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Abstract: Large deformation analysis of slope failure is important for hazard and risk assessment of infrastructure. Recent studies 
have revealed that spatial variability of soil properties can significantly affect the probability of slope failure. However, due to 
limitations of traditional numerical tools, the influence of spatial variability of soil properties on the post-failure behavior of slopes 
has not been fully understood. Therefore, in this study, we aimed to investigate the effects of the cross-correlation between cohe-
sion and the friction angle on the probability of slope failure and post-failure behavior (e.g. run-out distance, influence distance, 
and influence zone) using a random material point method (RMPM). The study showed that mesh size, strength reduction shape 
factor parameter, and residual strength all play critical roles in the calculated post-failure behavior of a slope. Based on stochastic 
Monte Carlo simulation, the effects of cross-correlation between cohesion and the friction angle on the probability of slope failure, 
and its run-out distance, influence distance, influence zone, and sliding volume were studied. The study also showed that material 
point method (MPM) has great advantages compared with the finite element method (FEM) in handling large deformations. 
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1  Introduction 

 
Slope failure can cause tremendous damage to 

infrastructure and threaten the lives of people. For 
example, a large-scale construction solid waste 
(CSW) landslide that occurred in Shenzhen in De-
cember 2015 resulted in 77 deaths and 33 houses 
destroyed (Yin et al., 2016). The occurrence of slope 
failure is affected by many uncertain factors, includ-
ing external loads and the inherent spatial variability 
of soil properties. Wang MY et al. (2020) showed 
that ignoring the spatial variability of soil properties 
can lead to overestimation of the calculated factor of 

safety (FOS) of a slope. To evaluate potential slope 
failure risk appropriately, numerical approaches (e.g. 
random limit equilibrium method (RLEM) and ran-
dom finite element/difference method (RFEM/ 
RFDM)) have been increasingly applied in reliability 
analysis of slope stability. For instance, Cho (2010) 
investigated slope stability by RLEM based on a 
Monte Carlo simulation (MCS) framework. Cheng et 
al. (2018) assessed potential slope failure risk using 
RFDM. Moreover, as simulating a small probability 
of slope failure (e.g. pf<10−3) is particularly time-
consuming, Li et al. (2016) and Wang MX et al. 
(2020) combined subset simulation (SS) with RFEM 
to improve computational efficiency. 

However, slope failure is usually accompanied 
by a large run-out distance, influence zone, and slid-
ing volume (Wang et al., 2018; Huang et al., 2020; 
Liu et al., 2020; Feng et al., 2021b). Classical limit 
equilibrium method (LEM), finite element method 
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(FEM), and finite difference method (FDM) cannot 
model large deformation of slope failure and there-
fore can underestimate the risk of slope failure. For-
tunately, the development and application of the ma-
terial point method (MPM) can effectively deal with 
these limitations. MPM, as a hybrid Eulerian-
Lagrangian method, combines the advantages of 
both schemes (Sulsky et al., 1994, 1995). It can 
avoid mesh distortion by using a fixed Eulerian 
background grid for interpolation, and becomes suit-
able for simulating large deformation problems. 
MPM has been increasingly applied to simulate the 
dynamic process of slope failure. For example, Ban-
dara and Soga (2015) and Soga et al. (2016) coupled 
soil deformation and pore fluid based on MPM, and 
then simulated progressive failure of river levees. 
Wang et al. (2016b) modeled two kinds of slope fail-
ure modes (progressive and retrogressive) by MPM. 
The use of MPM for the simulation of rainfall-
induced slope failure has also been reported (Yerro 
et al., 2015; Bandara et al., 2016; Wang et al., 2018; 
Liu et al., 2020; Feng et al., 2021a).  

Although MPM has been proven to be an effec-
tive and accurate numerical tool when studying large 
deformation problems, few applications of MPM 
have considered the inherent spatial variability of 
soil properties. Wang et al. (2016a) first proposed a 
random material point method (RMPM) to model a 
clay slope failure. Liu et al. (2019) further integrated 
RLEM and RMPM to simulate four types of slope 
failure modes. However, they considered variation of 
only a single parameter (i.e. the undrained shear 
strength of clays) and did not extend their results to 
more general soils. Previous studies showed the 
cross-correlation coefficient (ρc,ϕ) of cohesion c and 
the friction angle ϕ could significantly affect slope 
stability (Cho, 2010; Li et al., 2015; Liu et al., 2017; 
Wang MX et al., 2020; Ng et al., 2021). Neverthe-
less, most studies focused mainly on the triggering of 
slope failure (i.e. pf), due to the limitations of numer-
ical tools. The effects of ρc,ϕ on the post-failure fea-
tures of slopes, including the run-out distance, influ-
ence distance, and influence zone, have not been 
fully investigated. 

