Tao ZHOU, Guichao CHEN, Cheng-xiang WANG, Jiayi ZHANG, Liu LIU, Yiqun LIANG, 2021. Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection. *Front Inform Technol Electron Eng*, 22(4):571-585. https://doi.org/10.1631/FITEE.2000509

Performance analysis and power allocation of mixed-ADC multi-cell millimeter-wave massive MIMO systems with antenna selection

Key words: Millimeter-wave; Massive multiple-input multiple-output (MIMO); Mixed-ADC; Performance analysis; Antenna selection

Corresponding author: Jiayi ZHANG

E-mail: jiayizhang@bjtu.edu.cn

ORCID: https://orcid.org/0000-0003-2434-4329

Motivation

- 1. Millimeter wave and massive multiple-input multiple-output (MIMO) are two key technologies to meet the high data rate requirements of fifth generation mobile communication (5G).
- 2. Millimeter wave has the defect of high path loss, and massive MIMO has the defect of high power consumption and cost.

Main idea

- 1. The exact and approximate closed-form expressions of the uplink achievable rate for a mixed-ADC multi-cell mmWave massive MIMO system with antenna selection are derived.
- 2. A power allocation scheme to improve the sum achievable rate is proposed.
- 3. Energy efficiency (EE) of the system and gain insights into the changes of energy efficiency from quantization precision and the ratio of high-resolution ADCs are studied.

Method

- 1. A mixed-precision ADC structure equipped with an antenna selection module is proposed, which is suitable for a millimeter massive MIMO system.
- 2. For the proposed structure, the spectrum efficiency and energy efficiency of the system are calculated, and a performance optimization algorithm is proposed.

Major results

1. System model

Fig. 1 Hybrid beamforming architecture of the mixed-ADC multi-cell mmWave massive MIMO system with antenna selection

ADC: analog-to-digital converters; mmWave: millimeter-wave; MIMO: multiple-input multiple-output; RF: radio frequency; LNA: low noise amplifier

Major results

2. The antenna selection algorithm improves the system performance significantly.

Fig. 3 Uplink sum rate of antenna selection and random connection against the transmit power ρ for N_r =256, γ =0.5, and b=1, 2

Major results

3. Energy efficiency of the system

Fig. 8 Energy efficiency of multi-cell mixed-ADC mmWave massive MIMO systems over different numbers of ADC quantization bits with $N_{\rm r}$ =256 and $N_{\rm RF0}$ =0, 5, 10, 128

Conclusions

- 1. Antenna selection algorithm is an effective method for improving the performance of the mixed-ADC system.
- 2. An efficient power allocation scheme which can significantly increase the sum achievable rate is proposed.
- 3. The system will achieve the highest EE and the best tradeoff between the achievable rate and power consumption when BS configures 3- and 4-bit ADCs, respectively.