth estimation is treated as one kind of novel

view synthesis. During training, the network pre-
dicts the appearance of the original image by sam-
pling pixels from the opposite viewpoint of stereo
pairs. Because it is completely differentiable, we use
a bilinear sampling method that is based on the spa-
tial transformer network (STN) (Jaderberg et al.,
2015) to sample the input image.

Following Godard et al. (2017), we use L1 and
structural similarity measure (SSIM) (Wang Z et al.,
2004) to encode our reconstructed image based on
the target image:

Lp =
1

N

∑
(
α
1− SSIM(I, Î)

2
+ (1− α)‖I − Î‖

)
,

(3)
where N is the number of pixels, I denotes the orig-
inal image, Î means the reconstructed image, and
α = 0.85 in training.

Inspired by Godard et al. (2019), using a bi-
nary mask, we can filter out the pixels whose ap-
pearance does not change between the stereo pairs.
This method can eliminate the effect of pixels in a
low-texture region in the network. If there are no
relatively static pixels, the error between the warped
image and the original image must be smaller than
the error between the left and right images:

M = Lp(I, Ĩ) < Lp(I
l, Ir), (4)

where Il and Ir mean the left and right images in the
stereo pair, respectively. We show experimentally
that this mask can bring significant improvements
for a test result.

2. Disparity smoothness loss
For the sake of regularizing the disparity maps

in low-image gradient areas, an edge-aware term
(Eq. (5)) is incorporated. This cost enforces the
predicted disparity with an L1 penalty on the dis-
parity gradient ∂d. We also weight the cost with an
edge-aware term using the image gradient ∂I .

Lsmooth =
1

N

∑(
|∂xd|−|∂xI| + |∂yd|−|∂yI|

)
, (5)

where ∂xd indicates the disparity gradient in the x

direction, ∂yd indicates the disparity gradient in the
y direction, ∂xI indicates the image gradient in the
x direction, and ∂yI indicates the image gradient in
the y direction.

3.3 Implementation details

We introduce three improvements to the depth
estimation backbone network. First, we adjust the
structure of ResBlocks to change the number of ac-
tivation functions, which achieves the purpose of
promoting information circulation. Second, we im-
prove the structure of the projection shortcut and de-
fine a meaningful criterion for filtering feature maps.



Xu et al. / Front Inform Technol Electron Eng 2022 23(5):777-789 783

Third, we assign the largest number of channels on
conv3×3 in the bottleneck and use grouped convolu-
tion to improve the accuracy. The first two aspects
are improvements to the bottleneck structure, and
are named IB for training. The last one improves the
channel number of bottlenecks and adopts grouped
convolution, and is named IGC for training. Finally,
we train the final model using all the improvements.

Our monocular depth estimation network, im-
plemented in PyTorch, is based on the encoder-
decoder architecture. The depth encoder employs
the improved residual structure as mentioned above.
The 50-layer architecture contains 23.37 million
trainable parameters, fewer than the 25.56 million
trainable parameters of ResNet-50. The calcula-
tion speed is comparable to that of ResNet, but the
effectiveness has been enhanced significantly. Our
depth decoder follows Chen YH et al. (2019), by
constraining the output to be between dmin and
dmax, leveraging a scaled sigmoid non-linearity, and
then converting the sigmoid output σ to depth with

D =
1

dminσ
+dmax. To reduce boundary artifacts, we

employ reflection padding to return the pixel value
of the closest boundary. Disparity maps of different
scales are obtained by performing an up-sample in
the decoder.

