Bin Ju, Yun-tao Qian, Min-chao Ye, 2016. Preference transfer model in collaborative filtering for implicit data. *Frontiers of Information Technology and Electronic Engineering*, **17**(6):489-500. http://dx.doi.org/10.1631/FITEE.1500313

Preference transfer model in collaborative filtering for implicit data

Key words: Recommender systems, Collaborative filtering, Preference transfer model, Cross domain, Implicit data

Contact: Bin Ju E-mail: jubin_hz@163.com ORCID: http://orcid.org/0000-0003-4709-4297

Introduction

- Predicting how much or whether an item will be liked or disliked by active users is a main task in collaborative filtering systems or recommender systems.
- We propose a novel method called the preference transfer model for effective cross-domain collaborative filtering.
 Based on the preference transfer model, the common basis item-factor matrix and the different user-factor matrices are factorized.
- Two factor-user matrices can be used to construct a socalled 'preference dictionary' which can discover in advance the consistent preference of users: from their browsing behavior to their buying behavior.

Graphical model for preference transfer modeling

Preference transfer model based on multitask non-negative matrix factorization

$$\begin{split} \mathcal{L} &= \\ \underset{U,V,W}{\min} \left[\sum_{i=1}^{M} \sum_{j=1}^{N} (-X_{ij} \log(WU)_{ij} + (WU)_{ij}) \\ &+ \sum_{i=1}^{M} \sum_{j=1}^{N} (-Y_{ij} \log(WV)_{ij} + (WV)_{ij}) \\ &+ \sum_{i=1}^{K} \sum_{j=1}^{N} \left((-Y_{ij} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{ij} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{ij} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij}) \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij} \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij} \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij} \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij} \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij} \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij} \right) \\ &+ \sum_{k=1}^{K} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij} \right) \\ &+ \sum_{k=1}^{N} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij} \right) \\ &+ \sum_{k=1}^{N} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij} \right) \\ &+ \sum_{k=1}^{N} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij} \right) \\ &+ \sum_{k=1}^{N} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij} \right) \\ &+ \sum_{k=1}^{N} \sum_{j=1}^{N} \left((-Y_{kj} \log(WV)_{ij} + (WV)_{ij} \right) \\ &+$$

Simulation

Fig. 3 Simulation of the preference transfer model for predicting user preference. By using the latent factor-user matrix, the simulation explains how to construct the consistent preference dictionary

Parameter and hyperparameter setting

Fig. 4 F1 score influenced by different thresholds

Fig. 5 Different shapes of Gamma distribution on different parameters

Performance comparison (1)

Performance comparison (2)

-ng
CON E.
 CCTIC

Algorithm _	Precision				
	Week 1	Week 2	Week 3	Week 4	
PMF	0.020 [0.018, 0.021]	0.020 [0.018, 0.021]	0.019 [0.016, 0.021]	0.019 [0.016, 0.021]	
NMF	0.018 [0.013, 0.021]	0.018 $[0.013, 0.020]$	0.015 $[0.012, 0.020]$	0.014 [0.012, 0.017]	
JPP	0.037 [0.035, 0.039]	0.035 [0.036, 0.037]	0.036 $[0.035, 0.037]$	0.033 [0.031, 0.035]	
RMGM	0.058 $[0.052, 0.063]$	0.055 [0.052, 0.062]	0.041 [0.038, 0.044]	0.041 [0.038, 0.042]	
PTM	0.078 [0.076, 0.080]	0.034 $[0.032, 0.370]$	0.021 [0.016, 0.022]	0.014 [0.011, 0.015]	

Table 1 Prediction performance on four weeks

[*]: 95% confidence intervals of performance

Conclusions

- Different from other existing analogous models based on Gaussian prior, our model is based on Poisson prior for multitask non-negative matrix factorization, which can capture the transition of the users' preferences from browsing behavior to buying behavior.
- The experimental results demonstrate that the proposed preference transfer model method can outperform the other methods on the Alibaba Tmall data.