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Abstract
Conventional 2D intestinal models cannot precisely recapitulate biomimetic features in vitro and thus are unsuitable for 
various pharmacokinetic applications, development of disease models, and understanding the host-microbiome interactions. 
Thus, recently, efforts have been directed toward recreating in vitro models with intestine-associated unique 3D crypt-villus 
(for small intestine) or crypt-lumen (for large intestine) architectures. This review comprehensively delineates the current 
advancements in this research area in terms of the different microfabrication technologies (photolithography, laser ablation, 
and 3D bioprinting) employed and the physiological relevance of the obtained models in mimicking the features of native 
intestinal tissue. A major thrust of the manuscript is also on highlighting the dynamic interplay between intestinal cells 
(both the stem cells and differentiated ones) and different biophysical, biochemical, and mechanobiological cues along with 
interaction with other cell types and intestinal microbiome, providing goals for the future developments in this sphere. The 
article also manifests an outlook toward the application of induced pluripotent stem cells in the context of intestinal tissue 
models. On a concluding note, challenges and prospects for clinical translation of 3D patterned intestinal tissue models have 
been discussed.

Keywords  Intestine tissue models · Microfabrication · Biophysicochemical and biomechanical cues · Coculture · Induced 
pluripotent stem cells
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PTFE	� Polytetrafluoroethylene
PEG	� Poly(ethylene glycol)
AA	� Acrylic acid
ECM	� Extracellular matrix
UV-LIGA	� Ultraviolet-lithography, electroplating, and 

molding
PLA	� Poly(lactic acid)
CVD	� Chemical vapor deposition
PMMA	� Poly(methyl methacrylate)
PLGA	� Poly(lactic-co-glycolic acid)
PEVA	� Poly-ethylene-co-vinyl-acetate
CAD	� Computer-aided design
PEGDA	� Poly(ethylene glycol) diacrylate
VMEPS	� Vertically moving extrusion-based printing 

system
HUVECs	� Human umbilical vein endothelial cells
TEER	� Transepithelial electrical resistance
MUC17	� Mucin 17
RT-PCR	� Reverse transcription polymerase chain 

reaction
FITC	� Fluorescein isothiocyanate
PCL	� Poly-ε-caprolactone
ZO-1	� Zonula occludens-1
P-gp	� P-Glycoprotein
ALP	� Alkaline phosphatase
CYP3A4	� Cytochrome P450 3A4
EdU	� 5-Ethynyl-2′-deoxyuridine
Olfm4	� Olfactomedin 4
CK20	� Keratin 20
MUC2	� Mucin 2
E-cad	� E-cadherin
ISC	� Intestinal stem cell
RGD	� Arginine-glycine-aspartate
GAGs	� Glycosaminoglycans
Wnt	� Wingless-related integration site
TGF-β	� Transforming growth factor beta
FGF	� Fibroblast growth factors
LGR5	� Leucine-rich repeat-containing G-protein 

coupled receptor 5
IFN-γ	� Interferon gamma
TNF-α	� Tumor necrosis factor alpha
YAP	� Yes-associated protein 1
BCRP	� Breast cancer resistance protein
MRP2	� Multidrug resistance protein 2
iPSCs	� Induced pluripotent stem cells
STAT1	� Signal transducer and activator of transcrip-

tion 1
ENS	� Enteric nervous system
MIP-2	� Macrophage inflammatory protein 2
IL-10	� Interleukin 10
ISEMFs	� Intestinal subepithelial myofibroblasts
SCFAs	� Short-chain fatty acids
ELCs	� Enterocytes-like cells

DELCs	� Definite endodermal-like cells
IPLCs	� Intestinal progenitor-like cells
HLCs	� Hindgut-like cells
EGF	� Epidermal growth factor
5-aza	� 5-Aza-2′-deoxycytidine
BIO	� 6-Bromoindirubin-3′-oxime
DAPT	� N-[(3,5-difluorophenyl)acetyl]-L-alanyl-

2-phenyl-1,1-dimethylethyl ester-glycine
WRN	� Wnt3A,R-spondin,Noggin
PEPT1	� Peptide transporter 1
SIOs	� Small intestinal organoids
Cos	� Colonic organoids
BMPs	� Bone morphogenetic proteins
SATB2	� Special AT-rich sequence-binding protein 2
HOX	� Homeobox
WDR43	� WD Repeat Domain 43
TALEN	� Transcription activator-like effector nuclease
CFTR	� Cystic fibrosis transmembrane conductance 

regulator
IBD	� Inflammatory bowel disease

Introduction

The intestine is one of the most vital metabolic organs 
involved in digestion and absorption of nutrients [1–3]. Its 
unique microarchitecture accompanied by the peristaltic 
contractions provides a much required large surface area to 
aid nutrient absorption [2–4]. Owing to its constant contact 
with gut microbiome and xenobiotics components, it is at 
high risk of various pathological disorders [5–7]. Thus, to 
find a potential treatment for these disorders, a clear under-
standing of their mechanistic aspects is necessary.

Animal models are still the gold standard clinical mod-
els to study intestinal anatomy, physiology, pathologies and 
xenobiotic-mediated tissue responses [8, 9]. However, the 
underlying differences with the human intestinal anatomy, 
gut microbiota, immunological activities, expense of animal 
maintenance, and ethical considerations, further limit their 
usage [8, 10]. Therefore, the current thrust of the healthcare 
and diagnostic sector is on the development of functional 
in vitro intestinal tissue models.

Up to date, various intestinal models, including 2D/3D or 
dynamic microfluidic chip-based, have been proposed and 
developed [1, 11]. However, limited physiological relevance 
of these models, in terms of topological and microenviron-
mental features, makes them far from actually recapitulating 
the complexity of the native intestinal tissue, and thus, are 
unsuitable for clinical applications [1, 11–14].

In this regard, decellularized intestinal submucosal tissue 
holds the most promising prospects as it retains, to an extent, 
native-like architectural and matrix’s biochemical charac-
teristics [15, 16]. Owing to these aspects, decellularized 
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scaffolds have generated a great wave of enthusiasm, mainly 
in the domain of regenerative medicines and in vitro model 
development [17, 18]. But their applicability is often limited 
by a low tissue availability, tedious non-standardized decel-
lularization procedure, damage to the native ECM (micro-
structural, biochemical, and mechanical), difficult handling, 
and low experimental reproducibility [15, 17, 18].

Consequently, a current focus of research fraternity is 
on devising strategies for patterning intestine-like topolo-
gies on 2D substrates. These patterned substrates could be 
employed for developing biomimetic in vitro 3D tissue mod-
els. Advanced microfabrication techniques, including soft 
lithography, laser-induced ablation, and 3D (bio) printing, 
have paved the way for the same [1, 11]. In fact, cells cul-
tured on these models exhibit more differentiated phenotype, 
compared to those on other conventional models [19–22]. 
To the best of our knowledge, to date, there exists no review 
that critically highlights the patterned 3D intestinal tissue 
models, their corresponding fabrication technologies, as well 
as the impact of these topological cues on cellular activity. 
Thus, in the present work, we have taken the opportunity 
to discuss these topics comprehensively. Further, we dis-
cuss the importance of various biophysical and biochemi-
cal aspects of the matrix, external biomechanical cues, and 
coculture strategies (with other cell types and intestinal 
microflora), supported by recent development in the domain. 
Besides, to further extend the scope of the review, aspects of 
stem cell engineering are also included.