To solve these problems, RMPM was selected 
to further investigate large deformations of slope 
failure in spatially variable soils. The main objective 
was to investigate the effects of ρc,ϕ on the post-

failure behavior of slopes. In Section 2, the computa-
tional procedure of RMPM is introduced. The cross-
correlated c–ϕ random fields are generated by the 
Cholesky decomposition technique. In Section 3, we 
discuss the impacts of influencing factors (i.e. mesh 
size, strength reduction shape factor parameter (η), 
and residual strength) using homogenous slope pro-
files. In Section 4, the post-failure consequences of 
slopes with spatially variable soil properties are cal-
culated by RMPM based on an MCS framework, in 
terms of the run-out distance, influence distance, 
influence zone, and sliding volume. Finally, the 
slope failure probability, pf, and corresponding fail-
ure consequences are used to evaluate the potential 
risk of slope failure. 
 
 
2  Random material point method 

2.1  Material point method 

MPM can be considered as an FEM variant 
used to simulate large deformation problems in ge-
otechnics, and consists of a Eulerian background grid 
and Lagrangian material points. In this study, it was 
applied to investigate slope failure under gravity, 
hence, a total-stress, single-phase MPM was used. 
The calculation steps of MPM are summarized in 
Fig. 1: (a) mapping the information of material 
points (e.g. mass, velocity, and volume) onto the 
computational grid; (b) calculating the equilibrium 
equations on the grid; (c) interpolating updated nodal 
velocity and acceleration back to the material points, 
and then updating stress and history variables by a 
continuum constitutive model; (d) updating the parti-
cle positions, and starting a new iteration step. 

The momentum balance equation and stress-
strain relationship for a single-phase continuum are 
shown as 

 
,   a σ b                             (1) 

= ,σ Dε                                    (2) 

 
where  is the density; a is the acceleration; b is the 
unit body force;  and ε denote the total stress and 
strain, respectively; D represents the tangent modu-
lus defined by a constitutive model. In this study, the 
strain-softening Mohr-Coulomb constitutive model 
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(Abbo and Sloan, 1995) was selected to describe the 
soil response: 

 

  p
eq

r p r e ,c c c c                          (3) 

  p
eq

r p r e ,                             (4) 

 
where cp and ϕp are the peaks of cohesion and fric-
tion angle, respectively; cr and ϕr are the residual 
cohesion and friction angle, respectively; η indicates 
the rate of parameter softening, also called the 

strength reduction shape factor; p
eq  represents the 

accumulated equivalent plastic strain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2  Generation of cross-correlated c–ϕ random 
fields 

Random field theory (Vanmarcke, 1983) has 
been popularly used in characterizing the spatial var-
iability of soil properties. Here, cross-correlated non-
Gaussian c–ϕ random fields were adopted. Following 
Zhu and Zhang (2013), an exponential autocorrelation 
function (ACF) was adopted to simulate the spatial 
correlation of each soil property (c or ϕ), as follows: 
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where 
ijx i jx x   and 

ijy i jy y   denote the 

absolute distances between the centroid coordinates 

of the ith and jth elements along with horizontal and 
vertical directions, respectively; δh and δv represent 
the horizontal and vertical scales of fluctuation 
(SOFs), respectively, for each of c or ϕ. Generally, 
the horizontal SOF δh is larger than the vertical SOF 
δv, which can describe a transversely anisotropic soil 
fabric (i.e. horizontally deposited). 

Once the ACF is determined, the autocorrela-
tion matrix, C (ne×ne) for a random field containing 
ne number of elements can be constructed: 
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where  ,
ij ijx y    represents the autocorrelation 

coefficient between any two elements i and j. Next, a 
2×2 matrix R=[1, ρc,ϕ; ρc,ϕ, 1] is constructed to indi-
cate the cross-correlation between c and ϕ. The 
Cholesky decomposition technique is used to factor-
ize C and R: 

 
T

1 1 = ,L L C                                  (7) 
T

2 2 = ,L L R                                  (8) 
 

where both L1 (ne×ne) and L2 (2×2) are the lower 
triangular matrices. Finally, the cross-correlated non-
Gaussian random fields Hz

CNG (ne×2) can be generat-
ed by 

 

  CNG 1 T
1 2 ,z z kF H = L ξ L     k=1, 2, …, n,  z=1, 2, 

(9) 
 

where superscript CNG indicates the cross-correlated 
non-Gaussian random fields; ξk is a ne×2 independ-
ent standard normal random matrix; n is the number 
of realized random fields; z is the number of model-

ing soil parameters;  1
zF   represents the inverse 

function of the marginal cumulative distribution 
function (CDF) of the zth soil parameter;  Φ   is the 

CDF of the standard normal distribution. 

Fig. 1  A simulation cycle of MPM 
(a) Particle to node; (b) Nodal computation; (c) Node to 
particle; (d) Update particles 
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2.3  Computational process of RMPM 
 
The aforementioned parts introduce the princi-

ples of MPM and random field generation. In this 
study, the generation of cross-correlated random 
fields was programmed using Matlab, and imported 
into the MPM program written in C++ language. The 
numerical model was simulated by a computer with 
an Intel i7-6700HQ CPU @ 2.60 GHz and 8 GB 
RAM. Fig. 2 illustrates the computation process of 
RMPM. Each step can be summarized as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. Construct a slope model and determine the 

soil parameters. The strain-softening Mohr-Coulomb 
constitutive model was selected to represent the soil 
behavior. 

