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Abstract: Objective: As one of the most popular designs used in genetic research, family-based design has been well 
recognized for its advantages, such as robustness against population stratification and admixture. With vast amounts 
of genetic data collected from family-based studies, there is a great interest in studying the role of genetic markers from 
the aspect of risk prediction. This study aims to develop a new statistical approach for family-based risk prediction 
analysis with an improved prediction accuracy compared with existing methods based on family history. Methods: In 
this study, we propose an ensemble-based likelihood ratio (ELR) approach, Fam-ELR, for family-based genomic risk 
prediction. Fam-ELR incorporates a clustered receiver operating characteristic (ROC) curve method to consider cor-
relations among family samples, and uses a computationally efficient tree-assembling procedure for variable selection 
and model building. Results: Through simulations, Fam-ELR shows its robustness in various underlying disease 
models and pedigree structures, and attains better performance than two existing family-based risk prediction methods. 
In a real-data application to a family-based genome-wide dataset of conduct disorder, Fam-ELR demonstrates its 
ability to integrate potential risk predictors and interactions into the model for improved accuracy, especially on a 
genome-wide level. Conclusions: By comparing existing approaches, such as genetic risk-score approach, Fam-ELR 
has the capacity of incorporating genetic variants with small or moderate marginal effects and their interactions into an 
improved risk prediction model. Therefore, it is a robust and useful approach for high-dimensional family-based risk 
prediction, especially on complex disease with unknown or less known disease etiology. 
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1  Introduction 
 

With rapidly evolving high-throughput tech-
nologies, very large numbers of genetic markers have 
been genotyped for the discovery of new disease- 
associated variants in family studies. While the novel 
findings from family-based association studies likely 
further improve our understanding of disease etiolo-
gies, the genetic data collected for these studies also 
provide us with a great opportunity to systematically 
study the role of vast numbers of genetic markers in 
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family-based risk prediction. The hope is that ulti-
mately we can incorporate the genetic information 
into clinical practice for the early identification of 
disease susceptibility and individualized preventive 
strategies (Ginsburg and Willard, 2009; Abraham and 
Inouye, 2015). 

Studies have been initiated for genetic risk pre-
diction of human diseases, such as type 2 diabetes, 
cardiovascular diseases, cancers, and psychiatric dis-
orders (e.g. schizophrenia, autism, and bipolar disorder) 
(Wray et al., 2014; Smith et al., 2015; Choi et al., 
2016; Shieh et al., 2016). Being different from most 
Mendelian disorders, where causal genetic variants 
have almost complete penetrance, complex diseases 
are likely caused by complex interplay of genetic and 
environmental risk factors, and thus their genetic 
etiology is largely unknown. Since the number of 
uncovered genetic and environmental risk factors is 
still limited, it remains a great challenge to form an 
accurate risk prediction model for most complex 
diseases. As a result, most existing risk prediction 
models that are built on a handful of known risk pre-
dictors have low accuracy for potential clinical use. 
These models can be potentially improved by addi-
tional risk predictors, such as variants with small- or 
medium-effect sizes, as evidence has shown that 
collectively small- or medium-effect variants can 
explain a large proportion of disease variations (Yang 
et al., 2010). 

The genetic risk score (GRS) approach is one of 
the most widely used and easily implemented meth-
ods for genetic risk prediction. It usually assumes an 
additive genetic disease model and forms an overall 
genotypic risk score for prediction by summing risk 
alleles across multiple disease-associated loci, either 
with or without weighting on the effect sizes of loci. 
Although this weighting strategy could relax the 
method’s assumption of equal effect sizes among 
effective genetic variants, the empirical calculation 
could also cause bias when potential variations occur 
across different studies. Furthermore, with the as-
sumption that variants involved have to be effective 
and independent of each other, the GRS method could 
be subject to low performance if non-causal variants 
or interactions exist (Chatterjee et al., 2013). An ex-
tension of the GRS approach, called GRS-based 
generalized estimating equation (GS-GEE), has been 
developed for family-based data (Meigs et al., 2008). 
As with other GRS approaches, GS-GEE has the 

limitations of not considering interactions and being 
less robust to noise signals. Few approaches have 
been developed for family-based risk prediction 
analysis. Besides GS-GEE, Bayesian Lasso ap-
proaches (de los Campos et al., 2009), widely used in 
animal breeding, can also be used for family-based 
risk prediction. More recently, a random field method 
has been developed for family-based risk prediction 
(Wen et al., 2017). Although some of those methods, 
such as Lasso and random field, could be applied to 
genome-wide data technically, they are still com-
monly adopted to build gene-based risk models, 
where interactions within each gene unit may be 
considered, but interactions across different gene 
units may still fail to be detected.   

