Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)

<u>Cite this as:</u> Li-feng Fan, Li-juan Wang, Guo-wei Ma, Peng-fei Li, Ming-jie Xia, 2019. Enhanced compressive performance of concrete via 3D-printing reinforcement. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 20(9):675-684. <u>https://doi.org/10.1631/jzus.A1900135</u>

Enhanced compressive performance of concrete via 3D-printing reinforcement

Li-feng FAN, Li-juan WANG, Guo-wei MA, Peng-fei LI, Ming-jie XIA

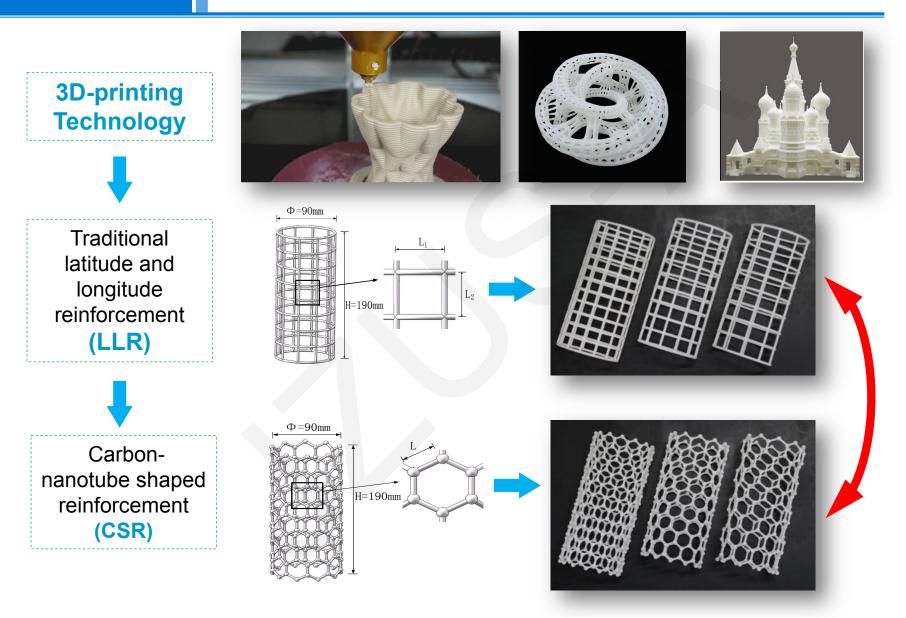
Key words: 3D-printing; Carbon-nanotube shaped reinforcement; Latitude and longitude reinforcement; Reinforced concrete

Background

Seismic damage

Thermal cycling

Chemical corrosion Loading damage



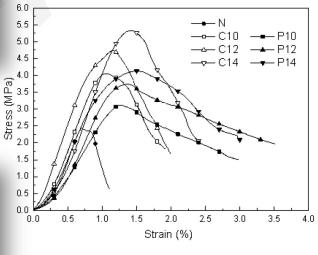
Traditional latitude and longitude reinforcement (LLR)

Rectangular element is not perfect for stress distribution in the concrete

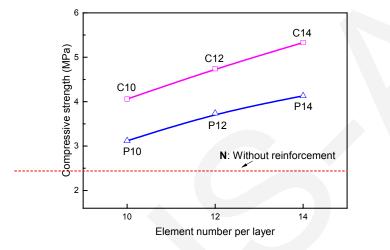
Background

建筑工程学院

Laboratory test


Unconfined compressive test

Samples

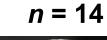

Unreinforced samples for comparison

Test results

Results and discussion

- The strength of the CSR reinforced specimen with 10, 12 and 14 elements per layer increases by 59.77%, 85.94% and 108.98% compared with the unreinforced specimen
- The strength of the LLR reinforced specimen with 10, 12 and 14 elements per layer increases by 24.22%, 46.88% and 68.75% compared with the unreinforced specimen

CSR is higher efficiency in compressive strength improvement than LLR



Results and discussion

n = 10

Global failure + Dominate through crack

LLR

Partial failure

Global failure + Dominate through crack

- The mechanical properties of specimens with reinforcement are much better than those of specimens without reinforcement.
- The strength and toughness of specimens with reinforcement increase constantly with the increase of the reinforcement ratio in the appropriate reinforcement ratio range.
- The strength of specimens reinforced by CSR is greater than that of specimens reinforced by traditional LLR when the reinforcement ratios are close.

Thanks a lot!

