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This study aimed to characterize the chemical
composition of a new sulfated polysaccharide from
the red alga Gracilaria chouae and evaluate its acti‐
vation effects on RAW264.7 macrophages. It showed
that the obtained G. chouae polysaccharide (GCP-3A)
was a sulfated acidic polysaccharide with a molecular
weight of 11.87 kDa. GCP-3A was composed of xylose,
galactose, glucose, and mannose with a molar ratio of
3.00:29.28:0.63:0.45, and it contained α,β-glycosidic
linkages. Scanning electron microscopy (SEM) and a
Congo red test showed that it was a heterogeneous
polysaccharide with irregular interwoven sheets and
rods, and did not have a triple-helix conformation.
Furthermore, GCP-3A significantly promoted the
proliferation of RAW264.7 macrophages and the
secretion of nitric oxide (NO) in tests of 3-(4,5-
dimethylthiahiazo-2-yl)-2,5-diphenytetrazoliumromide
(MTT) and NO.

G. chouae, an economically important alga, is
widely found in the low-tide or subtidal zones along
the southeast coast of China (Chi et al., 2016). In
recent years, it has been principally exploited for
water quality improvement, abalone culture, and agar
extraction; however, it has not been fully developed
or utilized (Torres et al., 2019). Previous research
reported that the polysaccharides from G. chouae
exerted anti-oxidation and antitumor effects, raising

the possibility of applications in functional food and
medicine (Ju et al., 2016; Khan et al., 2019).

The biological activity of polysaccharides is
closely linked to their structural characteristics, such as
monosaccharide composition, molecular weight, sub‐
stituents, branching, and conformation (Zhang et al.,
2020). However, there are no clear rules connecting
the structure and activity of polysaccharides, and they
are all affected by various separation and purification
processes. Consequently, more research is required to
elucidate polysaccharide structures to define the rela‐
tionship between structure and activity.

We then systematically studied its structural
characteristics with gel permeation chromatography
(GPC), gas chromatography-mass spectrometry (GC-
MS), Fourier transform-infrared spectroscopy (FT-IR),
and nuclear magnetic resonance (NMR). SEM and
Congo red were used to explore the surface morphology
of the polysaccharides. The activation effects of GCP-
3A on RAW264.7 macrophages were studied by MTT
and NO assays.

We found that GCP-3A was a polysaccharide
with relatively uniform molecular weight and charge.
It was first purified by cellulose diethylaminoethyl-52
(DEAE-52) chromatography column (Fig. 1a) and then
by Sephadex G-100 chromatography (Fig. 1b). GCP-
3A is a sulfated acid polysaccharide, and its monosac‐
charide composition is mainly 3,6-anhydrogalactose,
xylose, and galactose, with minor amounts of glucose
and mannose (Table 1). The GPC elution profile indi‐
cated that GCP-3A had a relatively broad molecular
weight distribution, with a weight-average molecular
weight and number-average molecular weight of
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31.32 kDa and 10.13 kDa, respectively (Fig. 1c). As
shown in Fig. 1d, FT-IR revealed the typical polysac‐
charide characteristic peak information for GCP-3A,
and confirmed the presence of uronic acid and sulfate
groups (You et al., 2020). 1D NMR (1H, 13C) spectra
indicated that GCP-3A had α- and β-configuration

(Figs. 1e and 1f). In addition, GCP-3A contains several
complex sugar residues, and exhibits substitution of
methyl, acetyl, and sulfate groups (Liu et al., 2018).

SEM analysis showed the surface morphology of
GCP-3A at 350× and 1500× magnifications (Figs. 2a and
2b). GCP-3A was predominantly interwoven by
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Fig. 1 Chemical characterization of GCP-3A. (a) Cellulose DEAE-52 chromatogram; (b) Sephadex G-100 chromatogram;
(c) GPC chromatogram; (d) FT-IR spectrum; (e) 1H NMR; (f) 13C NMR. ppm: parts per million; GCP-3A: Gracilaria
chouae polysaccharide; DEAE: diethylaminoethyl; FT-IR: Fourier transform-infrared spectroscopy; NMR: nuclear magnetic
resonance. (d) was adapted with permission from Li and Liu (2021), copyright 2021, J Shandong Agric Univ (Nat Sci Ed).
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irregular sheets and rods, and the surface was granular.
A Congo red experiment suggested that GCP-3A did not
have a triple-helical conformation in solution (Fig. 2c).