Intestinal epithelium: understanding 
the biology of crypt‑villus architecture

The intestinal epithelium is the innermost lining of the intes-
tine, acting as a physical barrier between the internal tis-
sue and the luminal environment and is responsible for the 
digestion of the chyme and absorption of the nutrients [5, 
23]. The intestinal epithelium is organized into a specialized 
crypt/villus configuration [3, 24]. Notably, this configuration 
varies along the length of intestine, from the small intestine 
(SI) to large intestine (LI).

In the SI, the configuration consists of a villus (finger-like 
projection of the intestinal wall), surrounded by multiple 
crypts (invaginations into the intestinal wall, appropriately 
termed as the crypt of Lieberkuhn) [3, 24]. The villus is 
the site of intestinal brush-border enzyme-mediated diges-
tion (mainly in the duodenum) and nutrient uptake (in the 
jejunum and ileum) [3]. The absorbed nutrients are further 
channelized into the blood mainstream via the underlying 
blood and lymphatic capillaries. The duodenum zone of SI 
has the longest villi (> 1 mm length) [24]. On the other hand, 
the crypt primarily acts as glands that secrete antimicrobial 
agents and several hormones. They are also characterized 

by the presence of an intestinal stem cell (ISC) niche [1]. 
In contrast, the LI does not have villi-like structures but 
abounds of cryptic invaginations [1].

The ISC niche is highly dynamic and is responsible for 
restoring the intestinal epithelium every 4–5 days [25]. It 
contains active multipotent ISCs (also known as crypt base 
columnar cells or CBCs), placed alternatively to Paneth cells 
[24, 26]. Besides, the stem cell niche also has a quiescent 
stem cell population that plays a crucial role in regenerating 
the ISC niche in case of any tissue injury [24]. The CBCs 
undergo constant proliferation and also give rise to tran-
sit-amplifying (TA) cells, which further differentiate into 
secretory (Paneth, goblet, enteroendocrine and tuft cell) and 
absorptive (enterocytes and M cell) lineages [1, 24, 26]. In 
contrast, LI does not have Paneth cells, and the ratio of gob-
let cell to enterocytes is relatively higher than in SI [1].

During the proliferation and differentiation process, the 
fully mature epithelial cells show a gross upward move-
ment along the crypt-villus axis in the SI and toward the 
luminal surface in the LI [1]. Besides this, the damaged or 
apoptotic cells shred off into the intestinal lumen. Notably, 
unlike other differentiated epithelial cells, Paneth cells move 
downwards to form the part of stem cell niche [24].

The distribution and specific functions of the different 
cell types are illustrated in Fig. 1 and Table 1.

Developing crypt‑villus architecture: 
the current state of the art

Over the last decade, enormous efforts have been dedicated 
to recapitulating the crypt-villus architecture associated with 
the intestinal tissue in vitro [1, 11]. This section delineates 
different fabrication strategies employed for developing 
these topological features and the impact of these topologi-
cal features on the behavior of cultured intestinal cells.

Fabrication strategies

Replica molding

Replica molding is a strategy that involves the development 
of master mold containing patterns, followed by multiple 
imprinting and remolding steps to fabricate scaffolds with 
biomimetic 3D intestinal topology.

Photolithography has widely been employed in various 
fields to obtain micropatterns. Typically, it is based on the 
crosslinking of a photosensitive polymer or photoresist, that 
is selectively exposed to ultraviolet (UV) light through a 
photomask with a desired pattern [44]. Conventional pho-
tolithography with SU-8 photoresist on silicon wafer fol-
lowed by PDMS replica molding was employed to fabricate 
molds for 3D villi-like hydrogel units and the PDMS fluidic 
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Fig. 1   Distribution of cells across the a crypt-villus axis of SI and b 
crypts of LI. ISC niche consisting of actively dividing ISCs (green) 
and Quiescent+ 4 ISCs (light blue) is present at the cryptic base. TA 
cells (gray) further differentiated to form enterocytes (in SI)/colono-
cytes (in LI) (orange), goblet (brown), tuft (purple), enteroendocrine 

(blue), and Paneth cells (yellow). Paneth cells are particularly present 
in the crypts of SI. Red arrow designates the ability of different cell 
types to convert into active ISCs. Reprinted with permission from 
[26]

channel [45]. The resultant alginate/collagen hydrogel units 
with different aspect ratios were assembled inside the flu-
idic channel, recreating 3D intestinal environment on-chip 
for culturing cells under flow conditions. In another study, 
the sole crypt structures in a collagen scaffold were repro-
duced with one-layer photolithography, within a modified 
Transwell (Fig. 2b) [46] or within a customized platform in 
which a photo-patterned hydrophilic polytetrafluoroethylene 
(PTFE) membrane [47]. In an effort to recreate human SI 
epithelium with crypts and villi, two-layer photolithography 
was used. The strategy involved reproducing the negative 
of the villi first, and then the negative of the crypts in a 
single mold. Two steps of polydimethylsiloxane (PDMS) 
soft lithography followed the preparation of micromolds; 
after that, crosslinked collagen hydrogel scaffolds (via EDC/
NHS chemistry) were developed, reproducing crypts and 
villi (Fig. 2a) [48].

Recently, reaction–diffusion mediated photolithogra-
phy (which involves controlled oxygen gradients within 

the polymerization set up) has been developed as a sim-
ple, single-step and mold-free procedure to mimic the 3D 
villus-like geometry using a polymeric formulation con-
taining poly(ethylene glycol) diacrylate (PEGDA), acrylic 
acid (AA), and Irgacure D-2959 [49]. The dimensions and 
geometries of the microstructures were established by play-
ing with fabrication parameters such as the oxygen diffusion/
depletion timescales, the exposure dose, and distance to the 
light source. AA allowed covalent conjugation of ECM pro-
teins (laminin or collagen), whose density could be tuned 
without affecting the mechanical properties of the hydrogel, 
making the constructs suitable for cell culture. Inexpensive 
and rapidly implementable UV-LIGA (lithography, elec-
troplating, and molding) fabrication technology, involving 
backside exposure-based photolithography with SU-8, was 
used to produce an array of microneedles, with projective 
structure and size comparable to those of the mouse duo-
denal villi [50]. These molds were replicated to develop 
poly(lactic acid) (PLA)-based 3D scaffolds.
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UV laser ablation was used to develop plastic molds 
with high-aspect-ratio holes. The features were replicated 
on PDMS and on calcium alginate that was subsequently 
dissolved to achieve final 3D collagen/PEG villus-like struc-
tures. The use of calcium alginate as a sacrificial mold elimi-
nated the stress associated with the separation of the mold 
from the hydrogel structure, enabling the fabrication of pat-
terns with high aspect ratio and curvature, without damaging 
them (Fig. 2c) [51]. Similarly, CO2 laser was also employed 
for developing poly(methyl methacrylate) (PMMA) tem-
plates and subsequently 3D patterned collagen scaffolds [52, 
53]. The CO2 laser system is often advantageous than UV 
laser for developing molds with high aspect ratios due to its 
higher etching capability.

