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A novel stacking-based ensemble learning model for drilling 
efficiency prediction in earth-rock excavation
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Abstract: Accurate prediction of drilling efficiency is critical for developing the earth-rock excavation schedule. The single 
machine learning (ML) prediction models usually suffer from problems including parameter sensitivity and overfitting. In addition, 
the influence of environmental and operational factors is often ignored. In response, a novel stacking-based ensemble learning 
method taking into account the combined effects of those factors is proposed. Through multiple comparison tests, four models, 
eXtreme gradient boosting (XGBoost), random forest (RF), back propagation neural network (BPNN) as the base learners, 
and support vector regression (SVR) as the meta-learner, are selected for stacking. Furthermore, an improved cuckoo search 
optimization (ICSO) algorithm is developed for hyper-parameter optimization of the ensemble model. The application to a real-world 
project demonstrates that the proposed method outperforms the popular single ML method XGBoost and the ensemble model 
optimized by particle swarm optimization (PSO), with 16.43% and 4.88% improvements of mean absolute percentage error 
(MAPE), respectively.

Key words: Drilling efficiency; Prediction; Earth-rock excavation; Stacking-based ensemble learning; Improved cuckoo search 
optimization (ICSO) algorithm; Comprehensive effects of various factors; Hyper-parameter optimization

1 Introduction 

Earth-rock excavation, consisting of four main 
operations: drilling, blasting, loading, and hauling, plays 
a pivotal role in the entire schedule of earthworks 
(Abu Bakar et al., 2018; Li, 2018; Wang and Wu, 
2019). Undoubtedly, drilling is considered as the foun‐
dation, appropriate design of which will bring about a 
more compatible blasting, loading, and hauling opera‐
tion (Abbaspour et al., 2018). Drilling efficiency may 
affect the schedule of blasting operations, thus affect‐
ing the excavation progress of the whole quarry. A 
faster drilling efficiency can advance the blasting 
schedule of excavated blocks, so greatly advancing the 
progress of excavation. Accurate prediction of drilling 
efficiency can contribute to the calculation of the ex‐
cavation period and play an important guiding role in 
developing and adjusting the subsequent schedule in a 

timely way (Kahraman et al., 2003). In addition, as 
the quarry is in the open air, the drilling efficiency 
may change continuously owing to various influenc‐
ing factors such as rock properties, machines, staffing, 
and weather (Darbor et al., 2019). It is of vital impor‐
tance to comprehensively consider multiple factors for 
drilling efficiency prediction in earthwork excavation. 
Therefore, a novel drilling efficiency prediction method 
is needed for earth-rock excavation which considers 
many factors that affect it.

Researchers have carried out studies on the pre‐
diction of drilling efficiency. Some of them predicted 
drilling efficiency by establishing mathematical models 
(Kahraman, 2002; Akün and Karpuz, 2005; Saeidi et al., 
2014; Abbaspour et al., 2018). These models carried 
out multiple regression analysis with the effects of 
some auxiliary data, such as bit properties, bit diame‐
ter, mud properties, and revolutions per minute (r/min). 
However, these mathematical models cannot compre‐
hensively and accurately estimate the drilling efficiency 
because of the highly nonlinear and complex relation‐
ship between the drilling parameters and drilling effi‐
ciency (Abbas et al., 2019). Furthermore, these mod‐
els did not consider the influence of operational and 
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environmental factors quantitatively. These drawbacks 
have triggered the development of machine learning 
(ML) methods, which are an attractive alternative for 
describing and modelling the complicated process 
(Elkatatny, 2018; Abbas et al., 2019). The most repre‐
sentative characteristic of ML is its ability to build a 
complex model and to provide intuitive solutions 
through a typical learning process without formal de‐
scription of the underlying physics (Paul et al., 2018; 
Abbas et al., 2019). Many existing studies employ pop‐
ular ML methods, such as neural networks and regres‐
sion models (Shi et al., 2016; Darbor et al., 2019; Koopi‐
alipoor et al., 2019). However, these single models 
also suffer from some inherent shortcomings, such as 
the sensitivity of parameters, local optimum, and over‐
fitting (Cui et al., 2021).

Many researchers have, therefore, focused on 
improving the stability and generalization performance 
of single ML models through regularization, parameter 
optimization, and other new technologies. Ensemble 
learning methods have emerged that can further im‐
prove prediction accuracy and overcome the shortcom‐
ings of single ML models (Chen et al., 2018). With 
their improvement of predictive power, ensemble learn‐
ing methods have attracted widespread attention within 
the computational intelligence community and have 
shown outstanding performance in many practical 
applications (Pernía-Espinoza et al., 2018; Guo et al., 
2020; Cui et al., 2021; Cankurt and Subasi, 2022). The 
core idea of ensemble learning is to aggregate the 
advantages of several different models and build a rel‐
atively powerful model to improve performance (Chen 
et al., 2018; Li et al., 2019; Wang et al., 2020; Kaushik 
et al., 2022). The mechanism by which ensemble learn‐
ing improves performance is usually to reduce the 
variance component of the prediction error caused by 
the contribution models. The average prediction per‐
formance can be improved by the ensemble over any 
contributing member. A variety of ensemble learning 
models have been widely applied to prediction prob‐
lems in the field of civil engineering and one of these 
is geological prediction (Chen et al., 2021; Haghighi 
and Omranpour, 2021; Yan et al., 2022).

When building drilling efficiency prediction mod‐
els, most of the existing studies have failed to use op‐
timization methods to select multiple parameters, and 
have thus ignored the significant influence of parameter 
selection on model performance. Recently, some swarm 

intelligence algorithms have shown good performance 
in parameter optimization with the advantage of quickly 
finding a global approximate optimal solution and solv‐
ing complex nonlinearity problems such as combina‐
torial optimization (Bui et al., 2018; Qi et al., 2018; 
Ren et al., 2020; Cui et al., 2021). Based on a compre‐
hensive comparison of other swarm intelligence opti‐
mization algorithms, the cuckoo search optimization 
(CSO) algorithm is selected here to optimize the hyper-
parameters of the ensemble learning model.

