Adel Khosravi, Yousef Seifi Kavian, 2016. Autonomous fault-diagnosis and decision making algorithm for determining faulty nodes in distributed wireless networks. *Frontiers of Information Technology & Electronic Engineering*, **17**(9):885-896.

http://dx.doi.org/10.1631/FITEE.1500176

Autonomous fault-diagnosis and decision making algorithm for determining faulty nodes in distributed wireless networks

Key words: Fault-diagnosis, Decision making, Byzantine agreement, Distributed wireless net-works, Consensus

Corresponding author: Adel Khosravi E-mail: a-khosravi@phdstu.scu.ac.ir ORCID: http://orcid.org/0000-0002-8493-4462

Motivation/Main ideas

Motivation

 Provide a distributed method in order to identify Byzantine members in a network. The proposed algorithm reaches Fault Diagnosis Agreement (FDA) in each network member.

Main ideas

- Each healthy unit detects a local list of malicious units that results in lower packet transmissions in the network
- Our proposed algorithm solves FDA problems in 2t+1 rounds of packet transmissions, and the bit complexity in each wireless node is $O(n^{t+1})$.

FDA

The proposed Algorithm consists of two main phases:

•Byzantine Agreement (BA) phase.

•Fault Diagnosis Agreement (FDA) phase.

Basic fault identification concepts

• The following equation provides the main fault identification method:

if $val(P_jP_i) \neq val(P_jP_vP_i)$ then $FU(P_j) \lor FU(P_v)$

BA Phase

 This phase consists of two parallel subphases; message exchange phase and local fault-diagnosis phase.

The message exchange phase starts when the source processor transmits its initial value to all other processors, and since then the message exchange process is used to build a (t+1)-level EG-tree in each fault-free processor.

Fig. 1 A fully connected network with *n* processors and $\lfloor (n-1)/3 \rfloor$ faulty processors

BA Phase

Fig. 4 Finding the Byzantine agreement value in faultfree processor P_i (*T*=source processor and MAJ is the majority function)

FDA Phase

 To obtain a same set of faulty units for all fault-free processors, the processors are moved to the FDA phase.

Fig. 6 Flowchart of the subphase of global detection of faulty units in processor P_i to check the status of P_j

Major results

Table 1 Comparison of FDA algorithms

Algorithm	Local fault	Bit com-	Number of	Cons	sensus
	diagnosis	plexity	rounds	BA	FDA
Hsiao et al.	_	$O(n^{2t+1})$	(n+1)(t+1)		
(2000)		0(110)	(n+1)(n+1)	•	•
Ayeb and	V	$O(n^{t-\rho})$	$t+1-\alpha$		_
Farhat (2004)	m	$O(n^{-})$	ι ι ρ	•	
Chiang <i>et al</i> .		O(n)	3	_	_
(2009)		O(n)	5		
Our method	\checkmark	$O(n^{t+1})$	2 <i>t</i> +1		

The algorithm in Ayeb and Farhat (2004) can stop message transmission based on the number of detected faulty units

Major results

Fig. 12 Number of faults detected in processor P_1 : (a) faults detected globally and locally; (b) total number of faults detected

Fig. 13 Number of faults detected locally (a) and globally (b) in processor P_1 for different network sizes (FR: failure rate)

Conclusions

- In this work, we provide a solid solution for the faultdiagnosis problem using the framework of Byzantine general problem.
 - The proposed solution is compared with prominent Byzantine agreement (BA) algorithms in terms of the number of required message transmissions and packet size complexity.
 - The proposed solution simplifies the solution of fault diagnosis
 - agreement (FDA) and BA problems in complete graph networks.
- We provide a new evidence-based fault-diagnosis algorithm that benefits from contradictory transmissions of Byzantine members to reveal their faulty behavior.