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Abstract: Outgoing waves arising from high-velocity impacts between soil and structure can be reflected by the conventional 
truncated boundaries. Absorbing boundary conditions (ABCs), to attenuate the energy of the outward waves, are necessary to 
ensure the proper representation of the kinematic field and the accurate quantification of impact forces. In this paper, damping 
layer and dashpot ABCs are implemented in the material point method (MPM) with slight adjustments. Benchmark scenarios of 
different dynamic problems are modelled with the ABCs configured. Feasibility of the ABCs is assessed through the velocity 
fluctuations at specific observation points and the impact force fluctuations on the structures. The impact forces predicted by the 
MPM with ABCs are verified by comparison with those estimated using a computational fluid dynamics approach. 
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1  Introduction 

 
The material point method (MPM) was devel-

oped to tackle the mesh distortion in large deformation 
problems, by combination of a fixed Eulerian mesh 
and clouds of Lagrangian particles flowing through 
the mesh (Sulsky et al., 1995; Soga et al., 2016). In 
calculations, the history state of the particles is derived 
from the temporary information on the surrounding 

nodes, while the nodes are fixed in space. Therefore, 
the MPM can avoid the mesh distortion and the nec-
essary remeshing of the conventional finite element 
methods (Hu and Randolph, 1998). In comparison 
with other large deformation methods, such as coupled 
Eulerian-Lagrangian (Zheng et al., 2015), smooth 
particle hydrodynamics (Bui et al., 2008), and particle 
finite-element method (Zhang et al., 2013), the MPM 
has a higher demand for computational resource since 
it often utilizes very fine meshes. Excessive compres-
sion or tension in the kinematic field tends to entangle 
the particles from the initial uniform configuration, 
causing artificial voids or aggregations that lead to 
loss of the continuity of the stress field and the sin-
gular deformation gradient of the particles (Dong, 
2020). Recently, the MPM has been used to simulate 
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high-velocity impact in geotechnical engineering, 
such as submarine landslides impacting subsea 
structures (Dong et al., 2017a, 2017b) and the dy-
namic process of pile driving (Hamad et al., 2015). 
However, truncated boundaries with the conventional 
inflow or roller conditions were employed in most of 
the existing MPM simulations of impacts, and thus a 
sufficient distance from the region of concern to the 
boundary is required to accommodate the propagation 
of elastic waves. The computational efforts caused 
may become unacceptable, even when the central 
processing unit (CPU) and graphics processing unit 
(GPU) parallel strategies boosting the computational 
efficiency are used (Huang et al., 2008; Dong et al., 
2015; Dong and Grabe, 2018; Gao et al., 2018). 

Various absorbing boundary conditions (ABCs), 
such as the periodic boundary condition (Longuet- 
Higgins and Cokelet, 1976), infinite element scheme 
(Astley et al., 2000), and Dirichlet-to-Neumann radi-
ation condition (Oberai et al., 1998), have been pro-
posed to absorb the energy of the outgoing elastic 
waves on the far-field boundary. The dashpot 
boundary condition, one of the most popular ABCs 
(Lysmer and Kuhlemeyer, 1969; Kouroussis et al., 
2011), might be the only ABC that has been imple-
mented in the MPM simulations due to its robustness 
(Shen and Chen, 2005; Jassim et al., 2013; Bisht and 
Salgado, 2018). However, the dashpot ABC was 
imposed on the boundary nodes in terms of viscous 
tractions with velocities mapped from the associated 
particles, which is computationally intensive and hard 
to parallelize (Dong et al., 2015). Creeping motion 
caused by low frequency waves was avoided by set-
ting a spring on the boundary node (Kellezi, 2000). 
Although it has been proven to be suitable for free and 
fixed boundaries, the dashpot ABC is difficult to 
extend to specific scenarios, such as open channel 
flows with velocity inflow boundaries. Additionally, 
for waves approaching the boundary at angles oblique 
to normal, the dashpot ABC is less effective as many 
other ABCs (Bisht and Salgado, 2018).  