Existing studies developed to predict drilling 
efficiency mainly focus on geological factors and the 
influence of drilling machine characteristics. Neverthe‐
less, operational and environmental factors may also 
influence drilling performance dynamically and simul‐
taneously (Darbor et al., 2019). This paper mainly 
focuses on the efficiency of drilling operations in earth‐
work excavation. The excavated quarry provides fill‐
ing materials for a hydraulic project; it is in the open 
air and many boreholes need to be drilled. Compared 
with the depth drilled per unit time, we pay more at‐
tention to the drilling duration of each borehole under 
different conditions to make the follow-up schedule 
timely and convenient, and to provide a basis for sub‐
sequent research. Thus, in this study, the drilling effi‐
ciency is defined as the time required for drilling each 
borehole (h/hole). The quantitative influence of opera‐
tional and environmental factors on drilling efficiency 
prediction should not be underestimated. For example, 
the weather (sunny or cloudy) will affect the lighting, 
thus affecting the assembly of the drilling machines, 
and different numbers of operators can significantly 
influence the duration of adding or unloading drill 
pipes, and so influence drilling efficiency. Therefore, 
it is necessary to develop a comprehensive prediction 
model for drilling efficiency in earthwork excavation 
that takes the above factors into consideration.

Based on these discussions, a novel stacking-based 
ensemble learning model is proposed for drilling effi‐
ciency prediction in earthwork excavation. The exten‐
sive experimental results with different combinations 
of varying types and numbers of base learners demon‐
strate that the model achieved the best prediction per‐
formance when eXtreme gradient boosting (XGBoost), 
random forest (RF), and back propagation neural 
network (BPNN) were used as the base learners, and 
support vector regression (SVR) was used as the meta-
learner. A major advantage of the proposed ensemble 
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method is the enhancement of the fitting ability of 
the individual models and the handling of regression 
prediction with limited data more accurately by the 
integration of multiple single ML methods.

The main components of this study may be sum‐
marized as follows:

1. The comprehensive effects of various factors 
including geology, operation, environment, and machine 
characteristics are considered quantitatively in the drill‐
ing efficiency prediction model of earthwork excavation.

2. An ensemble learning model, integrating four 
different models, XGBoost, RF, BPNN, and SVR, is 
proposed to generate a combined model for predicting 
the drilling efficiency in earthwork excavation.

3. To optimize the key parameters and further im‐
prove the accuracy of the ensemble learning model, an 
improved cuckoo search optimization (ICSO) method 
with an adaptive step-size strategy is proposed.

2 Related works 

To estimate drilling efficiency, a few studies de‐
scribe mathematical models designed to explore the 
correlation between drilling parameters and drilling 
efficiency. For example, Kahraman (2002), by sum‐
marizing the raw data from other researchers’ experi‐
mental work, found the correlation of rock brittleness 
and the performance of drilling machines in rock ex‐
cavation. Akün and Karpuz (2005) derived an empiri‐
cal correlation to predict the drilling rates of a surface 
set diamond bit for sandstone. Abbaspour et al. (2018) 
adopted, for subsequent optimization of drilling and 
blasting operations, the equation presented by Hustru‐
lid et al. (2013) for predicting the penetration rate in 
a drilling operation. These studies usually considered 
“average” rock properties. To consider the influence of 
the uncertainty of rock properties, Saeidi et al. (2014) 
developed a non-linear multiple regression prediction 
stochastic model using a Monte Carlo method, for the 
penetration rate of rotary drills. Mustafa et al. (2021) 
developed a mathematical relation between drilling 
speed and operational controllable drilling parameters.

With the development of ML technology, some 
researchers have tried to use ML methods (Abbas 
et al., 2019). Darbor et al. (2019) used a multilayer 
perceptron-artificial neural networks (ANNs) model 
to assess the rate of penetration (ROP) of a rotary 

drilling machine and their results indicated that the 
neural network is an effective tool for reducing the 
uncertainties of the drilling operation. Gan et al. (2019) 
introduced a wavelet filtering method to reduce noise 
in the drilling data and then proposed a hybrid bat 
algorithm optimized SVR to predict the ROP. Salimi 
et al. (2016) employed an adaptive neuro-fuzzy infer‐
ence system together with SVR for the performance 
prediction of hard rock tunnel boring machines (TBMs). 
Considering the 19 highest impact variables, Abbas 
et al. (2019) used ANNs to predict the ROP and to 
estimate the drilling time of deviated wells. Koopiali‐
poor et al. (2019) developed a deep neural networks 
(DNNs) model for predicting the penetration rate of 
the TBM and compared the model with ANNs. Shi 
et al. (2016) used the typical extreme learning ma‐
chine (ELM) and upper-layer solution-aware (USA) 
for ROP prediction, and the simulation results showed 
that the proposed model outperforms the ANNs model. 
It can be seen that, compared with mathematical mod‐
els, ML models are more flexible, have higher predic‐
tion accuracy and take more factors into account.