In this paper, we propose a nonparametric  
approach—an ensemble-based likelihood ratio (ELR) 
approach—for family-based risk prediction research, 
Fam-ELR. This study extends our previously devel-
oped family-based risk prediction method, clustered 
optimal receiver operating characteristic (ROC) curve 
(CORC) (Ye et al., 2011a). CORC incorporated a clus-
tered ROC curve method to consider sample correla-
tions on a family-based dataset, and adopted a com-
putationally efficient forward-searching algorithm for 
risk model construction. In addition to features inher-
ited from CORC, Fam-ELR uses a tree-assembling 
process to simultaneously assemble numerous risk 
prediction trees. This new approach can potentially 
attain better performance than the previous approach 
by considering a large number of genetic variants 
with small/moderate marginal effects and their pos-
sible within and between gene interactions. Simulation 
studies were conducted to compare Fam-ELR’s per-
formance with GS-GEE and CORC, and to assess the 
method’s robustness among various disease models 
and pedigree structures. Finally, we applied Fam-ELR 
to the family-based genome-wide data of conduct 
disorder (CD), studying two CD risk prediction 
models, one based on known CD risk predictors and 
the other based on genome-wide genetic markers.  

 
 

2  Methods 
 

Assume in a family-based dataset Gp
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ith family (i=1, 2, …, N), which belongs to one of pK 
p-dimensional risk profiles (Gp

ij∈Gp
k, k=1, 2, …, pK). 

yij denotes the binary measurement of an interested 
phenotype, such as a disease status (e.g. yij∈S, S=1 
for a disease status and S=0 for a non-disease status). 
In our previously proposed CORC approach, we first 
calculate the probabilities of pK risk profiles condi-
tional on disease status, P(Gp

ij|S=1) and P(Gp
ij|S=0), 

and then derive the likelihood ratio (LR) using the 
equation LR(Gp

ij)=P(Gp
ij|S=1)/P(Gp

ij|S=0). Based on 
the LRs, we obtain the clustered area under the curve 

(AUC) value of the model, clusterAUC p , using the al-

gorithm proposed by Obuchowski (1997) to take 
within-family correlations into consideration. Gener-
ally speaking, the Obuchowski’s method is a non-
parametric algorithm and does not make any as-
sumptions about the intra-family correlation structure. 
It first gives equal weight to all pairwise rankings 
within and between families, and then separates the 
scores of individuals into two distinct components (i.e. 
affected- and unaffected-components). By doing this, 
the algorithm derives the variance of the clustered 
AUC by taking into consideration not only the vari-
ance of both affected- and unaffected-components 
across families, but also the correlation between the 
two components within each family. 

With the goal of integrating hundreds of poten-
tial risk predictors, as well as their interactions, into 
an improved risk prediction model, a tree-assembling 
process is used. Suppose p genetic variants were 
genotyped for the M individuals in N families. By 
treating each family as a sampling unit, we draw T 
(e.g. 1000) bootstrap populations from the original 
population, each bootstrap population consisting of N 
families, and obtain T corresponding out-of-bag 
populations. For each bootstrap sample, a forward 
selection algorithm is implemented to build a tree- 
based risk prediction model (Ye et al., 2011b). The 
forward selection algorithm starts with a null model 
of no predictors. It gradually selects potential risk 
predictors into the model by searching exhaustively 
among available genetic variants, and keeps splitting 
the samples into different risk groups in a binary 
fashion. In each step, the variant that adds the highest 
accuracy to the model is selected into the model. The 
algorithm continues until a prediction model is com-
plete. By applying the forward selection algorithm to 
all T bootstrap samples, we construct a large ensem-

ble of risk prediction models, each containing a col-
lection of diverse but potentially useful risk predictors, 
some with low- or medium-marginal effects. By ap-
plying this ensemble of tree-based models to the 
corresponding out-of-bag samples, we can calculate 
the LR values. The LR value for the jth individual 
from the ith family can be obtained by averaging its 
LR values across all out-of-bag samples. The aver-

aged LR value, LR ij , is used as the risk score (i.e. 

 a

LR ij  for affected individuals and 
u

LR ij  for unaffected 

individuals) to calculate the averaged clustered AUC 

value, A
clusterAUC , by 
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The variance of the A
clusterAUC  can also be ob-
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By aggregating subsets of different genetic risk 

predictors, the new method can simultaneously consider 
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a large number of potential risk predictors, especially 
those with relatively small marginal effects, and their 
possible interactions. This could further improve the 
model’s accuracy. 

 
 

3  Results 

3.1  Simulation studies 

We conducted two simulations to evaluate the 
performance of Fam-ELR by comparing its prediction 
accuracy and robustness with those of two existing 
family-based risk prediction approaches, GS-GEE 
and CORC. The commonly used GS-GEE approach 
first calculates a summarized genotype risk score by 
counting the number of risk alleles and then adopts a 
generalized estimating equation method to build a 
risk prediction model with consideration of the fa-
miliar correlation. CORC is an approach we previously 
developed for family-based risk prediction analysis.  
It integrates a clustered ROC curve method into a 
computationally efficient forward algorithm. In the 
first simulation, we simulated different disease mod-
els by varying the total number of disease-associated 
variants, modes of inheritance, and types of interac-
tions. In the second simulation, we varied pedigree 
structures from simple trios to complicated three- 
generation pedigrees, and evaluated the impact of 
family structures on the methods’ performance. For 
each simulation setting, we generated 1000 replicates, 
and split all samples into a training set and a valida-
tion set with a 2:1 ratio. The training set was used to 
construct the risk prediction model, while the valida-
tion set served as independent data to evaluate the 
performance of the model and estimate the AUC. 