Data augmentation is also carried out in the
training process. Input images are implemented
with a 50% chance of horizontal flips. We also per-
form color augmentations (Godard et al., 2017) with
a 50% chance, where we perform random bright-
ness, Gamma, and color shifts by sampling from
uniform distributions in the range [0.8, 1.2] for each
color channel, [0.5, 2.0] for brightness, and [0.8, 1.2]
for Gamma. Previously, when stereo image pairs
were fed into a self-supervised monocular depth es-
timation network for training, the left image was
generally used as the input, and the right image was
used only as a perspective synthesis method to par-
ticipate in the operation. The model training set
contains only 22 600 images, which makes the net-
work learn relatively few features, and the learning
ability of the model is weak. Relying solely on data
augmentation cannot compensate for the modeling
flaw caused by the lack of training data. To enable
the network to learn more data features, we ran-
domly input the left or right image to expand the
training sets.

ResNet highly benefits from ImageNet (Deng
et al., 2009) pre-training, because it is designed to
deal with image classification cases. ImageNet is a
very large dataset for image classification. We can
obtain a general feature representation that becomes
a paradigm for solving downstream problems. We
follow a previous study (Godard et al., 2019) in ini-
tializing our models with weights that are pre-trained
on ImageNet. The universal feature expression ac-
quired from ImageNet can transmit favorable infor-
mation for monocular depth estimation tasks, reduce
the training time, and improve the model precision.

4 Experiments

In this section, we describe the specific steps of
the experiment and various considerations in detail.

Furthermore, the ablation study quantitatively
demonstrates the contribution of each module to our
model. The evaluation results show that our rec-
ommendations are always better than the latest self-
supervised method using stereo pairs as the input.

4.1 KITTI Eigen split

The KITTI dataset that we use employs mainly
a set of rectified stereo pairs, including 42 382 stereo
frames from 61 driving scenes, with an image size
of 1242×375 resolution. A calibrated LIDAR de-
vice is deployed near the left camera to measure the
depth information, which can be used as the ground
truth.

To facilitate comparison with previous methods,
we follow the way mentioned in Eigen et al. (2014),
namely, Eigen split. It divides the total dataset into
two subsets, including 29 scenes and 32 scenes, re-
spectively. The 697 frames from 29 scenes serve as
testing, and 22 600 frames from 32 scenes are used
for training. The 3D points of the Velodyne laser are
re-projected into the 2D images on the left to obtain
ground truth for evaluation.

In our experiments, all images are endowed with
the same intrinsic matrix, and the center point of the
image serves as the principal point. We take the av-
erage of all the focal lengths in KITTI to obtain the
focal length we needed. For stereo image pairs, two
cameras keep a constant distance on the same hor-
izontal line, so we can complete the transformation
between stereo pairs when a horizontal translation
of fixed length is known. In the process of inferring,
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we set the maximum depth to 80 m according to
standard practice.

According to Table 1, our quantitative scores
are higher than those of the prior self-supervised ap-
proaches on Eigen split. The qualitative results that
still reflect certain advantages compared to previous
methods are shown in Fig. 7.

The performance metrics for depth evaluation
can be defined as follows:

AbsRel =
1

|D|

∑
di∈D |d∗i − di|

d∗i
, (6)

SqRel =
1

|D|

∑
di∈D (d∗i − di)

2

d∗i
, (7)

RMSE =

√
1

|D|
∑

di∈D

(d∗i − di)
2
, (8)

RMSElog =

√
1

|D|
∑

di∈D

(ln d∗i − ln di)
2
, (9)

δt =
1

|D|
∣∣∣∣

{
di ∈ D|max

(
d∗i
di

,
di
d∗i

)
< 1.25t

}∣∣∣∣×100%,

(10)
where d∗i and di are the ground truth and predicted
depth at pixel i, respectively. D represents the set of
all the predicted depth values of an image, and |D|
is the number of elements in D.

In the quantitative experiment, DepthHints ob-
tains a result close to that of our model. It uses a
traditional stereo matching method, SGM (Gehrke
et al., 2010), to provide an additional supervised sig-
nal for training, which can easily trap the optimiza-
tion process in local minima. Nevertheless, the con-
tribution values of many parameters of the algorithm
that combines SGM matching and post-processing
are still lower than those of our method.

