Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)

Mechanism of the insecticidal effect of lambdacyhalothrin loaded mesoporous silica nanoparticles with different sizes and surface modifications on *Ostrinia furnacalis* (Guen ée) larvae

<u>Cite this as:</u> Yanlong WANG, Shuting XIAO, Jiang XU, Daohui LIN, 2023. Mechanism of the insecticidal effect of lambda-cyhalothrin loaded mesoporous silica nanoparticles with different sizes and surface modifications on *Ostrinia furnacalis* (Guen ée) larvae. *Journal of Zhejiang University-SCIENCE A* (Applied Physics & Engineering), 24(5):465-472. <u>https://doi.org/10.1631/jzus.A2200334</u>

D Pesticide loading on bare and functionalized MSN

Xiao et al., Science of the Total Environment, 831:154914

Material characteristics

Materials	Surface area (m²/g)	Total pore volume (cm ³ /g)	Pore size (nm)
$\mathbf{M_1}$	1586	0.89	2.23
\mathbf{M}_2	1858	0.98	2.11
\mathbf{M}_{3}	1441	1.03	2.86
$\mathbf{M_4}$	1634	1.46	3.56
M ₄ - 0.5NH ₂	653	0.59	2.42
M ₄ - 1.25NH ₂	389	0.40	1.48
M ₄ - 1.25CH ₃	1323	1.00	2.31
M ₄ - 2.5CH ₃	1184	0.90	2.31

Xiao et al., Science of the Total Environment, 831:154914

Insecticidal assessment of different LCNS-loaded MSNs under light and dark conditions

A negligible effect of MSN size was observed on the mortality of O. furnacalis larvae caused by M/L treatments (M₁/L, M₂/L, M₃/L, and M₄/L) under light or dark conditions

Surface modification of MSN could decrease the biological toxicity of LCNS loaded MSNs

Effects of different LCNS-loaded MSNs on reactive oxygen species accumulation

The comparable or lower ROS levels in the LCNS-loaded MSN treatments were observed in comparison with the LCNS treatment

Oxidative damage in O. furnacalis larvae was not the main reason for the high insecticidal activity of LCNS-loaded MSN.

Effects of different LCNS-loaded MSNs on antioxidase activity

Effects of different LCNS-loaded MSNs on Na⁺/K⁺-ATPase activity

Comparable Na⁺/K⁺-ATPase activity was observed between the M/L and PBS treatments.

Compared to the PBS treatment, the M₄– NH₂/L and M₄–CH₃/L treatments showed no significant inhibition of Na⁺/K⁺-ATPase activity.

Conclusions

- Loading LCNS onto bare or modified MSNs could reduce the negative impacts of light due to the improved photochemical stability of the loaded LCNS on MSN.
- The effect of MSN size on the insecticidal effect of LCNS-loaded MSN was negligible, while the surface modifications of -NH₂ and -CH₃ on MSN decreased the insecticidal effect under both the light and dark conditions.
- The ROS content in O. furnacalis larvae increased following treatment with LCNS-loaded MSNs of medium size (about 95 nm) and a surface modification of -NH₂.
- LCNS-loaded MSNs with different sizes and surface modifications inhibited SOD and CAT activities, but LCNS-loaded MSN treatment had a negligible effect on Na⁺/K⁺-ATPase activity in the *O. furnacalis* larvae.
- The high insecticidal activity of LCNS-loaded MSNs was probably caused by the increased exposure of LCNS from the sorbed LCNS-loaded MSNs rather than oxidative damage to O. furnacalis larvae.