Yuan-ping Nie, Yi Han, Jiu-ming Huang, Bo Jiao, Ai-ping Li, 2017. Attention-based encoder-decoder model for answer selection in question answering. *Frontiers of Information Technology & Electronic Engineering*, **18**(4): 535-544. http://dx.doi.org/10.1631/FITEE.1601232

Attention based encoder-decoder model for answer selection in question answering

Key words: Question answering; Answer selection; Attention; Deep learning

Contact: Yuan-ping Nie E-mail: yuanpingnie@nudt.edu.cn ORCID: http://orcid.org/0000-0002-8351-4108

Introduction

- One of the key challenges for question answering is to bridge the lexical gap between questions and answers
- Lexical gap becomes a major barrier to prevent traditional IR models, such as bm25.
- Using a deep neural network-based machine translation model to bridge the lexical gap between a question and its answer.
- To address the noise-bearing problem, we introduce a attention based encoder-decoder model for answer selection.

Encoder-Decoder Model

Fig. 1 The structure of an encoder-decoder

An encoder maps an input sequence into a fixed length latent representation via a deterministic mapping function

 $r_l = f_e(h_1, h_2, \cdots, h_i), \ h_t = q(x_t, h_{t-1})$

The decoder is often trained to predict the next word given the latent representation \mathbf{r}_{i} and all the previously predicted words

$$p(y) = \prod_{t=1}^{T} p(y_t | \{y_1, \cdots, y_{t-1}\}, c),$$

 $r_l = f_e(x_i) = S_e(W_e x_i + b_e),$

Convolutional Filter

Fig. 5 Convolutional fitler

The convolution operation * between two vectors a and f can be defined as:

$$c_i=(a*f)_i=\sum_{k=i}^{i+m-1}a_kf_k$$

Our model with step attention mechanism

Fig. 7 The step attention model

the attention mechanism will produce a weighted representation *r* of the candidate passages and a vector *s* of the normalized attention weights via:

$$m(t) = \tanh(W_{y}y_{p} + W_{r}r(t-1) + W_{u}y_{d}(t)),$$
(14)

$$s(t) = \operatorname{softmax}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{m}(t)), \qquad (15)$$

$$r(t) = y_d s + \tanh(W_{\rm r} r(t-1)), \qquad (16)$$

the last output vector **C** is:

$$C = \tanh(W_{\mathrm{p}}r + W_{\mathrm{u}}h_{\mathrm{n}})$$

Experimental results (1)

Dataset:

Table 1 Summary of the TREC QA datasets for answer reranking

Dataset	Number of questions	Number of QA pairs	Correctness of dataset
Train-ALL	1229	$53\ 417$	12.0%
Train	94	4718	7.4%
Dev	82	1148	19.3%
Test	100	1517	18.7%

Evaluation metric:

$$MAP = \frac{1}{n} \sum_{q=1}^{n} \operatorname{avg}(P(q))$$
$$MRR = \frac{1}{n} \sum_{q=1}^{n} \frac{1}{\operatorname{rank}(q)}$$

Results:

Table 2The results using the TREC-QA dataset inTrain-ALL

%	Model	MAP	MRR
% % %	Wang et al. (2007)	0.6029	0.6852
	Wang and Manning (2010)	0.5951	0.6951
	Yao et al. (2013a)	0.6307	0.7477
	BDT (Yih et al., 2013)	0.6940	0.7894
	LCLR (Yih <i>et al.</i> , 2013)	0.7092	0.7700
for	Unigram (Yu et al., 2014)	0.5387	0.6284
	Bigram (Yu et al., 2014)	0.5693	0.6613
	Three-layer BLSTM (Wang and Nyberg,	0.5928	0.6721
	2015)		
	BLSTM+BM25 (Wang and Nyberg, 2015)	0.7134	0.7913
	RNN	0.6198	0.6831
	LSTM	0.6428	0.7115
	Our model without attention	0.6871	0.7350
	Our model with step attention	0.7261	0.8018

Experimental results (2)

Dataset: TREC LiveQA 2015 track 1087 questions and each question 20 candidate answers tron Eng

Evaluation metric:

The answer score is set to 4 levels, shown below:

- 1. Bad: contains no useful information for the question.
- 2. Fair: marginally useful information.
- 3. Good: partially answers the question.
- 4. Excellent: a significant amount of useful information, fully answers the question.

Results:

	-			
Model	Average score	Succ@2+	Succ@4+	
CMUOAQA	1.081	0.532	0.190	
Ecnucs	0.677	0.367	0.086	
Our pre-model	0.670	0.353	0.107	
Monash	0.666	0.364	0.082	
Yahoo	0.626	0.320	0.095	
Average	0.467	0.262	0.060	
Our model	1.103	0.546	0.204	

Table 3 The performance in the LiveQA track

Succ@i+ (i = 1, 2, 3, 4) means the number of questions with scores larger than i divided by the number of all the questions

Conclusions

- The proposed model employs a bidirectional LSTM based encoder-decoder architecture, which can effectively bridge the lexical gap between questions and answers.
- The results show that our model is more effective compared to the baseline approaches.