The damping layer ABC, originally developed 
for time-domain explicit solving of electromagnetic 
signal processing (Berenger, 1994), is efficient in 
absorbing the waves at grazing incidence to the 
boundary. It was widely applied in spectral analysis 
of seismic waves (Komatitsch and Tromp, 2003) and 
fluid-structure interactions. An artificial dissipative 
term is utilized in the damping layer of finite thick-

ness to attenuate the amplitude of the outgoing waves. 
The formulation is local in both space and time, which 
renders the damping layer ABC computationally 
inexpensive, easy to implement, and robust. The 
damping layer ABC is more flexible than the dashpot 
and similar ABCs, which can be imposed on most 
boundaries of viscoelastic materials (Altomare et al., 
2017; Wang et al., 2019). Therefore, the damping 
layer ABC has been incorporated into the finite ele-
ment method (Yao et al., 2018), finite volume method 
(Sankaran et al., 2006), and smooth particle hydro-
dynamics (Altomare et al., 2017). However, compu-
tational instability may be induced by the residual 
stress waves through the damping layers in aniso-
tropic media (Bécache et al., 2003; Meza-Fajardo and 
Papageorgiou, 2008), which need to be enhanced with 
special treatment (Gao and Huang, 2018). Addition-
ally, the dissipation ratio of the damping layer has to 
be enforced in a gradual manner from the source 
domain to the boundary to avoid spurious wave re-
flections due to the inhomogeneity introduced (Festa 
et al., 2005; Komatitsch and Martin, 2007). There-
fore, feasible configuration of the damping layer 
needs to be determined and then its performance in 
the MPM simulations should be investigated. 

In this paper, a combination of the dashpot and 
damping layer ABCs is incorporated into the MPM. 
The feasibility of each ABC is investigated in terms 
of different dynamic scenarios. Only elastic waves are 
considered; plastic ones are not the concern of this 
work. The outgoing impacting wave is characterized 
as a compressional wave rather than a shear wave 
since the transportation of the former is much faster. 
The absorbing effect of the ABCs is quantified by the 
attenuation of the velocity fluctuations at specific 
locations and that of the impact force fluctuations in 
structure-soil interactions.  

The remainder of this paper is organized as fol-
lows. In Section 2, detailed operations to implement 
the ABCs are described. Section 3 assesses the ab-
sorbing effect and the feasibility of different ABC 
configurations. Section 4 lists the concluding remarks 
and principal findings. 
 
 
2  Implementation 

 
An in-house MPM program has been developed, 

which features a novel contact algorithm ‘Geo-contact’ 
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(Ma et al., 2014), a GPU parallel computing strategy 
(Dong et al., 2015; Dong and Grabe, 2018), and re-
seeding of over-sparse or dense particles (Dong, 
2020). The explicit updated Lagrangian calculation in 
each incremental step is based on the generalized 
interpolation material point (GIMP) method pre-
sented by Bardenhagen and Kober (2004). This pro-
gram was used to simulate the impact of submarine 
landslides on pipelines and foundations partially 
buried in the seabed (Dong et al., 2017a; Dong, 2020). 
The dashpot and damping layer ABCs (Fig. 1), with 
potential to be implemented in the MPM, are devel-
oped here.  

The dashpot ABC can be used for either free or 
fixed boundaries, but not for velocity inflow bounda-
ries. The viscous traction required to absorb the wave 
energy is (Shen and Chen, 2005) 

 

 0
d ,T C u u                           (1) 

 
where ρ is the density; u0 and u are the steady and 
transient velocities of the soil along the wave direc-
tion, respectively; Cd is the velocity of the wave, 
which for elastic material is defined as 
 

d

2
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G
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                              (2) 

 
with G as shear modulus and λ as Lamé’s parameter. 