2. Use a uniform soil profile to study the effects 
of influencing factors (i.e. mesh size, strength reduc-
tion shape factor, and residual strength ratio) on sim-
ulated results. Then, the analyzed results serve as 
references for stochastic analysis (Section 4). 

3. Apply given statistics (e.g. mean values, co-
efficients of variation (COVs), cross-correlation co-
efficients, and scales of fluctuation) to generate N 
sets of cross-correlated c–ϕ random fields. 

4. Assign deterministic and spatially variable 
soil properties to corresponding material points to 
generate an ensemble of N models. 

5. Conduct MPM simulation for each realiza-
tion. Here, a threshold displacement (0.4 m) was 
used to determine whether slope failure occurred 
(Wang et al., 2019). The slope failure probability is 
calculated by pf=Nf/N, where Nf and N represent the 
numbers of failure samples and total realizations, 
respectively. 

6. Analyze the post-failure behavior of the 
slopes, i.e. run-out distance, influence distance, in-
fluence zone, and sliding volume. Because the slope 
failure modes and consequences are correlated 
(Huang et al., 2013; Liu et al., 2019), the slope fail-
ure risk can be quantitatively calculated (Huang et 

al., 2013; Cheng et al., 2018) by 
f

1

1
Risk ,

N

i
i

C
N 

   

where Ci represents the quantitative consequence of 
the ith failure sample. 

 
 

3  Deterministic analysis of influencing  
factors 

 
The strain-softening Mohr-Coulomb model can 

suffer from a mesh dependence problem, so a proper 
mesh size should be chosen to ensure accuracy of the 
simulation (Oliver and Huespe, 2004; Soga et al., 
2016). The strength reduction shape factor parame-
ter, η, and the residual strength may also influence 
the simulated post-failure behavior of the slope. 
Thus, in this section, these influencing factors are 
investigated, and the results serve as references for 
the probabilistic analysis in Section 4. In this section, 
a homogenous soil profile (Fig. 3), was used to in-
vestigate these influencing factors. The height of the 
slope was 15 m with an inclination angle of 45°. The 
soil properties were shown in Table 1. 

Fig. 2  Flowchart of RMPM calculation 
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3.1  Effects of mesh size 

In this part, the impacts of the mesh size on 
slope stability and failure consequences are ana-
lyzed. Using the soil parameters (peak strength) in 
Table 1, the FOS of the slope is 0.775 based on 
LEM, indicating that the slope is not statically stable. 
By changing the mesh size, a sensitivity analysis of 
FOS was conducted, and the post-failure behavior of 
the slope was investigated. The FOS was calculated 
by increasing the strength reduction factors of the 
peak strength parameters (cp and ϕp) without consid-
ering softening.  

Each element in the mesh contained four materi-
al points. Four different mesh sizes, 0.25 m×0.25 m, 
0.5 m×0.5 m, 1 m×1 m, and 2 m×2 m, were used, 
which correspond to 57 180, 14 310, 3585, and 900 
material points, respectively. Fig. 4 shows the results  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

from simulations under different mesh sizes. It is 
clear that the shear band becomes narrower and 
smoother as the mesh size decreases, as the thickness 
of a shear band is closely related to the mesh size in 
MPM calculation (Yerro Colom, 2015; Soga et al., 
2016). The calculated FOS decreases as the mesh 
size decreases (Fig. 5). When the mesh size reduced 
from 0.5 m to 0.25 m, the calculated FOS was 0.772 
and 0.758, respectively, which is close to the FOS 
calculated by LEM (0.775). On the other hand, with 
a decrease in the mesh size, the computational cost 
(CPU time) increases significantly. Therefore, select-
ing a proper mesh size is important in terms of the 
accuracy and efficiency of MPM calculation. Using a 
mesh size of 0.5 m seems to result in a similarly ac-
curate result, while being more efficient than using a 
mesh size of 0.25 m. 

Fig. 6 illustrates the quantitative measures of 
slope failure. The sliding depth was defined as the 
depth from the top of the slope to the lowest point in 
the sliding point. The sliding volume was calculated 
as the total volume of sliding material points. The 
run-out distance was calculated from the slope toe 
before failure to the forefront of the landslide. The 
influence distance was defined as the distance be-
tween the slope crest point before failure to the land-
slide crown after failure. Finally, the influence zone 
was measured as the sum of the influence distance, 
run-out distance, and the horizontal slope width. 

