Journal of Zhejiang University-SCIENCE A

<u>Cite this as:</u> Dong-wei Yao, Feng Wu, Xin-Lei Wang, 2016. Impact of diesel emission fluid soaking on the performance of Cu-zeolite catalysts for diesel NH₃-SCR systems. *Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)*, 17(4):325-334. http://dx.doi.org/10.1631/jzus.A1500215

Impact of diesel emission fluid soaking on the performance of Cu-zeolite catalysts for diesel NH₃-SCR systems

Dong-wei YAO

Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign

DEF soaking and urea deposit issues in real application

Experimental method

Four-step based SCR catalyst performance test

SCR catalyst samples

Catalyst Material	Cu-zeolite (Cu-SAPO-34)
Core Diameter (cm)	2.54
Core Length (cm)	5.08
Cell Density (CPSI)	400

Results and discussion

NO_x conversions of SCR catalyst samples

NO_x-free NH₃ oxidations of SCR catalyst samples

NH₃-free NO oxidations of SCR catalyst samples

NO and NH₃ oxidations of SCR catalyst samples with different DEF impregnation time

NO_x-free NH₃ storage level of SCR catalyst samples

N₂O selectivity of SCR catalyst samples

Conclusions

- □ DEF soaking leached some Cu from the SCR catalysts and slightly reduced their Cu loadings.
- □ The loss of Cu and associated metal sites on the catalysts weakened their catalytic oxidation abilities and caused lower NO/NH₃ oxidation and lower high-temperature N₂O selectivity.
- □ Lower Cu loading also made the catalysts less active to the decomposition of surface ammonium nitrates and decreased low-temperature N₂O selectivity.
- □ Cu loss during DEF impregnation released more acid sites on the surface of the catalysts and increased their acidities, and more NH₃ was able to be adsorbed and involved in SCR reactions at medium and high temperatures.
- □ Due to lower NH₃ oxidation and higher NH₃ storage, the DEF-impregnated SCR catalyst samples showed higher NO_x conversion above 400 °C compared with the non-soaked one.
- The negative impact of urea deposits during DEF impregnation was not clearly observed, because the high-temperature hydrothermal treatment helped to remove the urea deposits.