Although ML models overcome some shortcom‐
ings of mathematical models, there are still some limi‐
tations of the single ML model. When handling com‐
plex process data, even the most powerful ANNs model 
still cannot obtain the expected performance (Zhang 
et al., 2018). As a frontier technology in the field of 
ML, the ensemble learning model can overcome some 
of the shortcomings of single ML models (Chen et al., 
2018). Increasingly, studies have confirmed that en‐
semble learning models can outperform single models 
and achieve better results for the same problems, be‐
cause there are complementary strategies among some 
single ML models (Li et al., 2018; Zhang et al., 2018; 
Wang et al., 2021). For example, Wang et al. (2020) 
used ensemble learning to present a probabilistic 
approach to forecasting wind gusts and quantifying 
uncertainty in the prediction of wind gusts, includ‐
ing three ML models: RF, long short-term memory, 
and Gaussian process regression. Chen et al. (2021) 
designed a multioutput ensemble learning framework 
integrating the ELM and SVR to capture the complex 
mapping from environmental factors to deformation and 
to provide more reliable forecasts of dam deformation. 
In summary, by integrating various single ML models, 
the ensemble learning model often demonstrates better 
prediction performance and ability.
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There are three typical integration strategies: bag‐
ging (the parallel method), boosting (the sequential 
method), and stacking (Galar et al., 2012). Based on 
the characteristics of base models, ensemble learning 
can also be divided into two categories (Mendes-
Moreira et al., 2012). If different algorithms are inte‐
grated for the ensemble, the model is defined as het‐
erogeneous; otherwise it is defined as homogeneous. 
Theoretically, bagging and boosting strategies generally 
integrate homogeneous base models, whereas stacking 
can integrate heterogeneous models. Compared with 
bagging and boosting, stacking strategy can combine 
the outputs predicted by multiple base learners as the 
input (training data) for a meta learner to approximate 
the same target function (Pernía-Espinoza et al., 2018). 
This enables original data sets and the prediction 
results of base learners to be effectively deployed, 
which reduces the deviation and improves the predic‐
tion accuracy (Cui et al., 2021). The high diversity 
between the predictions of base models encourages 
improvement. To further clarify the reliability and 
functionality of the stacking model, Cui et al. (2021) 
proposed an illustrative case. The results not only 
showed that the diversity of base learners can improve 
the generalization ability of the model, but also proved 
that the cross-validation method used in the training 
of base learners can further improve the robustness 
of the model. Certainly, the stacking model has already 
been successfully applied in many fields. For example, 
Yan et al. (2022) presented a stacking classification 
algorithm to predict geological characteristics and the 
results showed the superiority of the proposed method. 
Haghighi and Omranpour (2021) applied a stacking en‐
semble model to Persian/Arabic handwriting recogni‐
tion that improved the recognition performance for chal‐
lenging handwritten texts. Therefore, to better take ad‐
vantage of the performance of various models, we adopt 
a stacking strategy that can combine a variety of het‐
erogeneous models for prediction of drilling efficiency.

3 Framework 

In this section, we describe the proposed drilling 
efficiency prediction method considering the quantita‐
tive influence of synthetic effect factors. To verify the 
effectiveness of the model, a total of 155 sets of data 
on drilling efficiency and the corresponding effect 

factors for earth-rock excavation were collected. The 
overall framework comprises three steps as illustrated 
in Fig. 1.

1. Data acquisition and pre-processing 
The data of drilling efficiency and relevant effect‐

ing factors were collected. The factors determined from 
all four aspects, geology, operation, environment, and 
machine characteristics, were such as depth of the 
borehole, weather, staffing, and type of rock. Section 4.1 
will describe the detailed process.

2. Model construction 
There were three important aspects. The first was 

the base learner layer modelling of the stacking-based 
ensemble learning. After multiple attempts and experi‐
ments, three heterogeneous models, XGBoost, RF, and 
BPNN, were selected as the base learners. The sample 
data of drilling efficiency and related effect factors 
were input into each base learner. The second aspect 
is meta-learner modelling. SVR was proposed as the 
meta-learner by multiple experiments. The drilling ef‐
ficiency prediction results of these three base learners 
were integrated as input to the meta-learner for further 
improving the accuracy of the model. Finally, the third 
aspect was parameter optimization based on ICSO. 
The ICSO with an adaptive step strategy was devel‐
oped to optimize sensitive parameters such as Max_
depth of XGBoost and the number of trees of RF in 
the stacking-based ensemble learning model.

3. Case study and model evaluation 
A real-life case of an earthwork under construc‐

tion in southwest China was implemented to verify 
the presented approach. The robustness of the pro‐
posed model was proved by applying the fivefold cross-
validation method. Five common evaluation indexes, 
mean square error (MSE), root mean square error 
(RMSE), mean absolute error (MAE), mean absolute 
percentage error (MAPE), and R-squared (R2) were 
used to evaluate the model’s accuracy and generaliza‐
tion performance.

4 Methodology 

In this section, an enhanced stacking ensemble 
learning model optimized by ICSO for drilling effi‐
ciency prediction is introduced. The ensemble model 
takes advantage of XGBoost, RF, BPNN, and SVR, 
which are practical techniques for working with a 
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limited number of input samples and dominating the 
local optimal solution problem (Kazemzadeh et al., 
2020; Cui et al., 2021), and thus exhibits better predic‐
tion performance.

4.1 Data acquisition and preprocessing

A dataset of drilling efficiency and correspond‐
ing influencing factors was collected in this study. 

Before collecting data, we went to the construction 
site for investigation for at least three months. Through 
field investigation, pre-analysis, interviews with sev‐
eral experienced engineers, and analysis of measured 
data, we finally selected ten features as influencing 
factors for drilling efficiency. Firstly, we recorded the 
essential information, including year, month, day, and 
the beginning and end times of the drilling process of 

Fig. 1  Framework of the proposed method. Explanations of the parameters are given in the following sections
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each drill hole. The quantity and time for adding and 
unloading the drill pipes per borehole were also re‐
corded. The coordinates, elevations, and depth of bore‐
holes as well as the type of rock and drilling machines 
were recorded at the same time. Secondly, the meteo‐
rological monitoring station automatically recorded 
a set of meteorological data every 10 min, and the 
weather conditions corresponding to each borehole were 
extracted. Finally, these different features were com‐
bined and there were ten features that affected the 
drilling, as shown in Table 1.