3.1.1  Simulation under various disease models 

The ideas of this simulation study are based on 
the hypothesis that our proposed Fam-ELR method 
can potentially attain better performance than previ-
ous approaches (i.e. CORC and GS-GEE) when a 
large number of genetic variants with small to moderate 
marginal effects and possible interactions within and 
across genes are involved in disease models. There-
fore, in order to demonstrate and evaluate our method’s 
prediction ability in such situations, we gradually 
modified the model’s complexity not only by gradu-
ally increasing the number of disease-associated sin-

gle nucleotide polymorphisms (SNPs) and their in-
teractions, but also by changing the underlying in-
teraction types from two-way interactions to three- 
way interactions and changing from the threshold 
mode to the multiplicative mode. The population 
disease prevalence ranges from 0.045 to 0.049. Under 
each disease model, 10 noise SNPs were included, 
with the allele frequencies ranging from 0.2 to 0.8. 
Specifically, model 1 included 10 noise SNPs and 5 
additive-effect SNPs with the odds ratios ranging 
from 1.5 to 1.9. In model 1, we also simulated a 
two-way threshold interaction between 2 of 5 additive- 
effect SNPs. While maintaining the number of noise 
SNPs at 10 in model 2, we increased the number of 
disease-associated SNPs to 10 and generated 5 two- 
way threshold interaction models across 10 disease- 
associated SNPs. Model 3 is similar to model 2 except 
that the underlying interaction model is the multipli-
cative model instead of the threshold interaction 
model. In model 4, we increased the number of disease- 
associated SNPs to 12 and simulated 2 two-way 
threshold interactions and 2 three-way threshold in-
teractions. The numbers of SNPs and interactions, as 
well as details of threshold and multiplicative inter-
actions, were designed based on the multi-locus the-
ories of common complex diseases illustrated in pre-
vious studies (Marchini et al., 2005; Wei et al., 2013). 

For this simulation scenario, we first generated a 
population of 1 000 000 samples, and then simulated 
nuclear families with two parents and two offspring. 
Based on individuals’ genotypes and disease models, 
we simulated the phenotypes. A total of 1000 repli-
cates were simulated for each disease model. For each 
replicate, 1000 nuclear families with at least one af-
fected family member were sampled from the popu-
lation. The true AUC, also defined as the expected 
AUC, is the measure of the expected discriminative 
ability of a prediction model/test and is uniquely de-
termined from each unique disease model by its sim-
ulation settings. These settings of the underlying ge-
netics, including the number and the effect size of 
causal SNPs, their genotype distributions and inter-
action modes, will generate true risk scores for the 
population. These are then used to compute the ex-
pected AUC. To mimic common disease scenarios, 
we set the simulation parameters such that the ex-
pected AUCs in our simulations have moderate val-
ues of around 0.76 (listed in Tables 1 and 2), based on 
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the hypothesis that most common diseases are prone 
to being caused by the simultaneous interplay of 
hundreds of genetic and environmental risk factors, 
and the genetic component plays a relatively minor or 
moderate marginal or interactive role, and thus the 
expected AUC of a genetic predictive test is usually 
lower than 0.8 (Janssens and van Duijn, 2008).  

The results of simulation are summarized in 
Table 1 and Fig. 1, where predicted-AUC means 
(mean), standard deviations (SDs), bias from the true 
AUC values (bias), and mean square errors (MSEs) 
are reported. After running 1000 simulations for a 
certain simulation setting, the bias is calculated as the 
distance between the mean of estimated AUC and the 
true AUC (i.e. bias=mean of estimated AUC−true AUC) 
(Wackerly et al., 2008). When the bias achieves a 
negative value, it is an indication that the target algo-
rithm underestimates the true AUC and does not 
suffer from overfitting. Therefore, in this simulation, 
all three algorithms do not show signs of overfitting. 
In addition, our proposed Fam-ELR method always 
attains the biases closest to zero, and thus it has a 
better estimate of the true AUC than CORC and 
GS-GEE. For instance, with 10 low-effect SNPs and 5 
two-way threshold interactions, model 2 tends to 
mimic a common disease situation where risk pre-
dictors are subjected to low- to medium-effects with 
possible interactions. The results of model 2 reveal 
that our proposed Fam-ELR method has an AUC 
mean of 0.6723, a 3.85% and 12.90% increase in 
accuracy on that of the CORC method (AUC mean= 
0.6474) and the GS-GEE method (AUC mean= 
0.5955), respectively. Moreover, Fam-ELR also at-
tains smaller MSEs than the other two algorithms in 
these simulations, implying that the proposed method 
achieved a better overall performance than the other 
two algorithms when taking into account both pre-
diction errors (the bias) and deviations (the variance). 
MSE is a commonly used summary estimator of pre-
diction quality and always has a non-negative value. 
The smaller the value is, the better the achieved per-
formance is (Wackerly et al., 2008). In model 2, the 
MSE of Fam-ELR is 0.0078, 39.53% and 71.11% 
lower than the MSEs of CORC and GS-GEE, re-
spectively, indicating higher accuracy and lower 
variation of Fam-ELR. As shown in Fig. 1, when the 
disease model is simple, with limited SNPs and in-
teractions (i.e. model 1), Fam-ELR and CORC per-

form similarly, with only a slight difference between 
their MSEs (i.e. MSE=0.0061 for Fam-ELR and 
MSE=0.0071 for CORC). However, when the model 
complexity increases along with the interaction set-
tings (i.e. models 2, 3, and 4), Fam-ELR remains 
robust and accurate (its MSE consistently around 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Performance of Fam-ELR, CORC, and GS-GEE 
under four disease models* 