Fig. 7 shows the calculated post-failure features 
of the slope under different mesh sizes. Reducing the 
mesh size could result in larger post-failure features  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Soil properties for a homogeneous slope 

Parameter Value Parameter Value

γ (kN/m3) 20 cr (kPa) 1 

E (MPa) 100 ϕp (°) 20 

v 0.3 ϕr (°) 16 

cp (kPa) 10 η 20 

γ: unit weight; E: Young’s modulus; v: Poisson’s ratio 

Fig. 4  Computed slope failure using different mesh sizes 
(a) 2 m×2 m; (b) 1 m×1 m; (c) 0.5 m×0.5 m; (d) 0.25 m×0.25 m 

Fig. 3  Geometry of a homogenous slope 
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(run-out distance, influence distance, influence zone, 
and sliding volume). All the results tended to con-

verge when the mesh size was 0.5 m or 0.25 m, but 
the corresponding CPU times were 26.8 min and 
119.2 min, respectively. Considering the significant 
saving of CPU time, we used a mesh size of 0.5 m 
throughout the study. The chosen mesh size can gen-
erate reasonably accurate results while enabling us to 
conduct a large number of MCSs, as higher compu-
tational efficiency is a key consideration. Therefore, 
the 0.5 m mesh size was used in the following analy-
sis considering both the computational efficiency and 
accuracy. Note that Yerro Colom (2015) proposed a 
method such that, with a properly selected softening 
parameter, a coarser mesh can be used to gain results 
consistent with those from a finer mesh. 

3.2  Effects of the strength reduction shape factor 

In the strain-softening Mohr-Coulomb constitu-
tive model, the strength reduction shape factor η con-
trols the rate of strength decrease, which may also 
affect the consequences of slope failure. In this part, 
the shape factors were set to 20, 50, 70, and 100 to 
investigate its impacts. Moreover, when soil mass 
softening occurs, cohesion generally decreases more 
than the friction angle. Details of the slope model are 
shown in Fig. 3, and of the other soil parameters in 
Table 1.  

Fig. 8 indicates that the larger the shape factor, 
the faster the rate of decrease in strength. When the 
plastic deviatoric strain reached 0.1, both c and ϕ 
softened to the targeted residual values. The simulat-
ed post-failure consequences under different shape 
factors are shown in Fig. 9. 

Fig. 9 shows that the calculated run-out distance 
is influenced only slightly by the strength reduction 
shape factor, while the influence distance, influence 
zone, and sliding volume all significantly increase 
with an increase in the shape factor. As the residual 
strengths are fully mobilized when the plastic devia-
toric strain reaches 10%–20%, the run-out distance, 
as the result of large deformation, would not be sig-
nificantly affected by the rate of strength reduction. 
However, the influence distance (the location of the 
slip surface relative to the slope crest) is affected by 
the strength reduction rate in the case of small de-
formations. When the shape factor increases from 20 
to 100, the slip surface is extended further from the 
crest (from 17 to 24 m). Correspondingly, the influ-
ence zone and sliding volume increase. 

Fig. 7  Quantitative post-failure slope features under dif-
ferent mesh sizes: (a) run-out distance and influence dis-
tance; (b) influence zone and sliding volume 

Fig. 6  Quantitative consequences of slope failure 

Fig. 5  Factor of safety and corresponding CPU time un-
der different mesh sizes 
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3.3  Effects of residual strength 

Yerro Colom (2015) reported that the residual 
strength can also influence the quantitative features 
of slope failure, but only the influence of residual 
cohesion on the run-out distance was considered. As 
proposed by Zhang et al. (2014) and Zhang and Xiao 
(2019), compared with residual cohesion, the effects 
of the residual friction angle on the run-out distance 
are more pronounced. Therefore, in this part, the 
effects of residual cohesion and friction angle will be 
studied systematically. The ratios of the residual 
strength to the peak strength for cohesion and the 
friction angle were set to 0.5, 0.1, 0.0, and 0.9, 0.8, 
0.5, respectively. For the other soil parameters, refer 
to Table 1. Nine groups of simulations were con-
ducted. The strength reduction shape factor η was set 
to 20. The strain-softening models are shown in 
Fig. 10. 

Fig. 11 shows that the larger the residual cohe-
sion and friction angle, the smaller the post-failure 
features of slopes observed. The major reason is that 
a slope will fail when the driving force exceeds the 
resistant force. Once soil mass starts to slide, the 
magnitude of the driving force minus the resistant 
force determines the eventual deposition of the soil 
mass. In the current study, the resistant force was 
composed mainly of the magnitude of the residual 
shear strength. That meant the post-failure behavior 
of the slope could be significantly affected by the 
residual strength. 

While the residual cohesion has little impact on 
the influence distance, it can have a greater effect on 
the run-out distance. In terms of the residual friction 
angle, it can considerably affect these four post-
failure consequences. Note that the above observa-
tion was made based on the slope geometry and soil 
properties in this analysis. As shown by Hungr et al. 
(2014), a sandy slope generally experiences a shal-
low failure, while a clay or silty slope is subjected to 
a rotational, compound, or planar slide. This is main-
ly because the frictional resistance is stress depend-
ent, while the cohesion is not. The outcome might 
also depend on the size of the slope. 

