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Motivation

For correlated signals and uncorrelated signals, the current
algorithms have poor performance in estimating the direction of
arrival, especially in the case of low signal-to-noise ratios and few

snhapshots.

We use the random matrix theory to improve those methods.
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Considering a linear array with M sensors receiving N narrow-band
signals from the far field, the M-dimensional output x of the array is
modeled as

— A(8)s+n

The eigen structure of array covariance R can be written as
R = [JTH;].H[IE 1 g?-[j"[JTIIII

Normally, R is obtained through the sample covariance R, which is
calculated as .
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Method (Cont’d)

As M, L — o~ and M/L — ¢ € (0,00), the equation below is
obtained from RMT:
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Method (Cont’d)

A certain column of {7, is ;. which is Gaussian independent and
identically distributed (1ID). Let ¢;(#) = Ulldi; ; the mean and
variance are easily given by

E(e;) = 0,
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The maximum of the log likelihood function that obtains the argument
@ can be written as
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Then the weighting matrix Is

Wrut = diag(wy, wa, ..., wy)
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Major results

RMT achieves better performance at a low SNR and with few
shapshots.
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Major results (Cont’d)

RMT achieves better performance at a low SNR and with few
snapshots.
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Major results (Cont’d)

RMT achieves better performance at a low SNR and with few

snapshots.
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Fig. 7 RMSE versus SNR varying from —14 to —8 dB
with uncorrelated signals (number of snapshots: 10)

Fig. 8 Probability of outliers versus SINR. varying
from —14 to —8 dB with uncorrelated signals (number
of snapshots: 10)



Conclusions

 We have presented a new method of DOA estimation for narrow-
band signals.

« The weighting matrix is calculated to achieve a lower RMSE.

« The performance of RMT is better than those of MUSIC, SSP,
CS, and WSF under the same scenario with few snapshots and
at a low SNR, which was verified through numerical simulations.
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