Method Mean Bias SD MSE

Model 1 (true AUC=0.7567) 

Fam-ELR 0.6799 −0.0768 0.0148 0.0061

CORC 0.6740 −0.0827 0.0158 0.0071

GS-GEE 0.5854 −0.1713 0.0139 0.0295

Model 2 (true AUC=0.7594) 

Fam-ELR 0.6723 −0.0871 0.0153 0.0078

CORC 0.6474 −0.1120 0.0188 0.0129

GS-GEE 0.5955 −0.1639 0.0139 0.0270

Model 3 (true AUC=0.7576) 

Fam-ELR 0.6451 −0.1125 0.0156 0.0129

CORC 0.5974 −0.1603 0.0194 0.0261

GS-GEE 0.6237 −0.1339 0.0138 0.0181

Model 4 (true AUC=0.7879) 

Fam-ELR 0.6885 −0.0994 0.0127 0.0100

CORC 0.6723 −0.1156 0.0155 0.0136

GS-GEE 0.5993 −0.1886 0.0142 0.0358
* Model 1 involves 5 SNPs with 1 two-way threshold interaction; 
model 2 involves 10 SNPs with 5 two-way threshold interactions; 
model 3 involves 10 SNPs with 5 two-way multiplicative interac-
tions; and model 4 involves 12 SNPs with 2 two-way threshold 
interactions and 2 three-way threshold interactions 

Fig. 1  Mean square errors (MSEs) of Fam-ELR, CORC, 
and GS-GEE under four disease models 
MSE=bias2+variance 
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0.01), whereas the performance of the other two 
methods varies across different models (i.e. MSEs of 
CORC and GS-GEE vary from 0.0129 to 0.0261 and 
0.0181 to 0.0358, respectively), and is all inferior to 
that of Fam-ELR. In summary, our simulations show 
that the proposed Fam-ELR algorithm can utilize a 
tree-assembling process to integrate variants with 
small to medium effects, as well as their interactions, 
and ultimately attain better performance than that of 
previous approaches. 

3.1.2  Simulation under various pedigree structures 

To investigate the impact of pedigree structure 
on the performance of family-based risk prediction 
methods, three different pedigrees were evaluated in 
this simulation: trios with two parents and an affected 
child, four-member nuclear families with at least one 
affected family member, and three-generation pedi-
grees with a total of 10 family members. Two disease 
models were considered for each pedigree setting: the 
two-way threshold model (model 2) and the two-way 
multiplicative model (model 3) used in simulation 1. 
In this simulation, 1200 trios, 1000 nuclear families, 
and 450 three-generation pedigrees were generated 
from the 1 000 000-sample population, with sample 
sizes ranging from 3600 to 4500. 

The simulation results are summarized in Table 2. 
Overall, the proposed Fam-ELR method attains the 
highest accuracy among the three methods. For exam-
ple, under the two-way multiplicative model and the 
three-generation pedigree, the classification accuracy  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

of Fam-ELR (AUC=0.6686) is higher than those of 
the CORC (AUC=0.6084) and the GS-GEE (AUC= 
0.6532) methods. Fam-ELR also obtains an MSE of 
0.0086, which is 62.9% and 25.2% lower than those 
of CORC (MSE=0.0232) and GS-GEE (MSE= 
0.0115), respectively. Fig. 2 shows Fam-ELR con-
sistently has the lowest MSE in all simulation settings, 
indicating a more robust performance of Fam-ELR 
than that of the other two methods. Another interest-
ing phenomenon observed from Fig. 2 is that CORC 
performs better than GS-GEE under the two-way 
threshold interactive model while GS-GEE outper-
forms CORC under the two-way multiplicative in-
teractive model. The underperformance of GS-GEE 
under the two-way threshold interactive model can be 
explained by the violation of the additive assumption 
in GS-GEE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Performance of Fam-ELR, CORC, and GS-GEE under different family structures and disease models* 

Method 
Trios Nuclear families Three-generation pedigree 

Mean Bias SD MSE Mean Bias SD MSE Mean Bias SD MSE

Model 2 (true AUC=0.7594) 

Fam-ELR 0.6556 −0.1038 0.0143 0.0110 0.6723 −0.0871 0.0153 0.0078 0.6482 −0.1112 0.0267 0.0131