Porous PLGA scaffolds were produced by a modified 
version of the porogen leaching-thermally induced phase 
separation method. PLGA was mixed with sodium bicar-
bonate as a porogen, and the solution was poured into 
the agarose molds. After PLGA casting, the scaffolds 
were frozen at -20 °C, submerged in pre-cooled ethanol 
to extract chloroform and finally immersed in warm dis-
tilled water to dissolve the porogen [54]. In another study, 
the same strategy was employed to develop porous 3D 
patterned scaffolds with poly-ethylene-co-vinyl-acetate 
(PEVA) polymer [55].

Although the substrates mimicking crypt-villus geome-
try have widely been fabricated using the above-mentioned 
strategies, the obtained microstructures are only an approxi-
mation of the irregular and multiscale topography of the 

native tissue. To enable the polymeric replica of biomimetic 
irregular SI geometries, chemical vapor deposition (CVD) 
of Parylene C on decellularized porcine SI was introduced 
[56]. After Parylene C was deposited, the porcine tissue was 
removed by bleach immersion. The side of the material, in 
contact with the tissue, contained the negative pattern of the 
native intestine and was used as a mold to prepare a PDMS 
replica. Resulting PDMS substrates exhibited multiscale 
resolution features, including crypt-villi structures and the 
underlying basement membrane [56].

3D bioprinting

3D printing or additive manufacturing involves the fabrica-
tion of 3D objects by layer-by-layer deposition of material(s), 
following a computer-aided design (CAD) model [57]. 
Recently, stereolithography (SLA), a form of 3D print-
ing, was employed to fabricate artificial scaffolds match-
ing the topography and dimensions of the mouse intestinal 
epithelium with a microscale resolution (Fig. 2d) [58]. The 
authors employed the same PEGDA-AA-based polymeric 
formulation, similar to that used in the other study [49]. The 
printed scaffolds were further conjugated with ECM proteins 
(fibronectin or laminin or collagen) to improve its suitability 
for cell culture. Notably, unlike the previous study which 
used photolithography to fabricate villi-like structures with 
PEGDA-AA formulation [49], implementation of 3D print-
ing offered more uniformity in the printed structures as well 
as allowed to develop scaffolds with both crypts and villi 
geometries [58].

Further, the advanced versions of 3D printing even allow 
fabrication of cell-laden 3D constructs, which is otherwise 
difficult to achieve with traditional ones. They often use a 
bioink formulation consisting of cells and cell-protecting 
hydrogels. Moreover, this strategy can enable the printing of 
multiple cells in the desired region within the scaffold [59, 
60]. In this regard, 3D bioprinting was employed to mimic 
the human intestinal villi with Caco-2 cell-laden collagen 
bioink, crosslinked with tannic acid, a natural polyphenol. 
The bioprinting process involved two steps: (i) printing of a 
flat mesh structure to fabricate the crypt region and (ii) print-
ing in the vertical direction by a vertically moving extrusion-
based printing system (VMEPS) to obtain a protruded villus 
structure [61].

The same group introduced a dual-cell printing system 
supplemented with a core–shell nozzle to fabricate 3D intes-
tinal villi containing epithelium as well as a blood capil-
lary network (Fig. 2e). They prepared two bioinks: bioink-
E with Caco-2 cells, for shell region, and bioink-V with 
human umbilical vein endothelial cells (HUVECs) for the 
core region. This time, the process involved three steps: (1) 
printing of a layer of flat mesh structure using bioink-V; (2) 
printing of a second layer using bioink-E on the bioink-V 

Fig. 2   Fabrication strategies. a Two-layer photolithography to repli-
cate crypt-villi features. 1 The fabrication process of PDMS stamps. 
2 Measurement specifications the developed PDMS stamp #1. Values 
mentioned in µm. 3 Bright-field micrographs of the stamp #1 from 
the top-view. 4 Scanning electron micrographs of stamp #1 from the 
side view. 5 Schematic representation of the SI-associated patterns 
developed on collagen scaffolds in the modified transwell insert. 
Reprinted with permission from [48]. b Single-layer photolithogra-
phy to replicate colonic crypt features. 1 The fabrication process of 
PDMS stamps. 2 Measurement specifications the developed PDMS 
stamp #2. Values mentioned in µm. 3 Scanning electron micro-
graphs of the PDMS stamp #2. 4 Schematic representation of the 
colon-associated crypt structures developed on collagen scaffolds in 
the modified transwell insert. Reprinted with permission from [46]. 
c Fabrication steps to obtain 3D collagen villi-like structures, start-
ing from a plastic substrate created by laser ablation from which the 
PDMS mold and then alginate mold are replicated. The alginate mold 
is finally dissolved. Reprinted with permission from [51]. d Sche-
matic representation of SLA strategy for layer-by-layer fabrication of 
3D printed PEGDA scaffolds (in the presence of a photoinitiator and 
AA polymer chains) using a 405  nm laser. Reprinted with permis-
sion from [58]. e Extrusion-based bioprinting strategy. Representative 
schematics of the fabrication process of 1 2D mesh-like crypts and 2 
3D finger-like villi. Two bioinks, namely bioink-E (with Caco-2 cells) 
and bioink-V (with HUVEC) were employed. The villus architecture 
consisted of inner vascular core (bioink-V) and an exterior shell of 
epithelial cells (bioink-E), developed using VMEPS with core–shell 
nozzle. Reprinted with permission from [62]

◂
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structures with 100% offset; and (3) the villus-like struc-
tures were obtained by simultaneously printing bioink-E and 
bioink-V in the vertical direction using a core–shell nozzle 

[62]. The same strategy was further opted to develop 3D 
intestinal patterns using collagen/decellularized porcine SI 
submucosa-based bioinks [63].
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P450 3A4 (CYP3A4) activities were higher in the 3D mod-
els, while ANPEP activity was comparable in both of them 
[67]. In a different study, cell monolayer grown on villi-like 
3D collagen constructs presented TEER values that more 
closely correlated with the in vivo intestine, than on the tra-
ditional 2D models. Drug permeability tests with Atenolol 
showed ~ 13 times higher permeability coefficient in the 3D 
patterned constructs compared to 2D ones [53].