 
 

4  Probabilistic analysis and results 
 
The mesh size affects not only the calculated 

FOS of the slope, but also the simulated post-failure  

Fig. 9  Calculated post-failure slope features in relation 
to different shape factors: (a) run-out distance and influ-
ence distance; (b) influence zone and sliding volume 

Fig. 8  Strain-softening Mohr-Coulomb model 
(a) Cohesion; (b) Friction angle 
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behavior of the slope in MPM. Additionally, the 
strength reduction shape factor and the residual 
strength can affect the calculated post-failure conse-
quences of the slope. Based on the above analysis, in 
this section, the mesh size and shape factor were set 
to 0.5 m and 20, respectively, to investigate slope 
stability in spatially variable soils and post-failure 
behavior considering different cross-correlations of c 
and ϕ. The size and geometry of the slope model 
were the same as shown in Fig. 3. The soil parame-
ters were summarized in Table 2. Among them, c 
and ϕ both followed lognormal distributions with 
prescribed means and COVs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Deterministic and spatially variable soil 
properties 

Soil property Value Scale of fluctuation
γ (kN/m3) 20  
E (MPa) 100  
v  0.3  
Mean cp (kPa) 10 δh=40 m, δv=4 m 
COV of cp 0.3  
Mean ϕp (°) 30 δh=40 m, δv=4 m 
COV of ϕp 0.2  
Residual cohesion ratio, 

cr/cp 
0.1  

Residual friction angle 
ratio, ϕp/ϕr 

0.8  

η 20  

Fig. 10  Strain-softening Mohr-Coulomb model under different residual strengths 
(a) Cohesion; (b) Friction angle 

Fig. 11  Results of simulations under different residual strength ratios 
(a) Run-out distance; (b) Influence distance; (c) Influence zone; (d) Sliding volume 
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4.1  Convergence analysis 

In MCS, choosing a proper number of simula-
tion runs is very important. If the number of simula-
tions is very large, it will be time-consuming, but if 
relatively few, it will not lead to statistically reliable 
results. 

Fig. 12 plots the mean of run-out distance and 
its standard deviation against the number of simula-
tions. Clearly, when the number of simulations in-
creases to 100, both the mean of the run-out distance 
and its standard deviation tend to converge. There-
fore, the number of MCS realizations was set to 100 
in this study. For each simulation, the average CPU 
time was about 0.5 h. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Simulation results 

According to the soil parameters in Table 2, the 
slope is statically stable when ignoring the spatial 
variability of soil properties. In this part, five differ-
ent values of ρc,ϕ (−0.5, −0.2, 0.0, 0.2, and 0.5) were 
chosen such that the effects of ρc,ϕ on pf and post-
failure behavior of slopes could be studied. Accord-
ingly, the risk of slope failure could be assessed 
quantitatively. Three examples of cross-correlated c–
ϕ random fields (peak strength) under different ρc,ϕ 
values are shown in Fig. 13. 

Fig. 14 shows the pf calculated by RMPM and 
RFEM under different cross-correlation coefficients. 
In FEM calculation, when the numerical algorithm 
cannot converge and nodal displacement dramatical-
ly increases, slope “failure” is said to have occurred 
(Griffiths and Lane, 1999). In RMPM simulation, the 
calculated slope failure probability pf increases with 
an increase in the cross-correlation coefficient (pf 
increases from 0.29 to 0.40 when ρc,ϕ increases from 
−0.5 to 0.5). These results are consistent with previ-
ous findings (Cho, 2010; Li et al., 2015; Liu et al., 
2017; Wang MX et al., 2020). Note that both RMPM 
and RFEM provide similar pf values, which is rea-
sonable considering that MPM can be considered as 
the FEM when simulating small deformation prob-
lems. It also indicates that the selected 0.4 m of  
displacement-based failure criterion is reasonable for 
RMPM simulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13  Three examples of cross-correlated c–ϕ random fields (peak strength) 
(a) ρc,ϕ=−0.5; (b) ρc,ϕ=0.0; (c) ρc,ϕ=0.5 

Fig. 12  Mean of run-out distance and its standard devia-
tion in relation to the number of simulations (ρc,ϕ=0.0) 
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Fig. 15 shows a case of progressive slope fail-

ure using ρc,ϕ=0.5. At the time of t=1.5 s (Fig. 15a), a 
shear band begins to form within the soil slope, and 
slope failure is initiated. At t=2.5 s, the shear band is 
intensified, with deviatoric plastic strain up to 
100%–200%, and the slip surface extends from the 
crest to the toe. Figs. 15c and 15d show that a large 
deformation develops progressively within the slope 
as the slip surface extends deeper into the base and 
further from the crest, while the sliding mass contin-
ues to flow till it reaches its final deposition profile 
at t=10 s. The simulated run-out distance and influ-
ence distance were 19.97 m and 15.23 m, respective-
ly (Fig. 15d).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Figs. 16a and 16b, the mean values of slope 
post-failure consequences (i.e. run-out distance, in-
fluence distance, influence zone, and sliding volume) 
increase only slightly (<5%) with the cross-
correlation coefficient ρc,ϕ. Here, two different fail-
ure consequence indicators (i.e. influence zone and 
sliding volume) were used to calculate the slope fail-
ure risk. These two risk indicators show a consistent 
trend with the probability of failure curve. Both in-
creased with ρc,ϕ, and the largest cross-correlation 
coefficient resulted in the highest risk.  

