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Motivation

- Industrial control systems (ICSs) are widely used in critical
infrastructures, which make them popular targets for attacks
causing catastrophic physical damage.

* The programmable logic controller (PLC) controls the actuators
directly, thus plays a vital role in ICSs. A PLC executing a
malicious program can cause significant property loss or even
casualties.

* PLCs cannot be protected by traditional intrusion detection
systems or antivirus software.

- An effective method for PLC protection which is non-invasive to
ICSs is yet to be designed.



Main idea

* PLCs execute a program in a cycle-scanning manner. The CPU
power consumption of a PLC varies and is determined by the
executing programs.

* PLCs tend to execute a predefined sequence of instructions
within a period of time, and the sequence will not be
modified frequently.

* Most PLCs have a separate AC-DC converter, and thus we can
measure the power consumption at the DC power supply
without modifying the hardware or software.

* We can detect malicious software execution in a PLC through
analyzing its power consumption.



Method

We insert a current shunt resistor between CPU module and
power supply (PS) module of a PLC to measure its power
consumption.

We first choose the statistical histogram, basic time-domain

features, and frequency- domain features of a power trace as
our original features. And then use sparse coding algorithm to
select a set of discriminative features.

We train a long short-term memory (LSTM) neural network
with the features of normal samples to predict the next time
step of a normal sample, and an abnormal sample is identified
through comparing the predicted sample and the actual sample.



Major results

* As the monitoring time goes on, the FRR of LSTM increases
slightly, but is always less than 0.95%.
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Fig. 7 Performance of continuous monitoring with
time. It illustrates the change of the false rejection
rate (FRR)
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Fig. 9 Detection sensitivity of different anomaly de-
tection algorithms: (a) detection accuracy at different
numbers of modified lines; (b) equal error rate (EER)
at different numbers of modified lines

* As we increase the

number of modified
lines, the detection
performance
improves.

* When the change of

program size reaches
0.44%, LSTM is able
to detect an
abnormality with an

accuracy of above
97.56%.
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Fig. 10 Detection accuracy under different window Fig. 11 Detection accuracy with different training Fig. 12 Detection accuracy under different sampling
sizes. The trojan programs are the three attacks men- times. The trojan programs are the three attacks rates. The trojan programs are the three attacks
tioned in the text mentioned in the text mentioned in the text

* The performance of LSTM depends greatly on the window
size, training time, and sampling rate.



Conclusions

- we have proposed a non-invasive power-based anomaly
detection scheme for detecting attacks on PLCs.

- We have detected the attacks which we implement with
an accuracy as high as 99.83% in our lab experiments.

- We discussed the detection sensitivity of our method.
Even when the modification of the original program is as
little as 0.07%, we are able to detect the change with an
accuracy of 90.33%.

- We are able to detect unknown attacks without abnormal
samples.
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