CORC 0.6285 −0.1309 0.0196 0.0175 0.6474 −0.1120 0.0188 0.0129 0.6279 −0.1315 0.0297 0.0182

GS-GEE 0.5420 −0.2174 0.0599 0.0508 0.5955 −0.1639 0.0139 0.0270 0.6087 −0.1507 0.0223 0.0232

Model 3 (true AUC=0.7576) 

Fam-ELR 0.6372 −0.1204 0.0137 0.0147 0.6451 −0.1125 0.0156 0.0129 0.6686 −0.0891 0.0251 0.0086

CORC 0.5917 −0.1659 0.0182 0.0279 0.5974 −0.1603 0.0194 0.0261 0.6084 −0.1492 0.0303 0.0232

GS-GEE 0.6146 −0.1430 0.0113 0.0206 0.6237 −0.1339 0.0138 0.0181 0.6532 −0.1044 0.0246 0.0115
* Model 2 involves 10 SNPs with 5 two-way threshold interactions and model 3 involves 10 SNPs with 5 two-way multiplicative interactions 

 

Fig. 2  Barplot of mean square errors (MSEs) of Fam- 
ELR, CORC, and GS-GEE under three pedigree set-
tings and two disease models 
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3.2  Family-based risk prediction analysis of con-
duct disorder 

Most risk prediction studies construct risk pre-
diction models by focusing on previously reported 
disease-susceptibility genetic and environmental risk 
factors. Such procedures can achieve remarkable 
success under certain disease scenarios, especially 
when diseases are caused by a limited number of 
genetic and environmental risk factors, each associ-
ated with a large effect. For instance, a risk prediction 
model of age-related macular degeneration (AMD) 
builds on five major AMD-associated variants and 
can reach a high accuracy (AUC=0.8) (Maller et al., 
2006). Nevertheless, most common diseases are likely 
caused by interplay of hundreds of genetic and envi-
ronmental risk factors, each with a low or medium 
marginal effect. The performance of risk prediction 
models for such diseases can be improved by in-
cluding not only known risk factors but also other 
potential risk predictors. We adopted both strategies 
in our real data application. Comparing the simula-
tions that mainly focused on our algorithm’s perfor-
mance on various disease settings with distinct inter-
action modes, we further demonstrated our algorithm’s 
ability for high-dimensional disease risk prediction in 
the real data analysis. We started this with a risk pre-
diction analysis of known predictors of CD, and then 
extended the prediction to the genome-wide scale, 
searching for new risk predictors to further improve 
the model’s accuracy. In both analyses, we evaluated 
the performance of three methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CD is a serious behavioral and emotional dis-
order of children and teens. A child affected by CD 
may display a set of disruptive and violent behaviors, 
and thus fail to obey rules and further violate the 
rights of others, having a severe influence on the 
family’s and child’s own daily life (Kazdin, 1997). 
For a disease that is prevalent among children and 
teens, it is quite popular to use a family-based study 
design strategy to investigate genetic risk factors and 
family environment related to CD. For this analysis, 
we use samples from the International Multicenter 
ADHD (attention-deficit/hyperactivity disorder) Ge-
netics Project (the IMAGE project). The main pur-
pose of the IMAGE project is to investigate the ge-
netic causes of both CD and ADHD. The IMAGE 
dataset includes 206 CD cases and 2520 controls from 
over 900 parent-child trios. 

3.2.1  Family-based risk prediction analysis of known 
CD predictors 

For the real data application, we first performed 
a family-based risk prediction analysis based on 
gender and 46 previously reported CD-associated loci 
(Ye et al., 2011a), and by using Fam-ELR, CORC, 
and GS-GEE. We treated each family as a unit, and 
split the whole dataset into a training dataset and a 
validation dataset with a ratio of 2:1. The training data 
were used for model building, while the validation 
dataset was used for model evaluation. The ROC curves 
of the models from the training and the validation 
datasets are plotted in Fig. 3. Based on the results  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  ROC curves of risk prediction models formed by Fam-ELR, CORC, and GS-GEE based on known CD risk 
predictors 
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from the validation dataset, Fam-ELR achieved the 
highest prediction accuracy (i.e. AUC=0.7196), while 
the GS-GEE method had the lowest accuracy (AUC= 
0.5798). The CORC method with an AUC of 0.6908 
has a slightly lower accuracy than Fam-ELR. The 
small difference in accuracy between Fam-ELR and 
CORC could be explained by the shared forward 
selection algorithm and a relatively small set of CD- 
known predictors. This result is consistent with our 
simulation study, which also shows the similar perfor-
mance of Fam-ELR and CORC under simple disease 
scenarios involving a limited number of risk predictors. 