In the MPM, the traction in Eq. (1) was previ-
ously imposed on layers of boundary nodes with the 
velocities mapped from the associated particles 
(Fig. 1) (Shen and Chen, 2005; Bisht and Salgado, 
2018) 

 

 0
d ,i ip p p p

p

T S ρC u u V h                   (3) 

 

where h is the element size; 0
pu  and up are the steady 

and transient velocity components of particle p along 
the wave direction; Vp is the volume of particle p; Sip 
is the shape function at node i evaluated at particle p; 

p
  represents the summation over all related parti-

cles. Differently from Eq. (3), the tractions needed to 
absorb shear waves are calculated based on the ve-

locity components tangential to the wave direction of 
the particles (Shen and Chen, 2005). Eq. (3) can be 
transformed as 

 

 0d ,i ip p p p
p

C
T S m u u

h
                    (4) 

 
where mp is the mass of particle p, and the term 

 0
ip p p p

p

S m u u  represents the momentum inter-

polation from the surrounding particles to node i in 
the wave direction. Therefore, Eq. (4) can be simpli-
fied as 

 

 0d ,i i i i

C
T m u u

h
                          (5) 

 

where mi is the mass at node i; 0
iu and ui are the steady 

and transient velocities at node i along the wave di-

rection and 0
i i iu u u    is the fluctuation of velocity 

at node i due to wave propagation. Eq. (5) is more 
convenient to implement the dashpot ABC in the 
MPM than its previous counterparts (Shen and Chen, 
2005; Bisht and Salgado, 2018), introducing no more 
computational cost than the roller and velocity inflow 
boundary conditions. Therefore, Eq. (5) is used in the 
following analysis. 

To implement the damping layer ABC, a 
damping ratio βi was assigned at each node i in a 
length B from the boundary of the material; the tran-
sient nodal velocity ui along the wave direction was 
then explicitly modified as 
 

 new 0 .i i i i iu u u u                          (6) 

 
The damping ratio needs to be sufficiently small 

at the starting surfaces of the damping layer to avoid 
potential reflections. Its value at node i against the 
outgoing waves increased linearly with the distance to 
the boundary: 

 

( ),i iB d                                (7) 

 
where α is a fitting coefficient, and di is the distance of 
node i to the boundary. The parameters α and B in 
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Eq. (7) need to be optimized through trial calculations 
in specific scenarios to allow for a minimum wave 
reflection. The minimum requirement of the damping 
layer length B is often proportional to the wave length 
(Rajagopal et al., 2012). Differently from Eq. (7), an 
exponential growth of the damping ratio with the 
distance to the boundary was derived by Chern 
(2019). In each incremental step of the MPM calcu-
lation, the particle velocities are firstly mapped to the 
surrounding nodes (refer to Dong (2020) for detailed 
description of the MPM algorithm); then, the dashpot 
or damping layer ABC can be implemented by ad-
justing the nodal velocities using Eqs. (5) and (6); 
after calculating the governing equations on the 
nodes, the new velocity field is mapped from the 
nodes to particles. Given that a quadratic shape func-
tion is used, an additional layer of ghost cells out of 
the material boundary is configured to implement the 
boundary conditions (Fig. 1). Parallelization of 
Eqs. (5) and (6) becomes straightforward by splitting 
the whole workload over the nodes with the compu-
tation in the threads independent to each other. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  Benchmark 

3.1  One-dimensional compression 

A block of elastic material with 50 m in width 
and height (Fig. 2) was compressed vertically under a 
velocity pulse u=sin(2πt) (0≤t≤0.5 s) on its top sur-
face, where t is the time. The density of the material 
was 650 kg/m3, Young’s modulus was 150 kPa, and 
Poison’s ratio was 0.3. The lateral boundaries were 
considered as symmetric, while the top as free. The 

bottom boundary was initially configured with roll-
ers, which were then replaced with the dashpot and 
damping layer ABCs. The element size in the MPM 
model was 1 m with four particles seeded in each 
element prior to the calculation. 