3D topological features also affected the differential 
phenotype in a spatial manner. Poly-ε-caprolactone (PCL)/
PLGA 3D patterned membranes facilitated differentiation 
of Caco-2 cells, as evidenced by the brush-bordered cell 
phenotype (at the top of the villus), temporal increase in the 
activity of (ALP) during differentiation, and uniform zonula 
occludens-1 (ZO-1) expression. Lower TEER, along with 
higher uptake of 25 Mg and 45Ca, was witnessed on the 3D 
membranes as compared to the non-patterned 2D ones [68]. 
In another study, Caco-2 cells seeded onto PEGDA-AA 3D 
scaffolds showed directional migration from the base to the 
top of the villus, to fully cover them. After 21 days, Caco-2 
cells expressed markers such as villin (at the apical side of 
the microvilli), ZO-1 (in tight junctions), and β-catenin (in 
the basolateral cell membranes). The 3D villi-like constructs 
had lower TEER values and higher permeability coefficient 
than the conventional Transwell controls [49].

Recently, printed PEGDA-AA-fibronectin hydrogel 
scaffolds, 2D and 3D, were used to study the impact of 3D 
topography on Caco-2 differentiation. 2D coverslip (with or 
without fibronectin coating) was also taken as 2D control. 
Cells formed a confluent monolayer in all three surfaces; 
however, there existed significant differences in their pheno-
typic characteristics. The cells on glass coverslip exhibited 
flattened morphology without any apicobasal polarization, 
irrespective of fibronectin coating. On the contrary, elon-
gated morphology and polarized cells were observed on the 
printed hydrogel matrices, both 2D and 3D. Cells on the 
3D scaffolds demonstrated higher cell elongation, better 
cell polarity, and higher expression of villin and ALP, as 
compared to 2D hydrogels. The study also revealed that the 
height of the villus (500 or 1500 µm) did not critically affect 
cell polarization (Fig. 3a) [58].

As mentioned above, intestinal epithelium harbors multi-
ple cell types. Thus, to better mimic cellular profiles, exist-
ing in vivo, Caco-2 and HT29-MTX were cocultured on 
porous PLGA scaffolds in a 3:1 ratio. A directional cellular 
migration from the base to the top of the scaffold was evi-
dent, with villus tips having better differentiated phenotypic 
characteristics. Higher ALP secretion and mucus production, 
along with lower TEER values, were observed in 3D con-
structs than their 2D counterparts [54]. Integration of native-
like vascular network is necessary, yet challenging aspect for 
developing the intestinal model. In this regard, the coaxi-
ally 3D printed models with spatially defined localization 

Fig. 3   Cell responses on the 3D intestinal models. a Representative 
confocal micrographs of Caco-2 cells cultured on 2D hydrogels and 
3D SLA-printed scaffold (at the top and side of a villus) for 21 days. 
Expression and distribution of F-actin/ Pan-cytokeratin/villin are 
shown in green, β-catenin in red, and the nucleus is stained blue 
with DRAQ5 (Scale bar 50 µm). White square mark the area zoomed 
for better visualization; images provided in the right-hand side of 
each subset. Reprinted with permission from [58]. b Representative 
immunofluorescence micrographs demonstrating the presence of 1 
MUC17+ Caco-2 cells (at the exterior) and 2 CD31+ capillary-like 
network (in the core) in the bioprinted intestinal model. Nucleus was 
stained with DAPI. Reprinted with permission from [62]. c Genera-
tion of colonic crypts. 1 Schematics of the culture of colon-derived 
crypt cells on micromolded collagen scaffold. Post-seeding on the 
scaffolds, the crypt cells were expanded till day 8. Cellular differen-
tiation and polarization were induced via exposure to growth factor 
gradient. Representative images demonstrating spatial expression of 
intestinal markers in colonic crypts differentiated in vitro in the 2 top-
view (max projection along the z-axis and summing up the images) 
and 3 side view. 4 Confocal micrographs showing expression of ZO-1 
and E-cad at the luminal surface of the differentiated in vitro crypts. 
Reprinted with permission from [47]. d Generation of SI-associated 
crypt-villus pattern in vitro. 1 Illustration showing the effect of com-
bined WRN growth factors and DAPT gradient on cell polarization. 
2 Bright-field images of the cell-seeded 3D structure (Scale bar 
100 µm). Representative images, demonstrating the distribution of 3 
EdU/ALP and 4 Olfm4/CK20 positive cells along with the 3D pat-
tern with nucleus stained in blue (Scale bar 100 µm). Reprinted with 
permission from [48]

◂

Functional behavior of the cells on 3D intestinal 
models

Gene expression and barrier functions

Substrate topography plays a fundamental role in deter-
mining the physiological function of a variety of cell types 
including osteoblasts [64], hepatocytes [65], cardiomyocytes 
[66], and even stem cells [64]. It influences cell–matrix 
interaction, cell–cell interaction, and biomechanical cues, 
modulating the intracellular signaling cascade, and subse-
quently, the cell behavior [52]. Intestinal cells are no differ-
ent in this regard.

A notable difference between that arises due to the pres-
ence of villus-like structures is the available surface area 
for cellular growth that may influence their physiological 
behavior. A study demonstrated that cells on both 2D and 3D 
models grew at a similar rate for the first 12 days, but after 
16 days, they had grown twice on patterned 3D substrates. 
Additionally, a decrease in TEER values (i.e., the integrity of 
tight junctions formed by cell–cell contacts) and an increase 
in absorptive permeability of fluorescein could be attributed 
to an increase in culturable surface area. A reduction in the 
expression of occludin and p-glycoprotein (P-gp, an efflux 
transporter protein) was also evident as compared to the 2D 
model. Metabolic enzymatic activities associated with intes-
tinal epithelium were also evaluated; ALP and cytochrome 
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of Caco-2 (at the exterior) and HUVEC (in the core) were 
shown to support an improved differentiated phenotype of 
the epithelial cells, in terms of ALP and ANPEP activity, 
expression of MUC17, and the presence of brush-border 
epithelium, as compared to the models without HUVEC. 
Besides this, HUVEC also underwent a transition to form 
a capillary-like network in coculture models (Fig. 3b) [62].

Intestinal models are also applied for ascertaining the role 
of the microbial population (both healthy gut microbes and 
pathogenic ones) in the gut. The conventional 2D models 
fall short in mimicking the original bio-interactive profiles 
of the intestinal epithelium with the microbes. A recent 
study highlighted a lower invasion by pathogenic bacterial 
strains, Escherichia coli O157: H7 and Salmonella typhimu-
rium on 3D patterned scaffolds. Such an outcome was linked 
to higher expression of mucin-related genes, particularly 
MUC17, in the case 3D substrates than the 2D monolayer 
cultures [52].