Statistical distributions of four failure conse-
quences are illustrated in Fig. 17 using two different 
ρc,ϕ values for the failed slope cases (non-failure cas-
es are not included), where ρc,ϕ=−0.5 and 0.5 corre-
spond to cases with the lowest and the highest risks, 
respectively. When the ρc,ϕ increases from −0.5 to 
0.5, the scattering of the influence zone and sliding 
volume of the slopes becomes larger. In addition, 
mean values of all the post-failure measures are 
slightly larger when ρc,ϕ=0.5, which is consistent 
with Figs. 16a and 16b.  

Fig. 18 (p.867) further compares the results of 
simulation by RMPM and RFEM. The risk was cal-
culated by multiplying the failure probability by the 
sliding volume associated with each failure. Although 
the probability of failure calculated by these two 
methods was similar (Fig. 14), the calculated sliding 
volume and risk of failure by RFEM were considera-
bly smaller than those by RMPM. Specifically, the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15  An example of progressive slope failure 
(a) t=1.5 s; (b) t=2.5 s; (c) t=4.5 s; (d) t=10 s 

Fig. 14  Probability of failure calculated by RMPM and 
RFEM under different cross-correlation coefficients 
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 Fig. 17  Distribution of post-failure features for two ρc,ϕ slope cases 

Fig. 16  Post-failure features and risk of failure under different ρc,ϕ values 
(a) Run-out distance and influence distance; (b) Influence zone and sliding volume; (c) Probability of failure and risk indicator 
(by sliding volume); (d) Probability of failure and risk indicator (by influence zone) 
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sliding volume calculated by RMPM was about 1.5 
times that of RFEM (Fig. 18a). The discrepancy is 
due mainly to differences in the numerical algo-
rithms. In FEM, numerical non-convergence and 
slope failure occur simultaneously. In other words, 
FEM cannot simulate the full large deformation pro-
cess of slope failure due to mesh distortion, and the 
program will terminate prematurely, resulting in an 
underestimated sliding volume and a lower risk 
(Fig. 18b). On the other hand, the MPM combines 
the Eulerian and Lagrangian methods, and therefore 
has great advantages for simulating the whole pro-
cess of slope failure. 

Furthermore, compared with the post-failure 
behavior of slopes, the effects of ρc,ϕ on pf were more 
significant in both the RMPM and RFEM calcula-
tions. Although the soil shear strength parameters 
were spatially variable in the current study, they had 
more effects on the spatial distribution of shear 
strength than the magnitude of the shear strength. 
Generally, the slope seeks the weakest path to fail. 
That is why there is a greater impact on pf than on 
the post-failure consequences. 

 
 

5  Conclusions 
 
This study aimed to investigate the impacts of 

the cross-correlation between c and ϕ on the post-
failure behavior of slopes and risk assessment. The 
differences in the means of post-failure features un-
der different ρc,ϕ values were negligible, while the 
probability of failure was influenced to a relatively  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

large degree. Moreover, the effects of the influencing 
factors (i.e. mesh size, strength reduction shape fac-
tor, and residual strength) on slope stability and post-
failure features were analyzed by MPM. The main 
conclusions can be drawn as follows: 

1. RMPM simulation showed that the slope 
failure probability is greatly influenced by the cross-
correlation coefficient of c and ϕ. A positive ρc,ϕ re-
sults in a larger failure probability than a negative 
ρc,ϕ. On the other hand, an increase in ρc,ϕ increases 
the post-failure consequences of the failed slopes 
only slightly (by 5%–10%).  

2. MPM suffers from mesh-dependency when 
using a strain-softening model to simulate slope fail-
ure. Therefore, the mesh size has a significant impact 
on the simulation results, and a mesh sensitivity 
study should be conducted. In this study, the calcu-
lated FOS and post-failure features tended to con-
verge when a mesh size smaller than 0.5 m was used. 
As a finer mesh size can significantly increase com-
putational time, in this study, a mesh size of 0.5 m 
was used by considering both computational accura-
cy and efficiency. 

3. When the mesh size is fixed, all post-failure 
features increase with the strength reduction shape 
factor. An increase in the residual cohesion and fric-
tion angle will result in a reduced run-out distance, 
influence distance, influence zone, and sliding vol-
ume. Moreover, compared with the residual cohe-
sion, the residual friction angle has a more pro-
nounced influence on the slope post-failure conse-
quences in terms of the slope geometry and soil 
properties employed. 