We further explore the results from Fam-ELR, 
and summarize the number of times a predictor se-
lected by the forward selection algorithm. In total, our 
proposed algorithm recruited 17 SNPs as predictors 
with non-zero weights. The top 10 most important 
predictors are summarized in Table 3. The top pre-
dictor is gender, and the remaining top-ranked pre-
dictors are rs10831284, rs10492664, rs10229603, 
rs1644305, rs10797919, rs2826340, rs7595103, 
rs6427356, and rs2825388, all of which have been 
reported as being significantly associated with CD in 
previous genome-wide association studies (GWAS) 
(Anney et al., 2008; Sonuga-Barke et al., 2008). 
Compared with Fam-ELR, only 4 predictors, gender, 
rs10492664, rs10797919, and rs1644305, are se-
lected by CORC. These predictors are also among the 
top predictors in Fam-ELR, and rank as the 1st, 3rd, 
6th, and 5th among all predictors in the Fam-ELR 
model. Since GS-GEE assumes equal effects of all 
predictors, we are not able to study the relative im-
portance of predictors in the GS-GEE model. In the 
following exploratory analysis, we adopted logistic 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

regression to further investigate the relationship 
among those impactful predictors, wherein a signifi-
cant two-way interaction between rs10229603 and 
rs1644305 was found (with a P-value of 0.0340), 
implying that Fam-ELR, as a tree-based method, is 
able to take potential interaction effects into account. 

3.2.2  Genome-wide family-based risk prediction 
analysis 

We further conducted a genome-wide family- 
based risk prediction analysis to explore additional 
predictors that can be used to improve CD risk pre-
diction. For this analysis, we only compared Fam- 
ELR and CORC because both approaches were de-
signed for high-dimensional risk prediction analysis 
involving a large number of predictors and excluding 
noise signals. Before the risk prediction analysis, we 
performed a quality control analysis. After removing 
SNPs with low calling rate, low minor allele frequency 
(MAF), and the departure from Hardy-Weinberg 
Equilibrium (P-value of <1×10−6), a total of 288 925 
SNPs remained in the genome-wide analysis. For the 
genome-wide risk prediction analysis, we split the 
samples into training and validation datasets. The 
models were formed in the training dataset and were 
then evaluated in the validation dataset. Due to the 
large number of SNPs, we also adopted a simple fil-
tering procedure (Wei et al., 2012) to remove a large 
number of noise predictors. For the filtering process, 
we used the transmission disequilibrium test to per-
form a univariate screening. By varying the P-value 
cutoffs, we selected a subset of SNPs and filtered out 
those SNPs with a P-value larger than the P-value 
cutoff. By applying Fam-ELR and CORC to the  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Top 10 risk predictors selected by Fam-ELR from the family-based risk prediction analysis of known CD 
predictors 

Rank  Predictor Chromosome Function  Gene Rank in CORC 

1 Gender 1 

2 rs10831284 11 Regulatory region AMOTL1, CWC15, JMJD2D 

3 rs10492664 13 Intergenic LIG4, ABHD13 2 

4 rs10229603 7 Intron FLJ31818, GPR85 

5 rs1644305 5 Intergenic c5orf15 4 

6 rs10797919 1 Splice region of RGL1 GLT25D2 3 

7 rs2826340 21 Intergenic 

8 rs7595103 2 Intergenic 

9 rs6427356 1 Intergenic ETV3L, ETV3 

10 rs2825388 21 Intergenic PPIAP22, SLC6A6P1 
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different subset of SNPs, we formed risk-prediction 
models, and then evaluated these risk-prediction 
models on the validation datasets. Among those 
models, the model with P-value cutoff of 1×10−3 at-
tains the highest accuracy. In this model, a total of 251 
SNPs passed the P-value threshold and were used to 
build the CD risk prediction models. The ROC curves 
of the models in the training and validation datasets 
are presented in Fig. 4. The results from the validation 
dataset indicate that, based on more risk predictors, 
the model formed by Fam-ELR (AUC=0.8829) at-
tains a much higher accuracy than that by CORC 
(AUC=0.6871). Compared to the analysis on a lim-
ited number of known CD predictors, the genome- 
wide analysis results in more accurate risk prediction 
models. Moreover, the results also indicate that Fam- 
ELR has an advantage over the other methods in the 
high-dimensional risk prediction analysis involving  
a large number of predictors with small or medium 
effects. 

We further studied two risk prediction models 
formed by CORC and Fam-ELR. The model formed 
by CORC has three risk predictors: gender, rs4546404, 
and rs184817, which are also the top three predictors 
selected by Fam-ELR. Besides these three risk pre-
dictors, Fam-ELR also captured risk predictors with 
small or medium effects. The resulting algorithm cap-
tured 146 SNPs as predictors with non-zero effects. In 
Table 4, we summarize the top 20 risk predictors 
selected by Fam-ELR. Among them, some of the 
predictors were previously found to be associated 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

with CD, such as gender, rs10492664 between LIG4 
and ABHD13, and rs7595103 within LOC101927967 
(Anney et al., 2008; Sonuga-Barke et al., 2008). 
LOC101927967 has also been found to be associated 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Top 20 risk predictors selected by Fam-ELR from 
the genome-wide risk prediction analysis 

Rank Predictor Chr Gene 
Rank in 
CORC 

1 Gender   1 

2 rs4546404 5 LOC105377700 2 

3 rs184817 2 NPAS2 3 

4 rs10492664 13 LIG4, ABHD13  
5 rs12910488 15   
6 rs1389660 3 ZNF385D  
7 rs13058781 3 SLC6A6  
8 rs8002852 13   
9 rs1487044 2 LOC101927967  