Table 1 Comparison of performances reported on the KITTI dataset

Method Training AbsRel SqRel RMSE RMSElog δ1 < 1.25 δ2 < 1.252 δ3 < 1.253

Garg S 0.152 1.226 5.849 0.246 0.784 0.921 0.967
StrAT S 0.128 1.019 5.403 0.227 0.827 0.935 0.971
Monodepth S 0.128 1.038 5.355 0.223 0.833 0.939 0.972
3Net S 0.119 1.201 5.888 0.208 0.844 0.941 0.978
MonoResMatch S 0.116 0.986 5.098 0.214 0.847 0.939 0.972
SuperDepth S 0.112 0.875 4.958 0.207 0.852 0.947 0.977
Monodepth2 S 0.106 0.854 4.835 0.203 0.873 0.950 0.976
RefineDistill S 0.098 0.831 4.656 0.202 0.882 0.948 0.973
Ours (IB) S 0.102 0.794 4.710 0.200 0.877 0.953 0.977
Ours (IGC) S 0.104 0.829 4.800 0.202 0.875 0.952 0.976
Ours (IB+IGC) S 0.102 0.790 4.684 0.198 0.878 0.954 0.977
Ours (IB+IGC) HR S 0.097 0.732 4.519 0.194 0.884 0.956 0.978

SfMLearner M 0.183 1.595 6.709 0.270 0.734 0.902 0.959
GeoNet M 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DF-Net M 0.150 1.124 5.507 0.223 0.806 0.933 0.973
EPC++ M 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2depth M 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Monodepth2 M 0.115 0.903 4.863 0.193 0.877 0.959 0.981
PackNet-SfM M 0.111 0.785 4.601 0.189 0.878 0.960 0.982
PackNet-SfM HR M 0.107 0.803 4.566 0.197 0.876 0.957 0.979
MonoResMatch SGM+S 0.111 0.867 4.714 0.199 0.864 0.954 0.979
EPC++ MS 0.128 0.935 5.011 0.209 0.831 0.945 0.979
Monodepth2 HR MS 0.106 0.806 4.630 0.193 0.876 0.958 0.980
DepthHints SGM+MS 0.105 0.769 4.627 0.189 0.875 0.959 0.982
DepthHints HR SGM+MS 0.098 0.702 4.398 0.183 0.887 0.963 0.983
Ours (IB+IGC) MS 0.101 0.723 4.463 0.180 0.900 0.965 0.983
Ours (IB+IGC) HR MS 0.096 0.632 4.241 0.173 0.906 0.967 0.984
The best results are in bold. IB means improvement of the bottleneck structure; IGC shows the improvement of the channel
number; IB+IGC denotes the combined improvement; HR indicates high-resolution input images with 320×1024 resolution.
Other approaches of ours use input images with 192×640 resolution. M is for self-supervised training on the sequence; S is for
self-supervised training on the stereo; MS is for models trained with both S and M data; SGM means the traditional semi-global
matching (SGM) method which is used as a virtual label to supervise and effectively improve training (it means auxiliary
supervision, which is similar to semi-supervised training and is not purely self-supervised). For the first four metrics, a lower
value means a better result; for the last three metrics, a higher value is a better result
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(a) (b) (c) (d)

Fig. 7 Qualitative comparison of our approach with state-of-the-art methods on frames from the KITTI
dataset: (a) original images; (b) struct2depth; (c) monodepth2; (d) ours
Our model produced better performance in low-texture areas, predicted sharper edges, and retained more spatial information

4.2 Improved ground truth

The approach followed by Eigen et al. (2014),
which does not deal with moving objects or obstruc-
tions, takes advantage of the re-projected LIDAR
points to replace ground truth for evaluation. To
further verify the effectiveness of our model, we eval-
uate it using the KITTI Depth Prediction Evalu-
ation dataset (Uhrig et al., 2017), which features
more accurate ground-truth depth. The new evalu-
ation frames include 652 (or 93%) of the 697 test
frames from the Eigen test split. These 652 im-
proved ground-truth frameworks serve as a test set,
and the same error metrics from the standard evalu-
ation are used for evaluation. As shown in Table 2,
our method is still significantly better than the com-
pared methods.

