Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices

Jun-hui ZHANG, Di WANG, Bing XU, Min-yao GAN, Min PAN, Hua-yong YANG

<u>Cite this as:</u> Jun-hui ZHANG, Di WANG, Bing XU, Min-yao GAN, Min PAN, Hua-yong YANG, 2018. Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices. *Journal of Zhejiang University-SCIENCE A* (Applied Physics & Engineering), 19(6):417-430.

https://doi.org/10.1631/jzus.A1700164

Introduction

Current vehicle drive system:

Low efficiency, heavy pollution.

Hydraulic hybrid system:

Low installed power, Energy saving, but complicated.

Hydraulic free piston engine system:

Energy saving, Highly integrated.

Requirement for the valve:

High response and fast switch.

Method:

Increasing the driving force 8 Decreasing the flow force.

Flow force reduction method

Reduction method

Radial flowcompensation

Pressure drop compensation

Jet guiding compensation

The effect is simulated by CFD approach and tested by experiment.

Simulated & experimental results

Comparison of the of the flow structure

on the spool

Simulated & experimental results

Flow loss comparison

- The damping sleeve changes the pressure distribution and flow direction at the spool;
- The damping sleeve can significantly reduce the flow force with rather low flow loss and cavitation change.

Relative vapor volume comparison

Simulated results

Relative installation position change

- (a) Damping orifices are parallel with outlet ports
- (b) Damping orifices are at the angle of 45° to the outlet ports

Installation angle : $0^{\circ} \rightarrow 45^{\circ}$

Flow loss comparison

Flow force comparison

Relative vapor volume comparison

Experimental tests of valve response

1-Displacement sensor; 2-Teseted valve; 3-Damping sleeve; 4-Armature; 5-Electromagnet; 6-Hydraulic oil tank; 7-Relief valve; 8-Flow sensor; 9-Pressure sensor; 10-Pump; 11-Filter; 12-Fuel tank; 13-Pressure transformer; 14-Injector; 15-Check valve

Fuel injection system test rig

Comparison of spool displacement when given step signal

The opening time of the valve is reduced by 31% from 0.97 ms to 0.67 ms.

Conclusion and future work

Conclusion

- A 3D CFD analysis using RNG k- ε model for turbulent flow and the Schnerr and Sauer model for cavitation is carried out to look into the seat valve flow field. The simulated results are validated by experiment;
- A damping sleeve with orifices is proposed to reduce the axial flow forces;
- The flow force can be reduced by the damping sleeve from 61.29 N to 1.88 N with 4% flow loss;
- The cavitation effect is observed and compared with different structures.

Future work

 Further research will be focused on cavitation optimization by geometrical modifications and injection system improvements. The electromagnet capability should also be improved.