Based on the beginning and end times of the 
drilling process of each borehole, we calculated the 
time required for drilling each borehole, which is the 
drilling efficiency to be analyzed and predicted in 
this study. The 10 influencing factors were from four 
areas, geology, operation, environment, and machine 
characteristics, such as elevation, depth of the bore‐
hole, weather, staffing, and type of rock. Among these 
factors, the elevation refers to the altitude of the work‐
ing face, the changes of which may affect air pressure, 
machine performance, and personnel status. In regard 
to the depth of the borehole, the pressure of the ma‐
chine will change as the depth changes, thus changing 
the drilling efficiency. Different temperatures and rock 
types may directly affect the efficiency of the drill‐
ing machine. Different types of machines vary in per‐
formance and efficiency. For outdoor operation, the 
weather (sunny or cloudy) will affect the lighting, thus 
affecting the assembly and operation of the drilling 
machines. According to the construction operation 
manual, each drilling machine should have at least 
one operator for operation. In fact, adding auxiliary 
personnel to the original personnel can significantly 

reduce the time needed to add or unload drill pipes, 
thus improving drilling efficiency.

However, the dataset is not in a standard format 
that can be used directly as an input to the model. 
Therefore, we normalized the dataset. For discrete fea‐
tures, zero and one are used to label different classifi‐
cations of each feature. For example, there are four 
types of machines used for drilling, namely Atlas 
Copco T40 (Jiangsu En Vale Trade Co., Ltd., China), 
Innovake DR55B (Innovake Rock Drilling Machin‐
ery Co., Ltd., China), Crawler Hydraulic Drill JK590 
(Zhangjiakou Xuanhua Jinke Drilling Machinery Co., 
Ltd., China), and Xuanhua Hydraulic Crawler Drill 
(Zhangjiakou Xuanhua Jinke Drilling Machinery Co., 
Ltd., China). Different types of drilling rigs have dif‐
ferent drilling efficiencies. However, this is an unor‐
dered classification variable, which needs to be con‐
verted into dummy variables before it can be put into 
the model. Therefore, (0, 0), (0, 1), (1, 1), and (1, 0) 
represent different types of machines in this study.

4.2 Stacking-based ensemble learning

Stacking-based ensemble learning aggregates the 
advantages of the base learners and the meta-learner 
through two-layer integration to improve the accuracy 
and robustness of the model and to reduce the general‐
ization error (Pernía-Espinoza et al., 2018). The base 
learner layer consists of a variety of heterogeneous 
learners. The sample data of drilling efficiency and 
related effect factors are input into each base learner 
and the prediction results are obtained respectively. Next, 
the prediction results of all base models are fed into 
the meta-learner and serve as meta-features. The meta-
learner uses the results of the base learner to perform 

Table 1  Features that affect drilling efficiency

No.
1
2
3
4
5
6
7
8
9

10

Feature
Elevation (m)
Depth (m)
Temperature (°C)
Weather
Staffing
Add drill pipe
Unload drill pipe
Rock
Machine
Coordinate

Feature description and quantification
Altitude of the working face
Depth of each borehole
Atmospheric temperature during drilling
Sunny or cloudy: 0 represents cloudy and 1 represents sunny
The number of workers assigned per borehole to assist in operating the machine
Quantity and time of adding drill pipe per borehole
Quantity and time of unloading drill pipe per borehole
Type of rock: 0 represents killas and 1 represents sandstone
Type of drilling machines: (0, 0), (0, 1), (1, 1), and (1, 0) represent different types of machines
Detailed information on the year, month, day, and hour of the drilling operation

If the parameters are to be extended to other earth-rock excavation, some of the influencing factors can be reclassified or be adjusted as 
continuous variables as needed
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a new iteration calculation and give a final drilling 
efficiency prediction result. The framework of the stack‐
ing ensemble learning method is depicted in Fig. 2.

As shown in Fig. 2, the training set of the origi‐
nal sample is S={(xnp, yn), n=1, 2, … , N, p=1, 2, … , 
J}, where yn represents the sample value of drilling 
efficiency corresponding to the feature vector (effect 
factors) xnp, p is the number of features contained in 
xnp, and n is the number of samples. We assume that 
there are Z heterogeneous base learners in the first 
layer, and the original dataset is divided equally into T 
subsets S1, S2, …, ST. Let ST be the test set of the t-fold 
in the process of T-fold cross-validation, and the re‐
maining set of S be the training set. For the test set ST 
of the t-fold, the drilling efficiency prediction results 
of each base learner Bz are expressed as Rzt, and the 
corresponding sample set is denoted as Yt, each of 
which contains m samples, m=n/t. Training and pre‐
diction are conducted successively. After all the base 
learners have completed T cross-validations and pre‐
dictions, a new data sample Snew containing Z meta-
features will be formed: Snew={(Rzt, Yt), z=1, 2, … , Z, 
t=1, 2, … , T}. All the newly generated prediction re‐
sults are taken as the input features of the meta-learner 
in the second layer. As can be observed from the 
above, in contrast to other ensemble learning strate‐
gies, the stacking strategy can fully use the prediction 
results of the first layer and original dataset for learn‐
ing in the second layer to reduce the biases of the base 
learner layer and to improve the accuracy of the model 
prediction.

As mentioned above, the key to designing a frame‐
work for stacking ensemble learning is to enhance the 
diversity of the base models. In the first layer, Z base 
learners are generated using different algorithms. To 
obtain models with better generalization ability and 

accuracy under the premise of ensuring the diversity 
of ensemble members, an extensive experiment with 
different combinations of varying types and numbers 
of base learners, such as a gradient boosting decision 
tree (GBDT), XGBoost, BPNN, and SVR, were con‐
ducted. Similarly, diversified models, including ELM, 
SVR, DBN, and other algorithms, were constructed 
as meta-learners. The results demonstrate that the 
model achieved the best prediction performance when 
XGBoost, RF, and BPNN were used as the base learn‐
ers, and SVR was used as the meta-learner. The base 
models are briefly introduced as follows.