An MTT assay indicated that GCP-3A promoted
the proliferation of RAW264.7 cells at concentrations
of 25–300 μg/mL (Fig. 3a). GCP-3A did not exhibit
any detectable cytotoxicity. In fact, it significantly pro‐
moted the proliferation of RAW264.7 cells compared
with the control group (P<0.05). In the NO assay,
GCP-3A significantly stimulated NO secretion in
RAW264.7 cells compared with the control group, and
this stimulation was in a dose-dependent manner in the
range of 25–200 μg/mL (Fig. 3b). The production of NO
reached the highest level (6.64 μmol/L) at 200 μg/mL.

In this study, the total sulfate content of GCP-
3A was 7.37% (mass fraction), which was similar to
previously reported levels (Sudharsan et al., 2015;
Imjongjairak et al., 2016). In addition, the results showed
that the galactose content was much higher than that
of other monosaccharides in GCP-3A, which was consis‐
tent with other polysaccharides from red algae. How‐
ever, the types and proportions of monosaccharides
varied, which may be related to species, growth envi‐
ronment, and treatment methods (de Oliveira et al.,
2020; Han et al., 2020; Li et al., 2020). We found that
there were granular substances on the surface of GCP-
3A, which was also observed previously in G. chouae
(Khan et al., 2019).

Table 1 Chemical composition and neutral sugar composition of GCP-3A

Name

GCP-3A

Content (%, mass fraction)

Total sugar

63.80±0.05

Uronic acid

10.23±0.12

Protein

0.11±0.06

Sulfate group

7.37±0.63

3,6-Anhydrogalactose

15.75±0.49

Neutral sugar
(Xyl:Gal:Glc:Man)

3.00:29.28:0.63:0.45

Data are expressed as mean±standard deviation (n=3). GCP-3A: Gracilaria chouae polysaccharide; Xyl: xylose; Gal: galactose; Glc: glucose;
Man: mannose. Data about chemical composition content of GCP-3A were adapted with permission from Li and Liu (2021), copyright 2021,
J Shandong Agric Univ (Nat Sci Ed).
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Fig. 2 Surface morphology of GCP-3A. (a) SEM images of GCP-3A at 350× magnification; (b) SEM images of GCP-3A
at 1500× magnification; (c) Absorption spectra of Congo red and Congo red with GCP-3A. Data are expressed as mean±
standard deviation (n=3). SEM: scanning electron microscopy; GCP-3A: Gracilaria chouae polysaccharide.

Fig. 3 Effects of GCP-3A treatment on RAW264.7 macrophages. (a) GCP-3A promoted the proliferation of RAW264.7 cells
at concentrations of 25‒300 μg/mL. (b) GCP-3A significantly stimulated NO secretion in RAW264.7 cells at concentrations
of 25‒300 μg/mL. Data are expressed as mean±standard deviation (n=6). Adjacent letters of the alphabet indicate significant
differences at P<0.05. LPS: lipopolysaccharide; NO: nitric oxide; GCP-3A: Gracilaria chouae polysaccharide.
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According to previous reports (Gu et al., 2020;
Zhao et al., 2021; Zhu et al., 2021), the activated
macrophages can directly kill pathogens and release
effector molecules such as NO, tumor necrosis factor,
and interleukin, which provide resistance to micro‐
bial infection and pathogen invasion. In addition, NO
participated in various physiological and pathological
reactions and is considered an important indicator of
immune cell activation (Huang et al., 2017; Lan et al.,
2021). Here, GCP-3A promoted the proliferation of
macrophages and the release of NO, which suggested
that RAW264.7 macrophages were activated. In con‐
clusion, GCP-3A is a potential bioactive ingredient
for the pharmaceutical and health product industries.

In the future, more studies should be carried out to
clarify the activation effects of GCP-3A on RAW264.7
macrophages. Because of the complexity of this
polysaccharide, the sequence of glycosidic bonds should
be elucidated to provide a reference for the structure-
activity relationship of polysaccharides in general.

Materials and methods
Detailed methods are provided in the electronic supple‐

mentary materials of this paper.
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