Intestine‑associated cellular compartmentalization

Although the studies mentioned in the previous section dem-
onstrate physiologically relevant spatially discrete pheno-
typic features, they fail to closely recapitulate the aspects of 
native-like cellular compartmentalization. The intestinal epi-
thelium has a distinct crypt-villus (in SI) or crypt-lumen (in 
LI) architecture; wherein stem cell niche lies in the crypts, 
while the differentiated polarized cells are present at the 
villus/luminal surface [69]. Current efforts to recapitulate 
such complexity utilize gradient of growth factors and small 
molecules across the 3D patterned scaffolds, seeded with 
intestinal crypt cells, which drives migration and differentia-
tion process, creating lineage compartmentalization, similar 
to the native tissue.

In this regard, collagen-coated microhole array was 
fabricated for reproducing the cell compartmentalization 
in crypt structures. Primary mouse colon crypt cells were 
seeded, and localized gradients of growth factors (Wnt3A, 
R-spondin, Noggin; together termed as WRN) were applied 
across the microholes, thereby yielding a stem/prolifera-
tive region (5-ethynyl-2′-deoxyuridine (EdU)+) inside the 
microholes, and non-proliferative and differentiated (ALP+) 
zones distant from the microholes [20]. Another crypt-lumen 
model was fabricated to study intestinal cell compartmen-
talization process, where human intestinal crypt cells were 
cultured on a micromolded collagen scaffold (with an array 
of crypt-like invaginations) and subjected to a biochemical 
gradient by placing WRN-rich medium in the basal reser-
voir and WRN-deficient medium in the upper (or luminal) 
reservoir. Polarization of the in vitro tissue was observed 
with proliferative cells (EdU+ , olfactomedin 4 (Olfm4)+) 
in the crypt region and differentiated cells (EdU+, keratin 20 
(CK20)+ and erzin+) at the luminal surface. Interestingly, 

mucus-secreting goblet cells (MUC2+) were also observed 
[46].

Scalability of the intestinal model is one of the most 
pertinent challenges. In this regard, a scalable platform 
consisting of ~ 3875 crypts over a single membrane, where 
chemical gradients could be simultaneously imposed in 
distinct regions; this enables a parallelizable in vitro crypt 
formation system. Here also, crypts were seeded with human 
colon crypt cells, and exposure to WRN gradients resulted 
in cellular compartmentalization. Proliferative cells (EdU+, 
Olfm4+) were restricted to the basal region of the crypts, 
whereas differentiated colonocytes (ALP+ , CK20+) were 
present at the luminal plane. Proteins responsible for tight 
and adherens junction maintenance such as ZO-1 and E-cad-
herin (E-cad) were displayed at the luminal plane. Goblet 
cells were also present (Fig. 3c) [47].

Besides, in a more recent study, the conventional WRN-
gradient (basal to luminal) was found to be insufficient to 
fully induce cellular compartmentalization on 3D collagen 
constructs, seeded with human small intestinal crypt cells. 
Incorporation of the second gradient of a small molecule, 
DAPT (luminal to basal), overcame this issue. After apply-
ing a dual gradient strategy, proliferative (EdU+, Olfm4+) 
and differentiated (CK20+, ALP+) cells were observed 
explicitly in crypt and villus regions, respectively. Moreo-
ver, EdU+ cells migrated upwards along the crypt-villus axis 
over time, similar to in vivo (Fig. 3d) [48].

These studies indicate that mimicking the 3D geometry of 
the intestinal epithelium influences the cellular phenotype. 
Table 2 summarizes all the studies that have evaluated cel-
lular behavior on a 3D microstructured construct to date.

Modulation of intestinal cell behavior: 
biophysical and biochemical determinants

Controlling the in  vitro behavior of the cells (both the 
stem cells and differentiated ones) and achieving desir-
able in vivo-like effects, are some of the biggest challenges 
faced by the researchers. The recent understanding of exist-
ing multifactorial determinants (intrinsic and extrinsic) of 
cell behavior has led to significant advancements in this 
field. Principally, the biochemical nature of in vivo ECM is 
mimicked, by utilizing in vivo-like mechanical and physical 
cues that have now been established as substantial regulation 
factors of cell fate and behavior. Moreover, recreating the 
cellular environment and interactions with neighboring cell 
population and intestinal microflora has also being explored. 
Besides, creating various gradients of ECM components, 
biochemical factors, and gases, similar to the native crypt-
lumen (in LI) and crypt-villus (in SI) axis are also pertinent 
options (Fig. 4).
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ECM composition

As the biological milieu surrounding cells, the ECM is a 
fibrous network of crosslinked proteins and glycosamino-
glycans (GAGs) which makes up most of the cellular micro-
environments [76]. Highly hydrated, it forms a hydrogel 
secreted by cells and connects the latter within tissues, and 
organs with each other. It provides structural and spatial 
organization to tissue components, protects the cells against 
mechanical pressures, mediates cellular attachment and also 
controls downstream signaling cascades that further deter-
mine their behavior [77, 78]. Abounding of signaling mol-
ecules for the regulation of tissue function and homeostasis, 
the ECM further translates information by its composition 
and molecular architecture, overall constituting a dynamic 
system of macromolecules implicated in tissue development, 
maintenance, and repair [76, 79, 80]. Continuously degraded 
and remodeled according to tissue needs [77], the ECM also 
presents a tissue-specific composition that enables tissue-
specific functions.

In the intestinal epithelium, the ECM in the crypt base 
is preponderantly made up of the isoforms of fibronectins, 
laminins, collagens, and GAGs [81], suggesting isoform-
dependent regulation of the ISC niche. This is further 
emphasized by the differential distribution of diverse com-
ponents along the crypt-villus axis, with laminins α1 and 
α2 abundant in the crypt base, laminins α3 and α5 present 
in the villus, fibronectins surrounding the crypt, and tenas-
cin found at the base of villus and in the surrounding of 
crypts [81–84]. Amongst the collagen superfamily, collagen 
type IV forms a major component of the intestinal basement 
membrane and is a key regulator of the mechanical microen-
vironment of the intestinal crypt cells [81, 84]. Besides the 
biochemical composition, the ECM also directs cell behavior 
by its selective entrapment of growth factors and chemical 
stimuli. In fact, among GAGs, heparan sulfate proteoglycan 
(also known as perlecan) presents the ability to bind vari-
ous growth factors such as wingless-related integration site 
(Wnt), Hedgehog, transforming growth factor beta (TGF-β), 
and fibroblast growth factors (FGF) proteins, thereby con-
tributing to ISC maintenance [81, 84, 85]. Hence, substrate 
biochemistry has been used to regulate cell behavior in vitro, 
often detaining a substantial role in optimizing stem cell 
microenvironment and their differentiation.