The stress wave induced by the pulse propagates 
from the top surface to the bottom (Fig. 3). The elapse 
time of the wave from point A (at height of 50 m) to 
point B (at height of 5 m) is 0.7 s (Fig. 4), which hints 
a propagation speed of 64 m/s. This is consistent with 
the material properties stated above, which give a 
compressional wave speed of 63 m/s using Eq. (2). 
Given the reflective boundary condition (BC) of 
rollers imposed at the bottom of the material, the 
compressional wave is retained in the material since 
it is purely elastic. With the dashpot and damping 
layer (such as α=0.01, B=10 m) ABCs configured, 
the stress wave was absorbed within two periods of 
transportation. The magnitudes of residual stress 
waves at t=3 s are less than 15% of their original 
values at points A and B. After 3 s, the residual wave 
can be ignored. Therefore, both the two ABCs are 
effective to attenuate the stress waves in elastic  
materials for the 1D compression problems. In 
comparison, the dashpot ABC slightly outperforms 
its damping layer cousin in terms of absorbing  
efficiency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Implementation of ABCs 

Fig. 2  Compression of material under velocity pulse 
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3.2  Submarine landslide impacting mudmat 

Simulation of submarine landslide impacting 
subsea mudmat was performed with a schematic of 
the initial conditions provided in Fig. 5a. A rectan-

gular block of sliding mass with a length L of 20 m 
and a height of 10 m was assumed on a smooth rigid 
base. The sliding mass was given a horizontal veloc-
ity v=6 m/s. A velocity inflow boundary condition 
was enforced at the left end of the sliding mass, while 
the upper and right surfaces were free. A planar 
mudmat of finite length of 10 m, partially buried with 
an exposure height of e=1 m, was placed immediately 
in front of the sliding mass. The element size was 
selected as e/40. The mesh independency of the im-
pact force on the element size has been studied in 
(Dong et al., 2017b). A 4×4 particle configuration 
was allocated for each element fully occupied by the 
sliding mass; therefore, there were 5.1 million slide 
particles configured.  

The rate-dependent undrained shear strength of 
the non-Newtonian sliding material is characterized 
by the Herschel-Bulkley (H-B) rheological model and 
implemented with the von Mises criterion by ex-
panding the yield surface: 

 

u u0
ref

1 ,

n

s s



  
       




                      (8) 

 
where su0 is the yield strength at negligible shear 
strain rate, µ is the viscosity coefficient, n is the 
‘shear-thinning’ index,   is the shear strain rate, and 

ref  is the reference shear strain rate. The shear rate 

p  of particle p at each step is calculated as 
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

 
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           (9) 

 
where vi is the velocity at node i; the subscripts x and y 
represent the horizontal and vertical components, 
respectively. As suggested by Boukpeti et al. (2012), 
the parameters in Eq. (8) were taken as su0=0.5 kPa, 

µ=0.65, n=0.4, and ref =0.06 s−1 for typical offshore 

kaolin slides. 
The density of the sliding mass was ρ=1500 kg/m3. 

The gravity acceleration was g=9.81 m/s2. Considering 

Fig. 3  Velocity contour in material at t=0.4 s

Fig. 4  History of velocity at observation points with dif-
ferent boundary conditions 
(a) Point A; (b) Point B 
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buoyancy, the effective unit weight of the material 
was (ρ−ρw)g, where ρw is the density of water. Pois-
son’s ratio of the sliding mass was taken as 0.49, and 
Young’s modulus was 300su0. The time step Δt was 
determined through the Courant-Friedrichs-Lewy 
stability condition with the Courant number as 0.4.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The robustness of our MPM program without the 

ABC was verified by comparison with computational 
fluid dynamics (CFD) simulations, where the elastic 
wave propagation is avoided by an incompressible 
framework (Dong et al., 2017b). The impact pressures 
on the mudmat, F, predicted by the CFD and MPM 
analyses without ABCs are normalized with the iner-
tia of the sliding mass ρv2, as shown in Fig. 6. The 
pressures in the CFD analyses at the very early stage 
are virtually infinite, while the impact pressure rises 
rapidly to a peak value before 0.01 s in the MPM 
analyses. Impact waves are generated by the sudden 
interaction between the sliding mass and the mudmat 
(Fig. 7a), and propagate towards the upper and left 
boundaries (Figs. 7b and 7c). The speed of the com-
pressional waves can be estimated with Eq. (5) as 
41.2 m/s. Therefore, the first waves reflected by the 
upper and left boundaries arrive at the sliding mass– 
mudmat interface at about 0.44 and 0.84 s with con-
sidering the sliding velocity of 6 m/s, which are con-
sistent with the emergence of pressure fluctuations in 
Fig. 6. The pressures predicted by the MPM are close 
to the CFD predictions before 0.44 s. After that the 