4.2.1　XGBoost

The core concept of XGBoost is the parallel of a 
massively boosted tree that combines several weak 
classifiers to develop a superior classifier with out‐
standing performance (Lv et al., 2020). Let ft be the 
model function of the decision tree at the tth iteration. 
The complexity of each tree that splits the tree into 
a structure part q and a leaf weight part w is then 
expressed as:

Ω ( ft) = rK +
1
2
λ∑

i = 1

K

w2
i  (1)

where K represents the total number of leaf nodes, r is 
the weight coefficient used to control the leaf number, 
λ is the super parameter, and wi represents the weight 
corresponding to the ith leaf. To minimize the objective 
function, a method that adds the model function of 
the tree is adopted, which can consider the loss func‐
tion of the lifting model of multiple trees:

Objk =∑
j = 1

m

(l(yj  ŷ(k - 1)
j + fk (xj ))+Ω( fk )+ constant   (2)

Fig. 2  Framework of the stacking ensemble learning method
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where m represents the number of samples in the 
training set, ŷ(k - 1)

j  is the prediction result at iteration k−1 
of the jth sample, and fk is the additional model func‐
tion for the tree.

4.2.2　RF

As a widely applied tool for classification and 
regression problems, RF integrates a variety of unre‐
lated decision trees to mitigate the instability issue of 
each tree (Breiman, 2001). The main idea is to break 
down a complex decision into a sequence of simple 
decisions, thus providing a more explainable solution 
(Wang et al., 2007). The RF regression procedures are 
shown in Fig. S1 of the electronic supplementary ma‐
terials (ESM).

4.2.3　BPNN

BPNN is a kind of ANN which is widely applied 
in many practical forecasting problems (Wang et al., 
2015; Mao et al., 2021). By constantly updating the 
connection weights between neurons and the neurons’ 
weight thresholds, the error between the output value 
and the real value is propagated back to minimize the 
network error. E is defined as the reverse error, wip is 
the weight from the neurons of layer i to the neurons 
of layer p, ok is the output of layer k, and netp is the 
weighted output of layer p. The change in wip is:

-
¶E
¶wip

=-
¶E
¶netp

×
¶netp

¶wip

=

       -
¶E
¶netp

×
¶
é

ë
êêêê

ù

û
úúúú∑

k

wkpok

¶wip

=-
¶E
¶netp

× oi.   (3)

Define δp =-
¶E
¶netp

, and a as the learning rate 

(used to adjust the change in speed of a weight); then 
the formula to adjust the weights of the output layer 
and the hidden layer can be obtained by:

Dwip =-aδpoi. (4)

4.2.4　SVR

SVR is an attractive tool for regression predic‐
tion that can fit in with a small set of input samples 
and overcome many problems such as dimension di‐
saster and the local optimal solution (Kazemzadeh 
et al., 2020). For a given set of training samples X =

{(xi, yi)|xi∈Rn, yn∈R, i=1, 2, …}, the regression problem 
is simplified to find a function f(x) such that the error 
between the predicted value and the expected value y 
is not greater than the given value ε. By introducing 
the insensitive loss function ε, SVR can be expressed 
as the following programming problem:

Min 0.5 w
2 +C∑

i = 1

l

(ξ i + ξ *
i ) (5)

s.t
ì
í
î

yi -w × φ(x)- b ≤ ε + ξ i   ξ i ≥ 0

w × φ(x)+ b - yi ≤ ε + ξ *
i    ξ *

i ≥ 0
(6)

where C>0 is the penalty parameter, which represents 
the trade-off between the complexity of the model and 
the fitting accuracy of the sample (the greater its value, 
the better the fitting effect), w is the weighting vector, 
φ(x) represents the mapping function applied in the 
feature space, b is a constant parameter or bias, and ξ 
and ξi

* are slack variables. In addition, in function φ(x), 
a parameter g is important and needs to be determined 
by parameter optimization. Fig. S2 in the ESM shows 
the epsilon intensive band in SVR.

4.3 Parameter optimization based on ICSO

The performance of the base models in ensemble 
learning is susceptible to the changes of some impor‐
tant parameters. In the traditional XGBoost, RF, BPNN, 
and SVR, hyper-parameters are determined by expert’s 
experience. However, in the process of drilling effi‐
ciency prediction, the sample data have the character‐
istics of complexity and multiformity. Selecting param‐
eters based on experience usually fails to find the best 
parameter, often resulting in unreliable results. Ran‐
dom search and grid search have been used to opti‐
mize the model’s parameters in previous studies. Nev‐
ertheless, the advantages of these methods will be 
limited when multi-parameter optimization problems 
are encountered, resulting in combinatorial explosion 
problems. The swarm intelligent algorithm performs 
better for this type of problem. Accordingly, to further 
strengthen the performance of the enhanced stacking-
based model, we optimized the parameters of each 
base learner and meta-learner with ICSO.

The CSO is a new heuristic intelligent optimiza‐
tion algorithm proposed by Yang and Deb (2014), 
and exhibits good performance compared to other 
algorithms for optimization problems. Based on the 
simulation of cuckoo’s nest-seeking behavior for laying 
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eggs, the CSO combines Levy flight characteristics 
and the global optimization arithmetic of fruit fly (Meng 
et al., 2019; Li et al., 2021; Peng et al., 2021). The 
flight behavior of cuckoos looking for other nests has 
the characteristic of Levy flight in power-law steps. 
In Levy flight, a moving entity can occasionally take 
an unusually large step to change the behavior of a 
system. Its direction of motion is random, and the step 
size is distributed according to the power law. Various 
studies have shown that Levy flight performs well in 
solving optimization problems and searching optimi‐
zation (Pavlyukevich, 2007). There are two types of 
search methods in CSO: global random search and 
local random search. In global random search, the 
cuckoo uses a Levy flight pattern to find a nest. The 
formula for updating the nest position with Levy flight 
is shown as:

Xt+1=Xt+αL(s, λ), (7)

where α is the step-size factor related to the scale of 
the problem. L(s, λ) denotes the Levy random walk 
path:

L(sλ)=
λΓ(λ)sin(πλ/2)