10 rs11647668 16 LOC105371393  
11 rs2708919 2   
12 rs870488 5   
13 rs755101 6 SNAP91  
14 rs1882668 12   
15 rs1317508 12   
16 rs4078017 1 PFDN2  
17 rs17636733 15 UBE3A, 

LOC105370737, 
ATP10A 

 

18 rs7595103 2 LOC101927967  
19 rs2833834 21 EVA1C  
20 rs9396888 6 LOC105374956  

Chr: chromosome 

Fig. 4  ROC curves of risk prediction models formed by Fam-ELR and CORC based on CD genome-wide data 
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with cannabis dependence, childhood and early ado-
lescence aggressive behavior in other studies (Pappa 
et al., 2016; Sherva et al., 2016). This may suggest a 
genetic overlap between CD and cannabis depend-
ence. Some of the top 20 predictors have never been 
reported as directly associated with CD. They are, 
however, located within genes having strong impact 
on diseases related to CD. For instance, the 3rd and 
7th selected loci, rs184817 and rs13058781, are lo-
cated within genes NPAS2 and SLC6A6, respectively. 
NPAS2 and SLC6A6 have been reported as associated 
with cognitive performance, which might indicate 
their potential role in CD (Need et al., 2009; Rietveld 
et al., 2014). The selected predictors rs1389660, 
rs1487044, and rs755101 are located in genes 
ZNF385D, LOC101927967, and SNAP91, respec-
tively. Among them, ZNF385D is associated with 
ADHD and bipolar disorders (Ferreira et al., 2008; 
Lasky-Su et al., 2008), LOC101927967 is known  
as an important ADHD- and cannabis-dependence-  
related gene (Anney et al., 2008; Sherva et al., 2016) 
which is also associated with childhood and early 
adolescence aggressive behavior (Pappa et al., 2016), 
while SNAP91 has been reported to play a role in the 
morbidity of bipolar disorder with mood-incongruent 
psychosis and schizophrenia (Goes et al., 2012, 2015). 
While further studies are required to confirm the role 
of these selected predictors in CD, there is evidence 
indicating that Fam-ELR is able to capture known 
CD-associated variants as well as new variants po-
tentially related to CD. By integrating new risk pre-
dictors and known CD predictors into the model, 
Fam-ELR improves the model’s performance. By 
further exploring the top 20 risk predictors using 
logistic regression, we identified 31 two-way inter-
actions as being significant (Table S1), showing the 
signs of latent interaction effects in the genome-wide 
prediction model constructed by Fam-ELR. 

 
 

4  Discussion 
 

The use of human genome discoveries and other 
established risk predictors for early disease prediction 
is an essential step towards precision medicine. 
However, the task of developing clinically useful risk 
prediction models is hampered by the present state of 
evidence, in which currently known risk predictors 

are insufficient for accurately predicting most human 
diseases. It has been shown that integrating predictors 
with small to medium effects into the risk prediction 
model could substantially improve a model’s accu-
racy. In this study, we propose Fam-ELR for family- 
based risk prediction analysis. This proposed ap-
proach shares several unique features with our pre-
vious developed approaches (e.g. being applicable to 
various pedigree structures). In addition, it utilizes  
a tree-assembling process to integrate variants with 
small to medium effects, as well as their possible 
interactions, into the model for improved accuracy. 
Therefore, it offers a useful tool for high-dimensional 
risk prediction (e.g. genome-wide risk prediction). 

Complex diseases are likely influenced by in-
terplay of genetic and environmental risk predictors 
with an unknown underlying disease mechanism. 
While non-parametric methods are computationally 
efficient and rely on fewer assumptions about disease 
models, they have been less developed for high- 
dimensional risk prediction analysis, especially for 
family-based studies. Fam-ELR is a non-parametric 
approach that makes no assumption on underlying 
disease models and adopts a computationally efficient 
forward-searching algorithm for high-dimensional 
genetic data analysis. The results of the simulations 
reveal that Fam-ELR achieves a more robust and 
accurate performance than the other two methods, 
with lower MSEs and higher AUCs, regardless of the 
disease models and pedigree structures. Therefore, 
Fam-ELR is shown to be a robust approach for family- 
based risk prediction on complex disease with un-
known or less known disease etiology. The simulation 
result also indicates that the commonly used GS-GEE 
attains good performance when the disease model 
follows a multiplicative model, but low performance 
when the underlying disease model is not multiplica-
tive (e.g. a threshold model). The varied performance 
of GS-GEE under different models could be due to its 
additive/multiplicative assumption. It is also worth 
noting that, the biases in simulations all achieve neg-
ative values, revealing that the predicted values are 
lower than the true values. It indicates that the three 
algorithms are immune to the overfitting issue but 
tend to underestimate the true AUC. 