MPM predictions present severe fluctuations due to 
the wave reflection.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.1  Effect of the left boundary  

The wave reflections at the left boundary can be 
delayed if a longer length of the sliding mass is  

Fig. 5  Schematic for submarine landslide across mudmat 
(non-scaled) 
(a) Initial conditions; (b) Setup of ABCs 

Fig. 7  Contours of slide velocities 
(a) t=0.05 s; (b) t=0.30 s; (c) t=0.53 s 

Fig. 6  Normalized impact pressures predicted by CFD 
and MPM simulations 
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considered. With L=50 m, the waves reflected by the 
left boundary are expected to arrive at the sliding 
mass–mudmat interface at about 2.1 s. The remaining 
pressure fluctuations at about 0.44 s with L=50 m in 
Fig. 6 are mainly due to the wave reflection at the 
upper boundary. The MPM prediction with L=50 m 
converges to the CFD counterpart, although larger 
length of the sliding mass means higher computa-
tional efforts. 

Kinematic history of the upstream point A 
(Fig. 5b) at the height of 0.1 m and the initial distance 
of 8 m to the mudmat is investigated (Fig. 8a). The 
outgoing compressional wave arrives at point A at 
about 0.18 s, causing fluctuations of the horizontal 
velocities with a maximum fluctuation magnitude of 
about 2 m/s. The wave elapses after 0.05 s, which 
corresponds to a wave length of 2 m. At the left end of 
the sliding mass with a velocity inflow boundary, the 
wave is reversed and returns to the sliding mass– 
mudmat interface given that the ABC is not imposed. 
As a result, an increase of the slide velocity emerges 
at point A at about 0.74 s. The velocity fluctuations at 
0.5 s are induced by the wave reflections by the upper 
boundary; that aspect will be tackled later in this 
study. 

To attenuate the outgoing waves at the left 
boundary of the sliding mass, the damping layer ABC 
is added with a total thickness B=10 m and α=0.005. 
The damping layer domain of nodes proceeds along 
with the sliding mass at a horizontal velocity of 6 m/s. 
Velocity of the particles in the damping layer was 
influenced by the velocity adjustment of the sur-
rounding nodes by Eqs. (6) and (7). For the particles 
out of the damping layer, the velocity remained un-
changed. The velocity fluctuations between 0.74 and 
0.97 s for point A are significantly mitigated (Fig. 8a). 
The remaining fluctuations are caused by the residual 
wave through the damping layer. Further investiga-
tion was performed to study the effect of parameters α 
and B in Eq. (7) as shown in Fig. 9. With a smaller 
value of α (e.g. α=0.001) or a thinner damping layer 
(e.g. B=5 m), the outgoing waves are under-damped; 
hence relatively high fluctuations of the sliding ve-
locities are retained. With higher values of α, such as 
0.05, the outgoing waves are sufficiently damped, but 
transitional reflection of waves is caused by the sud-
den addition of the artificial damping, which arrives 
at point A earlier than the residual wave by about 

0.5 s. Through trial calculations, the value of α is 
suggested to be 0.003–0.015 and B≥7.5 m, which 
corresponds to 3.5 times the wave length. Since the 
dashpot ABC cannot be imposed on the velocity in-
flow boundary, its effect on the horizontal velocity at 
point A is not studied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9  Effect of configurations of damping layer ABC on 
horizontal velocity at point A 

Fig. 8  Velocity profiles at observation points with dif-
ferent boundary conditions 
(a) Horizontal velocity at point A with left boundary condi-
tions; (b) Vertical velocity at point B with upper boundary
conditions 
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3.2.2  Effect of the upper boundary  
 