π
×

1
s1 + λ  (8)

where s is the step length, s>>s0>0, s0 is a constant 
and normally taken as 0.01; λ is the Levy index, 1<λ<3, 
and usually λ=1.5; Г(λ) is a function following the 
gamma distribution. Levy flight is divided into two 
steps: selection of random directions and generation 
of step length following the Levy distribution. The 
selection of random directions is uniformly distributed 
and the generation method of the step length s is:

s =
u

|| υ 1/λ
 (9)

where u~N(0, σ2) and υ~N(0, 1), both subject to a 
Gaussian distribution. σ2 is calculated as:

σ 2 = é

ë
êêêê

Γ(1 + λ)
λΓ((1 + λ)/2)

×
sin(πλ/2)

2(λ - 1)/2

ù

û
úúúú

1/λ

. (10)

The number of available host nests is fixed. 
When the host bird discovers, with a certain probability 
pa, that another cuckoo has laid an egg in its nest and a 
local random search is adopted to find another nest:

X t + 1 =X t + β⊗ Heaviside(pa - η)⊗(X i -X j ) (11)

where β and η are both random numbers subject 
to the uniform distribution; Heaviside(pa−η) is the 
unit step function, and Xi and Xj are any other two 
nests.

However, in a basic CSO, the random step-size α 
is a constant and is usually fixed as 1, resulting in a 
slower convergence rate. In this study, to improve the 
search speed and convergence rate, α is set as a vari‐
able parameter that decreases as the iteration time in‐
creases, which means that more short-distance searches 
can be conducted when the population is close to 
the optimal solution. When initializing the parame‐
ters, αmax and αmin are set. In the iteration process, α is 
calculated as:

α iter = α × exp(c × iter) (12)

c =
1

Gmax

× ln ( αmin

αmax )  (13)

where iter and Gmax represent the current iteration 
times and the total number of iterations, respectively, 
and (αmin, αmax) is the range of the step-size parameter 
α; the changes in α are shown in Fig. S3 in ESM. 
Table S1 in ESM shows the pseudocode of the im‐
proved parameter optimization algorithm’s develop‐
ment process for the prediction model.

4.4 Modeling of the ICSO-stacking ensemble 
learning

The modelling procedure for the proposed pre‐
diction method is illustrated in Fig. 3. Firstly, the pre-
processed dataset including drilling efficiency and in‐
fluencing factors is divided into five parts for the five‐
fold cross-validation, and the parameters of the ICSO 
are initialized. The second step is applied in the base 
learner layer of the model. The sample data are input 
into each base learner. Three base learners, ICSO-
XGBoost, ICSO-RF, and ICSO-BPNN, are trained and 
tested, each providing an independent prediction 
result of drilling efficiency. The prediction results of 
the above base models are fed into the meta-learner 
layer and serve as meta-features. Finally, the newly 
generated prediction results are taken as the input to 
train and test the meta-learner ICSO-SVR in a new 
iteration of calculation that gives the final drilling effi‐
ciency prediction result.
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5 Case study 

To verify the approach presented in this paper, 
data obtained from the quarry of a large rock-fill dam 
project under construction in southwest China were 
used as a proof of concept. Section 5.1 provides a 
brief description of the data collection for subsequent 

analysis. Section 5.2 describes the building of the 
stacking ensemble learning model, mainly including 
the selection of base learners and meta-learner. Then 
the parameter setting of each model is shown in Sec‐
tion 5.3. Finally, in Section 5.4, the prediction results 
and model performance are compared between the 
presented method and the currently popular model, 

Fig. 3  Flowchart of the proposed stacking prediction model
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demonstrating the superior performance and accuracy of 
the proposed stacking-based ensemble learning model.

5.1 Data collection

The engineering data came from two quarries of 
the high rock-fill dam project, whose excavation period 
was nearly seven years. Fig. 4 shows the drilling pro‐
cess applied to rock on site. It can be seen that the 
quarry is in the open air; therefore, unlike in under‐
ground engineering, the drilling process is affected by 
factors such as weather conditions. In the data collec‐
tion process, different effecting factors are scattered 
across the drilling process and must be collected sepa‐
rately. Most of the data were recorded by supervisors 
on site, while the weather data were obtained from 
the on-site meteorological monitoring station. The 
weather conditions corresponding to each borehole 
were extracted from the database recorded by the me‐
teorological monitoring station. We collected a total 
of 155 sets of drilling data. The data were normalized 
to a standard format for input to the model. Finally, a 
dataset with 155 rows and 12 columns was created.

5.2 Model building of stacking ensemble learning

5.2.1　Setting of evaluation indicators

Five commonly used evaluation indicators of the 
regression problem (MAE, MAPE, MSE, RMSE, and 
R2) were employed to evaluate the accuracy and gen‐
eralization performance of the model, where n is the 
number of samples, yi represents the real value of the 
ith sample, and ŷi is the corresponding predicted value. 

The computational formulas of the five indicators are 
presented as follows:

MAE =
1
n∑

i = 1

n

|| ŷi - yi  (14)

MSE =
1
n∑

i = 1

n

( ŷi - yi )
2 (15)

RMSE = MSE =
1
n∑

i = 1

n

( ŷi - yi )
2  (16)

MAPE =
1
n∑

i = 1

n |

|
|
||
||

|
|
||
| ŷi - yi

yi

 (17)

R2 = 1 -
∑
i = 1

n

( ŷi - yi )
2

∑
i = 1

n

( ȳ - yi )
2

. (18)

5.2.2　Selection of the base learners

To select the base learners, we tested and com‐
pared the performance of several ML algorithms that 
at present perform well in the field of regression pre‐
diction in predicting the drilling efficiency, including 
network models, tree-based models, and regression 
models. The prediction performances of eight single 
ML models are shown in Fig. 5. The values of the 
evaluation indicators are listed in Table S2 in ESM. In 
addition, we calculated the mean, standard deviation, 
and coefficient of variation (CV) of indicators to mea‐
sure their overall performance and the stability of 
different folds, as shown in Table S3 in ESM. The re‐
sults indicate that XGBoost performs best overall and 
generates prediction results with the lowest errors of 
all the models, followed by RF and BPNN. For in‐
stance, in fold 1 of the dataset, the MAPE, MAE, MSE, 
RMSE, and R2 of deep belief network (DBN) are 
0.853, 0.713, 0.840, 0.916, and −0.002, respectively, 
while XGBoost shows the most outstanding prediction 
performance, where MAPE, MAE, MSE, RMSE, and 
R2 are 0.140, 0.249, 0.186, 0.432, and 0.778, respec‐
tively. It can be found that these three base learners se‐
lected in this study have the best evaluation indicators 
compared with other models. Their standard deviation 
or CV are also within an acceptable range, with little 
fluctuation in five folds.