Fig. 18  Calculated sliding volume and risk of failure by RMPM and RFEM 
(a) Sliding volume; (b) Risk of failure 
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4. The probabilities of slope failure calculated 
by RMPM and RFEM were quite similar, which in-
dicates that both methods are capable of handling 
relatively small deformations upon triggering of a 
slope failure. The displacement-based failure criteri-
on (0.4 m) seems to be reasonable for MPM analysis. 
However, RFEM considerably underestimates the 
post-failure features and risks associated with slope 
failure compared with RMPM, because FEM will 
end in non-convergence due to mesh distortion. The 
entire progressive slope failure process can be simu-
lated using RMPM. 

The SOFs of soil properties may also affect the 
post-failure behavior of slopes. Furthermore, rotated 
anisotropic soil fabric can be observed in nature due 
to soil deposition, weathering, or filling. The effects 
of these features on the post-failure behavior of 
slopes also need to be investigated in the future. 
 
Contributors 

Chuan-xiang QU: conceptualization, formal analysis, in-
vestigation, software, writing–original draft, writing–review 
& editing. Gang WANG: conceptualization, methodology, 
funding acquisition, supervision, validation, writing–review 
& editing. Ke-wei FENG: methodology, software, validation. 
Zhen-dong XIA: validation, software. 

 
Conflict of interest  

Chuan-xiang QU, Gang WANG, Ke-wei FENG, and 
Zhen-dong XIA declare that they have no conflict of interest. 

 
References 
Abbo AJ, Sloan SW, 1995. A smooth hyperbolic approxima-

tion to the Mohr-Coulomb yield criterion. Computers & 
Structures, 54(3):427-441. 
https://doi.org/10.1016/0045-7949(94)00339-5 

Bandara S, Soga K, 2015. Coupling of soil deformation and 
pore fluid flow using material point method. Computers 
and Geotechnics, 63:199-214. 
https://doi.org/10.1016/j.compgeo.2014.09.009 

Bandara S, Ferrari A, Laloui L, 2016. Modelling landslides in 
unsaturated slopes subjected to rainfall infiltration using 
material point method. International Journal for Numer-
ical and Analytical Methods in Geomechanics, 40(9): 
1358-1380. 
https://doi.org/10.1002/nag.2499 

Cheng HZ, Chen J, Chen RP, et al., 2018. Risk assessment of 
slope failure considering the variability in soil properties. 
Computers and Geotechnics, 103:61-72. 
https://doi.org/10.1016/j.compgeo.2018.07.006 

Cho SE, 2010. Probabilistic assessment of slope stability that 
considers the spatial variability of soil properties. Jour-

nal of Geotechnical and Geoenvironmental Engineering, 
136(7):975-984. 
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000309 

Feng K, Wang G, Huang D, et al., 2021a. Material point 
method for large-deformation modeling of coseismic 
landslide and liquefaction-induced dam failure. Soil Dy-
namics and Earthquake Engineering, 150:106907. 
https://doi.org/10.1016/j.soildyn.2021.106907 

Feng K, Huang D, Wang G, 2021b. Two-layer material point 
method for modeling soil–water interaction in unsaturat-
ed soils and rainfall-induced slope failure. Acta Ge-
otechnica, 16:2529-2551. 
https://doi.org/10.1007/s11440-021-01222-9 

Griffiths DV, Lane PA, 1999. Slope stability analysis by fi-
nite elements. Géotechnique, 49(3):387-403. 
https://doi.org/10.1680/geot.1999.49.3.387 

Huang D, Wang G, Du C, et al., 2020. An integrated SEM-
Newmark model for physics-based regional coseismic 
landslide assessment. Soil Dynamics and Earthquake 
Engineering, 132:106066. 
https://doi.org/10.1016/j.soildyn.2020.106066 

Huang J, Lyamin AV, Griffiths DV, et al., 2013. Quantitative 
risk assessment of landslide by limit analysis and ran-
dom fields. Computers and Geotechnics, 53:60-67. 
https://doi.org/10.1016/j.compgeo.2013.04.009 

Hungr O, Leroueil S, Picarelli L, 2014. The Varnes classifica-
tion of landslide types, an update. Landslides, 11(2):167-
194. 
https://doi.org/10.1007/s10346-013-0436-y 

Li DQ, Jiang SH, Cao ZJ, et al., 2015. A multiple response-
surface method for slope reliability analysis considering 
spatial variability of soil properties. Engineering Geolo-
gy, 187:60-72. 
https://doi.org/10.1016/j.enggeo.2014.12.003 

Li DQ, Xiao T, Cao ZJ, et al., 2016. Enhancement of random 
finite element method in reliability analysis and risk as-
sessment of soil slopes using subset simulation. Land-
slides, 13(2):293-303. 
https://doi.org/10.1007/s10346-015-0569-2 

Liu LL, Cheng YM, Zhang SH, 2017. Conditional random 
field reliability analysis of a cohesion-frictional slope. 
Computers and Geotechnics, 82:173-186. 
https://doi.org/10.1016/j.compgeo.2016.10.014 

Liu X, Wang Y, Li DQ, 2019. Investigation of slope failure 
mode evolution during large deformation in spatially 
variable soils by random limit equilibrium and material 
point methods. Computers and Geotechnics, 111:301-
312. 
https://doi.org/10.1016/j.compgeo.2019.03.022  