The kinematic history of upstream point B at the 

height of 5 m and the initial distance of 2.5 m to the 
mudmat (Fig. 5b) is investigated (Fig. 8b). The out-
going compressional wave arrives at point B at about 
0.11 s, causing fluctuations of the vertical velocities 
with a maximum fluctuation magnitude of about 
0.5 m/s. The wave is reflected back to the slide mass 
with its shape retained. The reflected wave keeps 
propagating between the upper boundary and the 
base, which causes fluctuations of vertical velocities 
of point B at 0.34 and 0.52 s. The propagation of the 
wave along the height of the sliding mass also causes 
fluctuations of the horizontal pressures, which are the 
main reason for the fluctuations of the impact pres-
sures on the mudmat at 0.44 s in Fig. 6. 

To attenuate the wave reflection at the upper 
boundary, the damping layer ABC is added. The up-
per boundary at the front of the sliding mass is in a 
plastic zone (Fig. 7b), which means the elastic impact 
wave is transported along with the permanent plastic 
waves. Therefore, the damping layer needs to be suf-
ficiently thin to avoid the complicated operations of 
wave-separation, such as B=1 m and α=0.005. How-
ever, with such a thin damping layer, the outgoing 
wave is under-damped as discussed in the previous 
section.  

The dashpot ABC was added at the upper 
boundary of the sliding mass as shown in Fig. 5b. 
Since the upper surface of the sliding mass sinks in 
the sliding process due to the release of the static 
pressure, the upper layer of particles should be de-
tected at each incremental step before implementing 
the dashpot ABC at the boundary nodes. The two 
layers of nodes beyond the upper layer of particles 
can be considered as the boundaries for implementing 
the dashpot ABC. With the dashpot ABC, the velocity 
fluctuations at point B due to the residual wave are 
less than 10% of the original at 0.34 s (Fig. 8b). After 
0.34 s, the velocities at point B are relatively stable, 
which implies that the residual wave is fully ab-
sorbed. With the dashpot ABC, the severe fluctuation 
of the impacting pressures at 0.44 s in Fig. 6 is also 
alleviated. Therefore, the dashpot ABC at the upper 
boundary, based on accurate derivations of wave 
equations, is more practical for free surfaces with a 
complex kinematic field than the damping layer ABC. 

In contrast, the damping layer ABC needs a suffi-
ciently thick elastic zone in the kinematic field. A 
hybrid configuration of the ABCs can be imposed 
with a damping layer ABC on the left zone of the 
sliding mass and a dashpot ABC on the upper free 
boundary. With such a configuration, the impacting 
pressures predicted by the MPM are relatively stable 
and converge to the CFD prediction (Fig. 6). The 
velocity contour of the sliding mass with the ABCs is 
shown in Fig. 10, in which the impacting waves 
(Fig. 7c) are fully absorbed. 

 
 
 
 
 
 
 
 
 
 
 

3.3  Dynamic penetration of pipe 

A smooth pipeline with a diameter D=0.8 m was 
driven into clay from the surface. The submerged 
density of the soil was 650 kg/m3. The geostatic 
stresses induced by the self-weight of the soil were 
not considered. The clay was assumed as an elastic- 
perfectly plastic material with the von Mises yield 
criterion and with the size of the yield surface re-
maining unchanged. The undrained shear strength of 
the normally consolidated clay was su=2.5 kPa. 
Poisson’s ratio of the soil was taken as 0.49, and 
Young’s modulus was 500su. The time step Δt was 
determined through the Courant-Friedrichs-Lewy 
stability condition with the Courant number of 0.4. In 
the MPM analysis, a half model was considered by 
taking advantage of the symmetry along the central 
line. Then the soil extensions in the horizontal and 
vertical directions were 3.125D with the mesh size 
d=0.0125D (Fig. 11). Roller boundary conditions 
were initially assigned to the right and bottom 
boundaries of the soil, while the top boundary was 
free. A 4×4 particle configuration was allocated for 
each element fully occupied by the soil. 