In a study, the authors screened various basement mem-
brane ECM proteins and found that collagen IV readily 
enabled the attachment of mouse intestinal epithelial cells, 
while collagen I overlay was essential for preserving the 
Lgr5+ expression (stem cell marker) in the sandwich cul-
tures [86]. Notably, in the case of collagen type IV coat-
ing, the cell attachment was mediated by integrin α2β1, 
and was dependent on the ECM concentration; 100 µg/mL 

supporting the highest adhesion. In the same milieu, it was 
reported that the α2β1integrin binding peptide (from col-
lagen I) is indeed determining in the expansion of intestinal 
organoids under in vitro conditions [87]. Enrichment of soft 
PEG hydrogels with ECM proteins of the native intestinal 
crypt, like laminin-111, collagen IV, hyaluronic acid and 
perlecan enhanced survival and proliferation of mouse ISCs; 
however, variabilities existed in the colony formation effi-
ciency amongst the individual ECM components [88]. The 
importance of laminin-111 was further highlighted for the 
growth and maintenance of epithelial organoids in a defined 
hydrogel system [89]. Interestingly, the presence of RGD 
motifs in the matrix was sufficient to maintain ISC colonies, 
form intestinal organoids, and improve paracellular trans-
portation in the epithelial cells, in a peptide concentration-
dependent manner, thereby providing better control over the 
biochemical environment [88, 90, 91].

Further emphasizing on 3D patterned substrates, a syn-
ergistic effect of substrate topology and ECM protein on 
the phenotypic characteristics of cultured Caco-2 cells was 
reported [92]. For this, crypt-like collagen microwells, 
coated with either laminin or fibronectin, were used. The 
study revealed better cell differentiation characteristics, bar-
rier function, ANPEP, and ALP activity, on laminin-coated 
substrates than on the fibronectin-coated ones. On the other 
hand, the topological features affected cell adhesion, spread-
ing and barrier functions. In the same backdrop, a recent 
study highlighted that adding decellularized SI submucosa 
to collagen type I-based bioink improves cellular activities 
in bioprinted Caco-2 cells, allowing for the formation of the 
more biomimicking intestinal epithelium, aided by a bioen-
gineered villus geometry [63].

Altogether, these findings underline the essential role of 
matrix biochemistry in modulating intestinal cell growth and 
differentiation, with ECM proteins conditioning in vitro cell 
adhesion, proliferation and differentiation.

Matrix stiffness

Among the parameters regulating cellular behavior, sub-
strate stiffness represents one of the most critical factors, 
controlling cell phenotype and determining stem cell fate 
[93, 94]. Under in vivo conditions, the collagen content in 
the intestinal submucosa is 2–4 times higher than that in 
the mucosa region (that contains the epithelium and dis-
plays crypt-villus architecture), pointing out the existence 
of stiffness gradients between these layers [81]. Thus, vari-
ous studies have attempted to exploit substrate stiffness in 
optimizing in vitro intestinal epithelium models. However, 
the consensus is yet to be reached for optimal stiffness due to 
the cellular response often being a result of both substrates 
physical and biochemical properties, with different reports 
depending on the nature of the matrix material. For instance, 
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Fig. 4   Illustration of various gradients found along the crypt-lumen 
(in LI) and crypt-villus (in SI) axis in  vivo. Gradients of ECM, 
growth factors/receptors, inflammatory cytokines, and bacteria-domi-
nated components (gases and small molecules) have been shown with 

the shades of green, purple, pink, and blue color. The pointing end 
and the broad base of the triangle represent lower and higher concen-
tration, respectively. Reprinted with permission from [81]
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mouse ISCs embedded in PEG hydrogels (conjugated with 
1 mM RGD motifs) of higher stiffness (1.3 kPa) supported 
higher cell proliferation than those with lower stiffness 
(300 Pa); this involved the yes-associated protein 1 (YAP), 
a mechanosensing effector and key mediator in ISC self-
renewal [88]. In another study, fibrin gels (supplemented 
with 10% Matrigel) of stiffness range between 77 ± 25 and 
140 ± 47 Pa showed higher and bigger cyst formation from 
mouse ISCs, 4 days post-cell seeding [89]. Similarly, modu-
lation in the matrix stiffness of protein-engineered scaffolds 
via tetrakis(hydroxymethyl)phosphonium chloride-based 
crosslinking affected the yield of mouse organoids; softer 
scaffolds (180 Pa) showed higher organoids formation than 
the stiffer ones (1220 Pa), irrespective of the content of 
adhesion motifs [90].

Besides, efforts have been made to create monolayer cul-
tures of intestinal cells that have physiological relevance. 
Varying stiffness was achieved by simply modulating the 
thickness of Matrigel coating in polystyrene substrates; with 
2.9 ± 0.1 µm (Young’s modulus of ≈ 3 GPa) and ~ 2 mm 
(storage modulus ≈ 50 Pa), thin and thick coatings formed 
stiff and soft substrates, respectively. Organoid-derived 
crypts or single cells, when cultured on stiffer substrates 
underwent spreading and formed epithelial monolayers, 
whereas those on softer substrates formed organoids [95]. 
In a separate study, collagen hydrogel substrates with a gra-
dient of stiffness (230 ± 140 Pa) were developed within Tran-
swell inserts using EDC/NHS-mediated gradient crosslink-
ing. The luminal surface with lower stiffness was used for 
culturing the cells, while the stiff basal surface prevented 
gel deformation; this closely mimicked the lamina propria 
of the intestine. The study revealed that lower TEER val-
ues along with a higher expression of breast cancer resist-
ance protein (BCRP) and multidrug resistance protein 2 
(MRP2) in the case of gradient crosslinked substrates rela-
tive to the conventional thinner and stiffer collagen mem-
brane (1.50 ± 0.27 MPa). Moreover, grown primary human 
small intestinal monolayers enabled prazosin (a substrate 
of BCRP) transport as in vivo, in contrast with the stiffer 
substrates [96]. As an extension to this work, the authors 
demonstrated that the cells on the conventional scaffold 
lacked various drug-metabolizing enzymes relative to those 
on the gradient crosslinked hydrogels, additionally not prop-
erly responding to known inducers and inhibitors in contrast 
with the latter substrates [97].

Therefore, substrate stiffness represents an essential fac-
tor of cellular microenvironment with potential for directing 
the behavior of intestinal cells and thus can be leveraged 
to create more biomimicking in vitro intestinal epithelium 
models. As to the effect of matrix stiffness in 3D topologi-
cal constructs, no report is yet available that corroborates 

the translation of the above stiffness-related findings in such 
settings, thus extending the scope of future developments.