On the other hand, compared to the commonly 
used random forest algorithm, our Fam-ELR method 
adopts the forward selection strategy to search for 
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impactful predictors, whereas random forest usually 
selects significant features from a randomly selected 
subset of variants. Both strategies are feasible on the 
high-dimensional risk prediction and have their unique 
characteristics. Random forest would be more com-
putationally efficient and tend to select variants with a 
relatively small effect size. However, random forest 
may be subject to low accuracy when a large propor-
tion of loci are noise loci, which might be expected in 
the genome-wide risk prediction scenario (Ye et al., 
2011b), while our Fam-ELR method is less sensitive 
to a large number of noise loci. In our study, although 
a variant-filtering process was introduced before the 
real-data genome-wide risk prediction, it is not a 
prerequisite step for our method. Furthermore, our 
method is designed to construct risk prediction based 
on a family-based dataset, while random forest is a 
commonly used case-control-based method. 

In this study, Fam-ELR was applied to a family- 
based GWAS dataset on CD, utilizing both a limited 
number of known risk variants and the genome-wide 
level data to construct risk prediction models. For the 
risk prediction analysis on a limited number of known 
risk predictors, the performance of Fam-ELR and 
CORC is quite similar, indicating a limited advantage 
of Fam-ELR over other methods. Nevertheless, for 
the genome-wide risk prediction analysis, Fam-ELR 
has a significant advantage over CORC as it considers 
low- and medium-effect predictors via the tree- 
assembling procedure. In the genome-wide risk pre-
diction analysis, many of these low- and medium- 
effect predictors have never been reported before, but 
are located within genes or genomic regions associ-
ated with CD or its related mental and behavioral 
disorders, such as cognitive performance, ADHD, and 
bipolar disorder. Such variants might have failed to 
pass the stringent significance threshold in the GWAS 
studies, but can have a significant predictive value in 
predicting CD. By considering these predictors, Fam- 
ELR could improve the model’s accuracy perfor-
mance on the high-dimensional scale. 

The usefulness of a risk prediction model varies 
by the disease’s prevalence, the availability of pre-
vention and intervention methods, and the cost of 
surveillance measures. Furthermore, risk prediction 
based on genomic information should be treated as a 
complementary and integrated part of a more accurate 
prediction procedure that also considers other omic 

data, clinical biomarkers, and environmental risk 
factors. As the high-throughput sequencing technol-
ogies become widely available and less costly, ge-
nomic testing attracts more attention, especially with 
many advantages (e.g. being reliable). Although the 
overall health benefits of genomic risk prediction 
have yet to be established, it is hoped that by incor-
porating into a patient’s clinical information (e.g. 
electronic health records) and other resources, ge-
nomic risk prediction could attain improved accuracy, 
and ultimately can be used for improving clinical and 
health outcomes while reducing costs in the foresee-
able future. 

 
 

5  Conclusions 
 

In summary, we proposed an ELR approach, 
Fam-ELR, for family-based genomic risk prediction. 
Fam-ELR not only incorporates a clustered ROC 
curve method to consider correlations among family 
samples, but also uses a computationally efficient 
tree-assembling procedure for variable selection and 
model building. Through simulations and applica-
tions on a family-based GWAS dataset of CD, we 
proved that Fam-ELR can incorporate genetic vari-
ants with small or moderate marginal effects and their 
interactions to form a risk prediction model with im-
proved accuracy, and thus could be quite useful for 
high-dimensional family-based risk prediction espe-
cially on complex disease with limited knowledge of 
disease etiology. 
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中文概要 
 
题 目：基于家系数据集群化似然比算法的疾病基因组遗

传风险预测研究 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

目 的：作为遗传研究中最常用的设计之一，基于家系数

据的实验设计因其优势而得到了广泛认可，例如

家系数据在人群分层和混合情况下表现出来的

稳健性。在疾病风险预测中，研究者对如何基于

家系遗传数据，寻找和分析遗传标记的作用非常

感兴趣。本研究旨在开发一种新的统计方法，用

于基于家系数据的遗传风险预测。 

创新点：期望新方法能够捕捉小或中等边际效应的遗传因

子，及其相互作用，与基于家族史或家系数据的

现有风险预测方法相比，具有更高的预测准确

性。 

方 法：在这项研究中，我们提出了集群化似然比（ELR）

的新方法，Fam-ELR，用于家系数据的基因组疾

病风险预测。Fam-ELR 采用集群化的受试者工作

特征曲线（ROC）方法来考虑家系样本内部的相

关性，并使用计算有效的集群树进行变量选择和

模型构建。 

结 论：通过模拟，Fam-ELR 显示了其在各种疾病遗传模

型和谱系结构中的稳健性，并且获得了比现有的

两种基于家系数据的风险预测方法更好的性能。

同时，在基于全基因组行为障碍家系数据集的实

际应用中，Fam-ELR 展示了其将潜在风险预测因

子和其相互作用整合到模型中以提高准确性的

能力，尤其是在全基因组水平上。通过比较现有

方法，例如遗传风险评分方法等，Fam-ELR 被证

实具有将较小或中等边际效应的遗传变异及其

相互作用纳入改进的风险预测模型的能力。因

此，它是一种强有力且实用的方法，适用于基于

家系数据的高维度遗传风险预测中，特别是对于

病因未知或知之甚少的人类复杂疾病。 

关键词：家系数据研究；遗传风险预测；高维数据 