The pipe was driven into the soil at velocities 
vpipe of 0.1 (quasi-static) and 5 m/s (dynamic),  

Fig. 10  Contour of velocities at 0.53 s with hybrid ABCs
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respectively. The robustness of the MPM simulations 
would be verified by comparison of the obtained 
penetration resistance Fv on the pipe with CFD pre-
dictions (ANSYS, 2011). The dynamic meshing 
technique was used along with the void-of-fluid 
scheme as detailed in (Dong et al., 2017b). The pen-
etration resistances predicted by the CFD and MPM 
analyses are normalized by the shear strength of the 
soil (Fig. 12), where w is the penetration depth of the 
pipe. The fluctuations, particularly in the CFD results, 
are mainly due to the errors in the recovery of state 
variables after re-meshing in each incremental step. In 
the MPM analyses, magnitudes of the stress waves 
are quite small for the quasi-static case; therefore, its 
prediction of the penetration resistance is quite 
smooth and agrees well with the CFD results. For the 
dynamic case, the fluctuations of the resistance at a 
shallow penetration (w/D<0.1) are mainly due to the 
establishment of the kinematic field under the initial 
impact. Then at w/D=0.172, the stress wave reflected 
by the bottom boundary returns to the pipe–soil in-
terface, causing strong fluctuations in the resistance. 
This can be proven by the propagation velocity of the 
stress wave of 178 m/s as predicted by the properties 
of the soil. To remove the disturbance of the stress 
wave reflection before w/D=0.5, the width and height 
of the soil need to be larger than 7.12 m as calculated 
by (0.5×0.8/5)×178/2. Therefore, the minimum 
model dimensions are determined by the penetration 
period (w/(Dvpipe)) and the velocity of the stress wave 
(178 m/s). Then dashpot and damping layer ABCs 
were imposed on the bottom and lateral boundaries. 
In the damping layer additional materials of thickness 
B=1 m were configured at the boundaries with the 
parameter α=0.005, determined through trial calcula-
tions. The absorbing effect of the ABCs is generally 
satisfactory as the fluctuations of the resistance were 
attenuated significantly. The local fluctuations of the 
resistance at w/D>0.1 are controlled within 5%. The 
resistances predicted by the CFD are higher than the 
MPM counterpart for around 6%. This is attributed to 
the larger contact interface between the pipe and soil 
in the CFD model as a gap is not allowed between 
them in the void-of-fluid solver (Fig. 13). Therefore, 
the MPM is preferred to simulating the dynamic 
penetration of a structure. The velocity contours in the 
soil predicted by the CFD and MPM are shown in 
Fig. 13.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11  Schematic for the pipe penetration into soil 
(non-scaled) 
(a) Roller or dashpot boundary; (b) Damping layer boundary

Fig. 12  Normalized penetration resistance predicted by 
CFD and MPM 
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4  Conclusions 
 
Dashpot and damping layer ABCs were imple-

mented in the MPM to absorb the outgoing waves. 
The former was imposed on boundary nodes in terms 
of traction forces, while the latter utilized a damping 
layer of finite thickness inside the soil. Feasibility of 
the ABCs was assessed through benchmark problems 
of 1D compression, submarine landslides impacting 
mudmat, and dynamic penetration of a pipeline. Ve-
locity fluctuations induced by elastic wave propaga-
tion and the impact force fluctuations on the struc-
tures were investigated at specific observation points. 
The dashpot ABC, based on accurate derivations of 
wave equations, is more feasible for free surfaces 
with a complex kinematic field than the damping 
layer ABC. In contrast, the damping layer ABC  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

requires a sufficiently thick elastic zone in the kine-
matic field, and the damping ratio increased linearly 
with the distance to the boundary at a coefficient 
between 0.003 and 0.015. In specific scenarios, the 
two ABCs can be utilized together to adapt to dif-
ferent boundary settings. Finally, the impact forces 
predicted by the MPM with the ABCs were verified 
by comparison with those estimated using a CFD 
approach. 
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