Journal of Zhejiang University-SCIENCE A

Static response of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal plates using the state vector approach
 Yun-zhi HUANG, Yang LI, Lian-zhi YANG, Yang GAO

Key words: State vector approach, Functionally graded,
Piezoelectric quasicrystals, Plates

Cite this as: Yun-zhi Huang, Yang Li, Lian-zhi Yang, Yang Gao, 2019. Static response of functionally graded multilayered one-dimensional hexagonal piezoelectric quasicrystal plates using the state vector approach. Journal of Zhejiang University-SCIENCE A (Applied Physics \& Engineering), 20(2):133-147. https://doi.org/10.1631/jzus.A1800472

INTRODUCTION

Discovery

Development

(b) Quasicrystal

Example: $\mathrm{Al}_{70} \mathrm{Ni}_{15} \mathrm{Co}_{15}$

Application

(c) Functionally graded quasicrystals

Research process of quasicrystals

Shechtman et al, Phys. Rev. Lett., 1984; Fan, Science Press. 2011

METHOD

Multilayered piezoelectric quasicrystal plates

State equations based on the major equations of mechanics

Integrating equation

$$
\begin{aligned}
\boldsymbol{\theta}(z) & =\exp \left[\mathbf{K}\left(z-z_{j-1}\right)\right] \boldsymbol{\theta}\left(z_{j-1}\right) \\
& =\mathbf{Q}\left(z-z_{j-1}\right) \boldsymbol{\theta}\left(z_{j-1}\right)
\end{aligned}
$$

Propagator matrix method

$$
\boldsymbol{\theta}\left(z_{N}\right)=\mathbf{Q}_{N} \mathbf{Q}_{N-1} \ldots \mathbf{Q}_{1} \boldsymbol{\theta}(0)
$$

The quasi-periodic direction is z direction

Fan, Eng., 2013; Li et al, Act. Mech., 2017

Journal of Zhejiang University-SCIENCE A

RESULTS

The results at the $(x, y)=\left(0.75 L_{x}, 0.75 L_{y}\right)$ under the load of phonon stress

Effect of graded factor on phonon displacement

Guo et al, Int. J. Eng. Sci., 2016

Insensitive point of electric potential

RESULTS

The results at the same position under the load of electric displacement

Effect of graded factor on electric displacement

Insensitive point of phonon stress

CONCLUSION AND PROSPECT

- The static response of functionally graded piezoelectric quasicrystal plates is firstly analyzed by the state vector approach.
- The effects of stacking sequence and two varying functions of material gradient are investigated.
- The state vector approach can be extended to investigate other non-homogeneous materials and quasicrystal structures.
- The numerical calculations of static response of quasicrystal plates are of important values for guiding engineering design and construction.

