Najam Muhammad Amin, Zhi-gong Wang, Zhi-qun Li, 2014. Folded downconversion mixer for a 60 GHz receiver architecture in 65-nm CMOS technology. *Journal of Zhejiang University-SCIENCE C (Computers & Electronics)*, **15**(12):1190-1199. [doi:10.1631/jzus.C1400087]

Folded down-conversion mixer for a 60 GHz receiver architecture in 65-nm CMOS technology

Key words: Folded mixer, Current reuse, Low power, Inductorless design, Direct conversion

Contact: Najam Muhammad AMIN, E-mail: najam.m.amin@seu.edu.cn ORCID: <u>http://orcid.org/0000-0002- 9419-0380</u>

Introduction

- The conventional Gilbert mixer is unsuitable for low supply voltages due to its stacked architecture.
- To resolve the problem of voltage headroom and achieve an optimum performance from the mixer in terms of high conversion gain and low noise figure, folded mixer topology must be employed.
- A folded mixer design for a 60 GHz receiver in a 65 nm LP-CMOS process has been presented in this work.

The 60 GHz receiver with emphasis on this work

Fig. 1 The 60 GHz receiver architecture with emphasis on this work

Fig. 2 Schematic of the proposed folded mixer design along with component values

Chip micrograph

Fig. 7 Chip micrograph of the proposed folded mixer

Measurement results (1)

Fig. 8 Measured and simulated voltage conversion gains for VDD=1.2 V and 1 V

Fig. 9 Conversion gain variation with respect to LO power at an IF=10 MHz

Fig. 10 $P_{in,1dB}$ at an IF of 10 MHz (f_{RF} =12.01 GHz, f_{LO} = 12 GHz)

Measurement results (2)

Fig. 11 Isolation characteristics of the proposed mixer (baluns with different frequency ranges were employed to measure isolation)

Fig. 13 Double sideband noise figure (DSB-NF): (a) linear IF axis; (b) simulated NF along with measured and extrapolated NF curves in a log-frequency axis

Performance comparison

			-	-			
	Value/Description						
Parameter	Hermann	Klumperink	Furuta	Poobuapheun	Safarian	Hampel	This work
	et al. (2005)	et al. (2004)	et al. (2007)	et al. (2007)*	et al. (2005)	et al. (2010)	
Process	0.13 µm	0.18 µm	0.13 µm	0.13 µm	0.18-µm	65 nm	65 nm
	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS
RF frequency (GHz)	2.1-3	0.3-4	0.85-2.1	0.7-2.5	3-8.72	1-10.5	10.25-13.75
CG _{max} (dB)	5.4	11	13.2	38	5	14.5	≈10
$P_{\rm in,1dB}$ (dBm)	-9.2	NA	10-6	-25.8	NA	-13.8	-13
IIP3 (dBm)	3.5	4,1	4.5	11	5	-4.2	-3.4**
NF _{min} (dB)	14.8 (SSB)	14 (SSB)	12.3 (DSB)	10 (DSB)	6.8	6.5 (DSB)	7 (DSB)
$P_{\rm DC}$ (mW)	1.6	6.6	8.25	24	10.4	14.4	6
VDD (V)	0.6	1	1.5	1.5	1.8	1.2	1.2
FOM*** (dB)	9.45	10.3	9.37	22.6	10	9.037	10.5
Area (mm²)	NA	0.0048	NA	NA	1.624	0.011	0.017

Table B1 Performance summary with comparison to other works

'Including narrowband opamp; '' IIP3= $P_{.1 \text{ dB}}$ +9.6 (Razavi, 1988); ''' FOM = $10 \log \left(\frac{10^{6/20} \cdot 10^{(1194-10)/20}}{10^{307/10}} \right)$

Conclusions

- The folded mixer employing an ac-coupled self-biased current reuse topology for its transconductance stage shows good performance in terms of conversion gain, noise figure, and linearity.
- The proposed mixer achieves a competitive (slightly better) FOM compared to those proposed in the recent literature.