Shear stress and peristaltic motion

The intestine constitutes a dynamic organ where cells 
are continuously exposed to peristalsis, an alternation of 
contraction-relaxation cycles that enable the progression 
of the luminal content of the hollow organ and facilitate 
food digestion; notably, differences exist in the flow/transit 
time and contraction specification of SI and LI [1, 4]. Such 
microenvironment has been recapitulated in vitro in micro-
fluidic platforms that recreate in vivo cues to affect culture 
outcome. For instance, using PDMS and soft lithography, a 
microfluidic device was designed that permitted liquid flow 
at a low rate (30 µL h−1), producing low shear stress (0.02 
dyne cm−2) and cyclic strain of 10% (0.15 Hz), thus remind-
ing physiological peristaltic movements [13]. When Caco-2 
cells were cultured therein, compared to static culture in 
Transwell inserts, the assembled cues led to the growth of a 
columnar epithelium with improved polarization, paracel-
lular transport, ANPEP activity, and barrier function that 
further formed intestinal villi-like folds, much like the whole 
intestine. Moreover, the cells grown under such complex 
conditions, unlike those under static conditions, maintained 
their viability and barrier function even when cocultured 
with a probiotic bacterium, Lactobacillus rhamnosus GG. 
Under similar microenvironmental conditions, the reconsti-
tution of proliferative crypts was highlighted. EdU+ cells 
further differentiated into enterocytes, goblet, enteroendo-
crine, and Paneth cells along the crypt-villus axis [98]. Bet-
ter CYP3A4 activity was also observed. In a recent study, 
intestinal morphogenesis was shown to be influenced by 
fluid-flow rates in a time-dependent manner, the flow regime 
between 70 and 120 µL h−1, being most effective [14]. The 
authors also identified Frizzled-9 receptor as the mediator of 
this flow-induced spontaneous morphogenesis. By changing 
the fluid shear stress from ∼0 to 0.03 dyne cm−2 (physiologi-
cal range), it was observed that phenotype of Caco-2 cells 
(mucus secretion, microvilli formation, expression of tight 
junctions and CYP3A4) could be modulated, with a shear 
stress of 0.02–0.01 dyne cm−2 creating the optimum param-
eters [99]. Another study also revealed that the response of 
intestinal epithelium to strain, in terms of proliferation and 
activation of downstream signaling cascades, was depend-
ent on ECM proteins. Collagen I, collagen IV, and laminin 
positively modulated cell proliferation under cyclic strain, 
but not fibronectin [100]. Interestingly, better tissue growth 
and maturation were observed when human intestinal orga-
noids, exposed to uniaxial strain, were transplanted in mice 
mesentery, according to Poling et al. [101] who performed 
morphometric, transcriptomic, and functional studies on the 
explanted constructs.
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In an attempt to integrate fluid-flow dynamics with intes-
tine-associated topological features, recently, a 3D printed 
bioreactor was developed [55]. The study revealed the for-
mation of site-specific expression profiles of Caco-2 dif-
ferentiation with elevated apoptosis at the tip of the villus 
(regions subjected to the highest shear), and less ALP but 
increased mucus secretion near the base [55]. These results 
were more similar to in vivo intestine than those obtained in 
the case of conventional 2D Transwell culture or static struc-
tures. Active glucose transportation (at a higher rate) along 
with decreased TEER values were also evident in the pres-
ence of 3-D topography and fluid-induced shear. In the same 
prospect, the combination of 3D topology and shear yielded 
synergistic effects, giving Caco-2 cells an adequate stimulus 
for differentiation and considerably improving their meta-
bolic activities; specifically, CYP3A4 activity was 7 times 
higher on 3D scaffold under fluidic condition than static 2D 
conditions [72]. Also, ANPEP activity and cell absorptive 
permeability were enhanced in the 3D fluidic conditions.

Given all these regulatory effects, mechanical cues con-
stitute a major factor in the design and fabrication of devices 
and tissue models aiming to recapitulate the intestinal tissue 
for various pathophysiological and pharmacological studies.

Coculture with other cell types as well as microflora

Another strategy for biomimicking the physiology of the 
intestinal epithelium is by coculturing epithelial cells with 
other impactful cells (including microbial cells) that pro-
vide structural support and/or participate in regulatory cross-
talks with the cells of interest, via generation of gradients 
of growth factors, gases, and microbial products, thereby 
regulating the dynamics of ISC niche and maintenance of 
intestinal health [81]. Thus, many efforts have been directed 
toward developing suitable in vitro coculture modules.

In a study, Caco-2/HT29-MTX coculture and Caco-2/
HT29-MTX/Raji B triple culture models showed more 
physiological relevance than Caco-2 monoculture models 
for studying the intestinal permeability of the drugs [102]. 
Intestinal muscularis cells were cocultured with intestinal 
epithelium on collagen-coated PCL tubular scaffolds, show-
ing the presence of 11 different cells types from the mucosa, 
the muscularis, and the serosa and long-term spontaneous 
and periodic contractions, thereby recapitulating native-like 
characteristics, to an extent [103]. Incorporation of human 
intestinal microvascular epithelial cells with intestinal 
epithelium in a parallel channel of a microfluidic device 
(accompanied by flow-induced shear and cyclic strain) 
enhanced the rate of intestinal morphogenesis compared 
with those cultured without endothelial cells and showed 
better resemblance with native human duodenum [104].

One of the most utilized components in coculturing 
approaches is the addition to epithelial cells of supportive 

stromal cells, generally fibroblasts or myofibroblasts [105, 
106]. The presence of the NIH-3T3 fibroblasts accelerated 
the formation of epithelial layer by Caco-2 cells, strength-
ened its barrier function and improved its absorptive perme-
ability as well as promoted the recovery upon disruption 
of intestinal barrier [105]. Intestinal subepithelial myofi-
broblasts (ISEMFs) were shown to support the long-term 
culture of intestinal organoids, even in the absence of a few 
critical growth factors required for maintaining cultures 
[107]. Moreover, supplementation of ISEMFs conditioned 
medium was sufficient to prevent autolysis of human intes-
tinal organoids in collagen gels [108]. Enteric nervous sys-
tem (ENS) cells have also been utilized to elucidate their 
interactions with murine ISCs [109]. The findings showed 
that ENS cells and myofibroblasts together control the stem 
cell behavior, particularly inducing their differentiation into 
enteroendocrine cells at a higher proportion relative to that 
done by coculture with myofibroblasts alone. Moreover, 
better barrier function and reduced flux of FITC-dextran 
was also evident in co- or tri-cultured models as compared 
to mono-cultured ones. Besides this, all three systems also 
showed variations in the production of cytokines.

Considering the involvement of gut microbiota in the 
various metabolic processes as well as pathobiological con-
ditions [110, 111], they have also been introduced in various 
in vitro intestinal models, thereby aiming toward recreating 
more in vivo-like microenvironment. Coculture of organoids 
with Lactobacillus rhamnosus GG resulted in an increased 
percentage of proliferative cells and improved differentiation 
into Paneth cells, while Lactobacillus reuteri D8-induced 
proliferative effects in the organoids and prevented them 
from the damaged caused by TNF-α [112]. Besides, patho-
logic bacteria are introduced in intestinal epithelial culture 
systems to study pathophysiological pathways involved in 
infections and certain pathological conditions [22, 113]. 
Here, it is also important to mention that the microbiome 
products such as polyamines and short-chain fatty acids 
(SCFAs) also critically determine intestinal dynamics, and 
thus need consideration. For instance, butyrate, a type of 
SCFA, is essential for differentiated colonocytes for under-
going healthy mitochondrial respiration and promoting bar-
rier function (at a lower concentration), while it acts as an 
inhibitor to ISC proliferation [81, 114–116]. Polyamines 
are essential for the growth and development of intestinal 
mucosa [81, 117, 118].