In general, tree-based models outperform deep 
learning when small data volumes and many features 

Fig. 4  Drilling operation in the quarry
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Fig. 5  Prediction performance of eight single ML models for base learner. References to color refer to the online version 
of this figure
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are involved. Thus, RF and XGBoost exhibited excel‐
lent performance. Furthermore, BPNN also showed 
good performance and outperformed other models due 
to its excellent nonlinear fitting ability. In summary, 
XGBoost, RF, and BPNN are the top three ML models 
in prediction performance, and can provide accurate 
input for the meta-learner. Consequently, the three 
ML models were selected as the base learners of the 
stacking-based ensemble learning.

5.2.3　Selection of the meta-learner

As with the base learner, several of popular ML 
(RF, GBDT, XGBoost, etc.) employed in current en‐
semble learning methods were compared to determine 
the best meta-learner. It was noted that ELM and 
DBN did not perform well in the base learner selection 
experiment, indicating that they are not suitable for 
drilling efficiency prediction. Thus, they were not 
considered for selection as meta-learner. The com‐
parison results of the prediction performance of six 

meta-learners are presented in Fig. 6. The values of 
the corresponding evaluation indicators are listed in 
Table S4 in ESM. We also calculated the mean, stan‐
dard deviation, and CV of the indicators in different 
meta-learner models to measure their overall perfor‐
mance and the stability of different folds, as shown 
in Table S5 in ESM. It can be observed that, although 
some indicators of the general linear model (LM) 
are slightly better than SVR in some fold, the indica‐
tors of SVR are the best in terms of mean and overall. 
The standard deviation or CV are also within an accept‐
able range, with little fluctuation in five folds. There‐
fore, on the whole, the prediction performance of SVR 
is absolutely better than that of the other five models.

To evaluate the prediction performance more 
comprehensively, we present the prediction results of 
six models in Fig. 7 and further calculate the Pearson 
correlation coefficient (PCC) between the actual sam‐
ples and the predicted results. The computational for‐
mula of PCC is shown as follows and the result is pre‐
sented in Fig. 7.

Fig. 6  Prediction performance of different single ML models as meta-learner. References to color refer to the online 
version of this figure
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PCC =
∑
i = 1

n

( ŷi -E( ŷi ))(yi -E(yi ))

∑
i = 1

n

( ŷi -E( ŷi ))
2 ×∑

i = 1

n

(yi -E(yi ))
2

  (19)

where E( ŷi ) represents the mean of predicted values, 
and E(yi ) represents the mean of the real values.

As shown in Fig. 7, the order of PCC between 
actual samples and prediction results is: SVR>LM>
BPNN>XGBoost>GBDT>RF. The results further dem‐
onstrate the superiority of SVR over other ML models 
as the meta-learner for drilling efficiency prediction. 
From a theoretical point of view, this is because SVR 
is good for problems with a limited number of input 
samples and can overcome many problems such as 
dimension disaster and the local optimal solution. Thus 
SVR is selected as the meta-learner for the stacking-
based ensemble learning.

5.2.4　Performance evaluation

The prediction results of stacking-based ensem‐
ble learning using SVR as meta-learner and these three 
single models are shown in Fig. 8. It can be seen that 
the PCC of the ensemble learning is better than that 
of the three single models XGBoost, RF, and BPNN. 
From Figs. 5–8, it can be concluded that the stacking-
based ensemble learning model can reduce the value 
of evaluation indicators and produce more accurate 
prediction results compared with the single ML models. 

In addition, the results also indicate that the ensemble 
learning model improved the performance of several 
heterogeneous ML models and that the effectiveness 
as well as the fitting ability of the ensemble model 
have been improved by introducing multiple single 
ML models. At this point, the ensemble learning model, 
including four base models RF, XGBoost, BPNN, and 
SVR, was built.

5.3 Parameter setting of each base model

ICSO was used for the stacking-based prediction 
model in this study to optimize the parameters. The 
computational experiments were conducted using a 
regular engineering workstation with an Intel i7-6700 
CPU and GeForce GTX 970 under the Windows 10 
operating system. The optimal parameters of each 
base learner were calculated based on ICSO. Then the 
final parameters of the ensemble learning model were 
adjusted accordingly, as shown in Table 2.

5.4 Prediction results and performance comparison

This study evaluated the effectiveness and showed 
the advantages of the proposed ensemble learning 
model over other ensemble learning models and single 
ML models for drilling efficiency prediction. Through 
a comparison in Section 5.2, it can be observed that the 
stacking ensemble learning composed of RF, XGBoost, 
and BPNN as the base learners and SVR as the meta-
learner is the optimal model for drilling efficiency 

Fig. 7  Prediction results and PCC of the stacking model with different single ML models as meta-learner
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prediction. In this section, the prediction results of the 
proposed model are presented and the predictive per‐
formance on drilling efficiency is evaluated. The ICSO-
stacking ensemble learning model was compared with 
XGBoost (the best performing single model in the 
aforementioned experiment), XGBoost optimized with 
ICSO, and the stacking model based on other intelli‐
gent optimization algorithms.