4.3 KITTI ablation study

To further study the contribution of various im-
provements that our models provided, we carry out

an ablative analysis by changing different architec-
tural components introduced, as demonstrated in
Table 3. The base architecture without any improve-
ment has the worst effect, but when all improvements
are combined, the performance is the best.

We follow a previous study (Godard et al., 2019)
in initializing our models with weights pre-trained
on ImageNet, because it is difficult to gain a gen-
eral feature representation if training from scratch.
As depicted in Fig. 8b, there are obvious artifacts
of in-depth maps predicted by the model lacking
pre-training, and scores drop a lot in quantitative
estimation.

In the Eigen split of KITTI, many low-texture
areas exist in the scene, such as the car windscreen.
There are almost no disparities between the two im-
ages of a stereo pair. Therefore, in the training pro-
cess, pixels in this area will be re-projected to in-
finity. This will present a hole in the depth image,
and affect the perception of an object’s structure.
In Fig. 8c, the parts circled in green show dilemmas
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Table 2 Comparison of performances reported on the improved evaluation dataset

Method Training AbsRel SqRel RMSE RMSElog δ1 < 1.25 δ2 < 1.252 δ3 < 1.253

Monodepth S 0.109 0.811 4.568 0.166 0.877 0.967 0.988
3Net S 0.102 0.675 4.293 0.159 0.881 0.969 0.991
SuperDepth S 0.090 0.542 3.967 0.144 0.901 0.976 0.993
Monodepth2 S 0.085 0.537 3.868 0.139 0.912 0.979 0.993
Ours (IB) S 0.075 0.419 3.466 0.122 0.936 0.986 0.995
Ours (IGC) S 0.076 0.439 3.543 0.124 0.934 0.985 0.995
Ours (IB+IGC) S 0.074 0.413 3.436 0.119 0.938 0.987 0.995
Ours (IB+IGC) HR S 0.072 0.384 3.284 0.115 0.946 0.988 0.996

SfMLearner M 0.176 1.532 6.129 0.244 0.758 0.921 0.971
GeoNet M 0.132 0.994 5.240 0.193 0.833 0.953 0.985
EPC++ M 0.120 0.789 4.755 0.177 0.856 0.961 0.987
Monodepth2 M 0.090 0.545 3.942 0.137 0.914 0.983 0.995
PackNet-SfM M 0.078 0.420 3.485 0.121 0.931 0.986 0.996
EPC++ MS 0.123 0.754 4.453 0.172 0.863 0.964 0.989
Monodepth2 HR MS 0.080 0.466 3.681 0.127 0.926 0.985 0.995
DepthHints HR SGM+MS 0.074 0.364 3.202 0.114 0.936 0.989 0.997
Ours (IB) MS 0.074 0.390 3.452 0.117 0.938 0.988 0.997
Ours (IGC) MS 0.076 0.415 3.505 0.120 0.934 0.988 0.996
Ours (IB+IGC) MS 0.074 0.387 3.358 0.114 0.942 0.989 0.997
Ours (IB+IGC) HR MS 0.072 0.334 3.236 0.112 0.942 0.991 0.997
The best results are in bold. IB means improvement of the bottleneck structure; IGC shows the improvement of the channel
number; IB+IGC denotes the combined improvement; HR indicates high-resolution input images with 320×1024 resolution.
Other approaches of ours use input images with 192×640 resolution. M is for self-supervised training on the sequence; S is for
self-supervised training on the stereo; MS is for models trained with both S and M data; SGM means the traditional semi-global
matching (SGM) method which is used as a virtual label to supervise and effectively improve training (it means auxiliary
supervision, which is similar to semi-supervised training and is not purely self-supervised). For the first four metrics, a lower
value means a better result; for the last three metrics, a higher value is a better result

(a) (b) (c) (d)

Fig. 8 Qualitative ablation study: (a) original images; (b) baseline; (c) no-masking; (d) ours. As the figure
shows, our model with all components combined results in the finest texture and clearest outline. References
to color refer to the online version of this figure

such as pixel voids and incomplete shape perception
caused by the absence of a mask. In addition, as
shown in Table 3, the mask structure earns higher
scores for the model.