Liu X, Wang Y, Li DQ, 2020. Numerical simulation of the 
1995 rainfall-induced Fei Tsui Road landslide in Hong 
Kong: new insights from hydro-mechanically coupled 
material point method. Landslides, 17(12):2755-2775. 
https://doi.org/10.1007/s10346-020-01442-2 

Ng CWW, Qu CX, Cheung RWM, et al., 2021. Risk assess-
ment of soil slope failure considering copula-based  



Qu et al. / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2021 22(11):856-869 869

rotated anisotropy random fields. Computers and Ge-
otechnics, 136:104252. 
https://doi.org/10.1016/j.compgeo.2021.104252 

Oliver J, Huespe AE, 2004. Continuum approach to material 
failure in strong discontinuity settings. Computer Meth-
ods in Applied Mechanics and Engineering, 193(30-32): 
3195-3220. 
https://doi.org/10.1016/j.cma.2003.07.013 

Soga K, Alonso E, Yerro A, et al., 2016. Trends in large-
deformation analysis of landslide mass movements with 
particular emphasis on the material point method. 
Géotechnique, 66(3):248-273. 
https://doi.org/10.1680/jgeot.15.LM.005 

Sulsky D, Chen Z, Schreyer HL, 1994. A particle method for 
history-dependent materials. Computer Methods in Ap-
plied Mechanics and Engineering, 118(1-2):179-196. 
https://doi.org/10.1016/0045-7825(94)90112-0 

Sulsky D, Zhou SJ, Schreyer HL, 1995. Application of a  
particle-in-cell method to solid mechanics. Computer 
Physics Communications, 87(1-2):236-252. 
https://doi.org/10.1016/0010-4655(94)00170-7 

Vanmarcke EH, 1983. Random Fields: Analysis and Synthe-
sis. MIT Press, Cambridge, USA. 

Wang B, Vardon PJ, Hicks MA, 2016a. Investigation of ret-
rogressive and progressive slope failure mechanisms us-
ing the material point method. Computers and Geotech-
nics, 78:88-98. 
https://doi.org/10.1016/j.compgeo.2016.04.016 

Wang B, Hicks MA, Vardon PJ, 2016b. Slope failure analysis 
using the random material point method. Géotechnique 
Letters, 6(2):113-118. 
https://doi.org/10.1680/jgele.16.00019 

Wang B, Vardon PJ, Hicks MA, 2018. Rainfall-induced slope 
collapse with coupled material point method. Engineer-
ing Geology, 239:1-12. 
https://doi.org/10.1016/j.enggeo.2018.02.007 

Wang MX, Tang XS, Li DQ, et al., 2020. Subset simulation 
for efficient slope reliability analysis involving copula-
based cross-correlated random fields. Computers and 

Geotechnics, 118:103326. 
https://doi.org/10.1016/j.compgeo.2019.103326 

Wang MY, Liu Y, Ding YN, et al., 2020. Probabilistic stabil-
ity analyses of multi-stage soil slopes by bivariate ran-
dom fields and finite element methods. Computers and 
Geotechnics, 122:103529. 
https://doi.org/10.1016/j.compgeo.2020.103529 

Wang Y, Qin ZW, Liu X, et al., 2019. Probabilistic analysis 
of post-failure behavior of soil slopes using random 
smoothed particle hydrodynamics. Engineering Geology, 
261:105266. 
https://doi.org/10.1016/j.enggeo.2019.105266 

Yerro A, Alonso EE, Pinyol NM, 2015. The material point 
method for unsaturated soils. Géotechnique, 65(3):201-
217. 
https://doi.org/10.1680/geot.14.P.163 

Yerro Colom A, 2015. MPM Modelling of Landslides in 
Brittle and Unsaturated Soils. PhD Thesis, Universitat 
Politècninca de Catalunya, Barcelona, Spain. 

Yin YP, Li B, Wang WP, et al., 2016. Mechanism of the De-
cember 2015 catastrophic landslide at the Shenzhen 
landfill and controlling geotechnical risks of urbaniza-
tion. Engineering, 2(2):230-249. 
https://doi.org/10.1016/J.ENG.2016.02.005 

Zhang WJ, Xiao DQ, 2019. Numerical analysis of the effect 
of strength parameters on the large-deformation flow 
process of earthquake-induced landslides. Engineering 
Geology, 260:105239. 
https://doi.org/10.1016/j.enggeo.2019.105239 

Zhang YB, Xu Q, Chen GQ, et al., 2014. Extension of discon-
tinuous deformation analysis and application in cohesive-
frictional slope analysis. International Journal of Rock 
Mechanics and Mining Sciences, 70:533-545. 
https://doi.org/10.1016/j.ijrmms.2014.06.005 

Zhu H, Zhang LM, 2013. Characterizing geotechnical aniso-
tropic spatial variations using random field theory. Ca-
nadian Geotechnical Journal, 50(7):723-734. 
https://doi.org/10.1139/cgj-2012-0345 
 

 