The prediction results of the proposed ICSO-
stacking model and alternative prediction models are 
shown in Fig. 9. The PCC values between the predic‐
tion results and actual samples of ICSO-stacking, CSO-
stacking, particle swarm optimization (PSO)-stacking, 
stacking, ICSO-XGBoost, and XGBoost are 0.9292, 

0.9290, 0.9284, 0.9229, 0.9267, and 0.9163, respec‐
tively. We can see that the PCC of ICSO-stacking en‐
semble learning is the largest amongst all the models. 
It demonstrates that the prediction results of the pro‐
posed ICSO-stacking ensemble learning model are 
closer to actual samples than those of the alternative 
models.

To further validate the effectiveness of the pro‐
posed ensemble drilling efficiency prediction model, 
the comparison of evaluation indicators between ICSO-
stacking and alternative prediction models was also 
carried out. The performance comparison in each fold 
is shown in Fig. 10 and the corresponding mean of 
evaluation indicators are presented in Table 3. As indi‐
cated in Table 3 and Figs. 9 and 10, we can draw the 
following conclusions:

Firstly, the proposed ICSO-stacking drilling effi‐
ciency prediction method significantly outperforms the 
single ML models. The advantages of the proposed 
method are shown with comparisons. Taking the eval‐
uation indicators of XGBoost as an example, the mean 
values of MAPE, MAE, MSE, RMSE, and R2 are 0.140, 
0.213, 0.137, 0.355, and 0.843, respectively. The same 
evaluation indicators of the proposed ICSO-stacking 
method are 0.117, 0.195, 0.116, 0.318, and 0.869, which 
are 16.43%, 8.45%, 15.33%, 10.42% lower and 3.08% 
higher than XGBoost. The results demonstrate that 
the predictive performance and fitting ability of the 

Fig. 8  Prediction results and PCC of the stacking-based ensemble learning and the three single models

Table 2  Parameter setting of base learners and meta-learner 

after optimization

Method
XGBoost

SVR

RF
BPNN

Parameter
Max_depth

Learning_rate
Nround

Subsample
Cost
γ

Ntree
Size

Decay
Maxit
Size

Value
5

0.1
45

0.504
42

0.011
10
4

0.157
102
0.77

1041



|    J Zhejiang Univ-Sci A (Appl Phys & Eng)   2022 23(12):1027-1046

model all greatly exceed that of XGBoost and other 
single ML algorithms.

Secondly, the ICSO-stacking proposed ensemble 
model has better prediction accuracy than general en‐
semble learning models. In other words, using intelli‐
gence optimization algorithms to optimize parameters 
can improve the performance of the stacking-based 

model. The mean values of MAPE, MAE, MSE, 
RMSE, and R2 of the general ensemble learning built 
in this study are 0.131, 0.209, 0.130, 0.348, and 0.849, 
respectively. In contrast, the same evaluation indi‐
cators of the proposed ICSO-stacking method are 
reduced by 10.69%, 6.70%, 10.77%, 8.62% and im‐
proved by 2.36%, respectively. Therefore, for multi-
parameter optimization, the swarm intelligent algo‐
rithm performed more efficiently than other existing 
parameter adjustment methods.

Thirdly, ICSO incorporating the dynamically 
updating step-size parameter was used to optimize 
the parameters of the base learners and meta-learner, 
further enhancing the predictive power of the model. 
To prove the superiority of ICSO, the standard CSO 
and PSO were used for comparison. Four Benchmark 
functions were used to test the performance, the results 

Table 3  Mean of evaluation indicators of different algorithms

Evaluation 
indicator

ICSO-stacking

CSO-stacking

PSO-stacking

Stacking

XGBoost

MAPE

0.117

0.118

0.123

0.131

0.140

MAE

0.195

0.195

0.198

0.209

0.213

MSE

0.116

0.116

0.117

0.130

0.137

RMSE

0.318

0.318

0.319

0.348

0.355

R2

0.869

0.868

0.867

0.849

0.843

The values in bold represent the best results of the evaluation indicators

Fig. 9  Prediction results of the proposed model and alternative prediction models
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Fig. 10  Performance comparison of proposed ensemble learning model and other algorithms
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are shown in Section S1 of ESM. The convergence 
process of the three intelligent algorithms for this 
study is illustrated in Fig. 11. It can be concluded that 
ICSO could find the optimal solution earlier with a 
better convergence speed as well as displaying more 
effective performance and smaller prediction error com‐
pared with the standard CSO and PSO.

6 Conclusions 

A novel drilling efficiency prediction method 
was proposed in this study, combining the advantages 
of the swarm intelligent algorithm and stacking-based 
ensemble learning.

This study has made some contributions. Firstly, 
through experimental comparison, four different mod‐
els, XGBoost, RF, BPNN, and SVR, were selected to 
generate an ensemble learning model for predicting 
drilling efficiency. Secondly, the comprehensive effects 
of various factors including environment and operation 
are considered quantitatively. Thirdly, the ICSO with 
an adaptive step-size strategy was proposed to opti‐
mize the hyper-parameter of the model. Finally, we 
verified the effectiveness of the proposed model for 
drilling efficiency prediction through five-fold cross-
validation experiments. A major advantage of the pro‐
posed ensemble method is that multiple single ML 
methods are combined, which enhances the fitting ability 
of the individual models and handles regression pre‐
diction with limited data more accurately. Compared 
with the XGBoost and PSO-stacking methods, our 
ICSO-stacking ensemble method reduced the MAPE by 
16.43% and 4.88%, respectively, proving that the pro‐
posed method could provide more reliable decision sup‐
port for drilling procedures and excavation scheduling.

Future work can be conducted exploring the fol‐
lowing: firstly, more features of the prediction model 
can be collected to further improve prediction accuracy; 
secondly, the selection of the optimal combination of 
base models is not very efficient and thus a more auto‐
mated and intelligent selection system needs to be de‐
veloped for combining the base models automatically.
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