4.4 Additional datasets

To illustrate the generalization performance, we
extend our models to other scenes that have never ap-
peared during training. The fashionable CityScapes
(Cordts et al., 2016) and Make3D (Saxena et al.,

2009) are selected as the datasets to test our monoc-
ular depth estimation models. Although there are
significant differences in content, size, and camera
parameters of each dataset, we still achieve a reason-
able inference.

CityScapes, a semantic understanding dataset
of a variety of stereoscopic video sequences recorded
in street scenes from 50 different cities, contains
22 973 stereo pairs with a size of 2048×1024 reso-
lution. However, strongly reflective Mercedes-Benz
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Table 3 Ablation study

Mask IB Pre-trained IGC AbsRel SqRel RMSE RMSElog

√
0.128 1.082 5.369 0.223√ √
0.105 0.885 4.827 0.201√ √ √
0.108 0.791 4.857 0.210√ √
0.109 0.866 4.983 0.204√ √
0.124 1.042 5.309 0.224√ √ √
0.102 0.794 4.710 0.200√ √ √
0.104 0.829 4.800 0.202√ √ √ √
0.102 0.790 4.684 0.198

logos exist at the bottom of most images, causing the
test results to deteriorate. Therefore, we use only the
upper 80% of the image and discard the lower 20%.
Qualitative results can be shown in Fig. 9.

Make3D, which has both RGB and depth maps,
is used mainly for fully supervised tasks, but the
number of images is small, with only 458 original
pictures. Make3D (version 2) includes 458 test im-
ages. Because we used the KITTI dataset for train-
ing, its aspect ratio is quite different from that of the
Make3D dataset, so we cut the randomly selected
data to meet the KITTI ratio requirements. The
qualitative results are shown in Fig. 10.

(a) (b)

Fig. 9 Qualitative results with CityScapes: (a) origi-
nal images; (b) depth maps

5 Discussion

In this paper, improvements are made in three
aspects: backbone network, loss function, and
dataset. Through an ablation study, we can see that
an effective network structure and a reasonable gen-
eral feature representation are the keys to improve
depth estimation capabilities.

From quantitative experimental results, we can
see that our model performs excellently in terms
of several parameters (AbsRel, SqRel, RMSE, and
RMSElog), and outperforms semi-supervised and
fully supervised models, even the traditional binoc-
ular stereo vision algorithm. However, the last three
parameters in Tables 1 and 2 are relatively hard to

(a) (b)

Fig. 10 Qualitative results with Make3D: (a) original
images; (b) depth maps

upgrade, especially the last one. We believe that
this is an inherent problem with stereo input. When
inputting stereo pairs for training, only the relation-
ship between the left and right pictures is considered.
When inputting sequences, the architecture will have
better global characteristics, because it considers the
relationship between frames. In future research, we
will focus on solving the above problems, improv-
ing the effect of self-supervised depth estimation,
and closing the gap between self-supervision and full
supervision.

6 Conclusions

We adopted a novel monocular depth estimation
backbone network, abandoning traditional ResNet-
based methods. This boosted the propagation of dis-
parate information through network layers and im-
proved the utilization of efficient information. Fur-
thermore, the binary mask used to deal with the
pixels in the low-texture area eliminated the inter-
ference of invalid disparities in training. Finally, for
more extensive and accurate general feature repre-
sentation, we loaded weights that were pre-trained
on ImageNet. By combining the above improve-
ments, we produced state-of-the-art results on the
Eigen split of the KITTI driving dataset using stereo
pairs in a self-supervised manner (Garg et al., 2016).
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