Implementation of coculture strategies on the patterned 
3D scaffolds also revealed improvements in the functional 
aspects of the intestinal epithelium (studies discussed in 
section "Functional behavior of the cells on 3D intestinal 
models") [54, 62, 63]. Moreover, treatment of butyrate in 3D 
colonic model inhibited cryptic proliferation, while inducing 
differentiation into ALP+ absorptive lineage [20, 46, 47].
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Exploring avenues in induced pluripotent 
stem cells (iPSCs)‑derived intestinal cells

Intestinal crypts have gained considerable attention for the 
development of in vitro intestinal tissue models with biomi-
metic architecture, cellular distribution, and physiological 
functionality. However, their clinical utility is limited by 
lack of ideal sources, tedious isolation protocols, the rapid 
loss of functionality, and existing ethical issues. Therefore, 
recent research interventions have been directed toward the 
use of iPSCs, which overcome many of these limitations. 
Such a strategy has also been advantageous for develop-
ing patient-specific intestinal models (healthy/diseased) and 
corresponding personalized therapies. Moreover, human-
specific pharmacokinetic features, closely mimicking the 
native conditions, could be achieved with the derived intes-
tinal cells, which is otherwise difficult with the available 
human cell line alternatives. The current section highlights 
the recent developments in stem cell engineering for deriv-
ing intestinal cells. 2D cultures and 3D organoid cultures 
have majorly been employed for stem cell differentiation 
and the expansion of intestinal cells; thereafter, these dif-
ferentiated cells could be harvested and used for different 
applications including in vitro model development.

In a study, human iPSCs were differentiated into entero-
cytes-like cells (ELCs) following a step-by-step protocol 
[119]. iPSCs were first committed toward definite endo-
dermal-like cells (DELCs) lineage using Activin A, fol-
lowed by differentiation into intestinal progenitor-like cells 
(IPLCs) using FGF2. The developed IPLCs expressed caudal 
type homeobox 2 (CDX2, a marker for intestinal develop-
ment and differentiation) and LGR5 (ISC marker). Further, 
maturation of IPLCs into ELCs occurred in the presence 
of epidermal growth factor (EGF) under low serum (2%) 
conditions. The differentiated cells expressed multiple 
mature enterocytes markers; however, their expression 
was relatively lower than adult small intestinal tissue. 
The study also revealed that Wnt3a treatment had negligi-
ble, while FGF4 (instead of FGF2) treatment or the con-
centration of serum had a pronounced effect on differen-
tiation efficiencies. In an extension to this study, authors 
conducted iPSCs to IPLCs differentiation following the 
same Activin A/FGF2 protocol; however, for generating 
ELCs, different cocktail of small molecules (glycogen 
synthase kinase 3 inhibitor XV, Dorsomorphin, PD98059, 
5-aza-2′-deoxycytidine (5-aza), and A-83-01) were added 
along with EGF treatment [120]. The study revealed that 
resultant ELCs exhibited pharmacokinetic functions and 
showed the expression of mature enterocytes; however, 
the functional phenotype of the ELCs varied significantly 
among the treatment groups. In the same backdrop, iPSC-
derived DELCs were efficiently differentiated into IPLCs 
using a cocktail of 6-Bromoindirubin-3′-oxime (BIO) and 

N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl-1,1-di-
methylethyl ester-glycine (DAPT); meanwhile, further sup-
plementation of SB431542, EGF, and Wnt3A in the culture 
medium produced ELCs [121]. The generated ELCs exhib-
ited better expression of CYP3A4 and peptide transporter 
1 (PEPT1) along with weaker barrier function than Caco-2 
cells, thus revealing a physiologically relevant phenotype.

Besides the directed differentiation of iPSCs to specific 
intestinal cell types, multicellular intestinal tissues have also 
been developed using organoid culture technology. Sequen-
tial treatment of iPSCs with Activin A and a growth factor 
cocktail (FGF4 and Wnt3A, at high concentration) generated 
3D spheroids containing CDX2+ hindgut-like cells (HLCs) 
[122]. The study revealed that individually neither FGF4 
nor Wnt3A could cause DELCs to HLCs differentiation. 
Also, the time of exposure and the growth factor concentra-
tion affected the stable expression of CDX2. Further, these 
HLC spheroids were transferred to Matrigel and cultured 
for long-term in medium containing another cocktail (EGF, 
Noggin, and R-spondin-1) to direct differentiation into small 
intestinal organoids (SIOs). The developed SIOs contained 
functional enterocytes, goblet, Paneth, and enteroendocrine 
cells. In a different study, a distinct population of SIOs 
and colonic organoids (COs) were generated [123]. The 
authors employed specific treatment of Activin A, FGF4, 
and CHIR99021 to develop CDX2+ HLC spheroids. The 
spheroids were encapsulated in Matrigel and exposed to 
either SIO (containing EGF, Noggin) or COs (containing 
EGF, bone morphogenetic proteins (BMP)) differentiation 
medium. The resultant SIOs and COs exhibited differential 
phenotype, similar to the native tissues. The study revealed 
the regulatory role of BMP signaling in stable expression of 
special AT-rich sequence-binding protein 2 (SATB2, a defin-
itive marker of the presumptive large intestinal epithelium) 
and activation posterior homeobox (HOX) genes to direct 
the differentiation of iPSC-derived HLC spheroids to COs.

Human intestinal organoids were generated from iPSCs 
following a multistep protocol involving differentiation into 
DELCs (Activin A, Wnt3A), HLCs (FGF4, CHIR99021), 
and SIOs (EGF, Noggin, CHIR99021) [124]. The differenti-
ated cells from the organoids were cultured in a microflu-
idic platform with continuous media perfusion. The study 
revealed that the presence of physiologically relevant shear 
stress resulted in intestinal morphogenesis, and showed the 
presence of Paneth, goblet, enterocytes, enteroendocrine 
cells as well as LGR5+ stem cell and WD Repeat Domain 
43 (WDR43)+ transit-amplifying cell population. Moreover, 
the developed intestine-on-chip model showed responsive-
ness toward exogenous stimuli (IFN-γ and TNF-α), with 
in vivo–like patterns.

Specific merit of iPSCs is that they also offer an endless 
opportunity to recapitulate patient-specific pathobiological 
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conditions in vitro. For instance, iPSCs from patients with 
cystic fibrosis (p.F508del mutant) were corrected using 
transcription activator-like effector nuclease (TALEN)-
mediated repair and further employed for generating intes-
tinal organoids [125]. Differentiation protocol employed 
Activin A and Wnt3A for definite endoderm (DE) specifi-
cation, Wnt3A and CHIR99021 for hindgut specification, 
and R-spondin1, Noggin, EGF, and Wnt3A for intestinal 
maturation (post-embedding in Matrigel). Organoids (both 
corrected and non-corrected), developed using this protocol, 
were able to grow without a need of mesenchymal niche, 
which is often present in iPSC-derived organoid culture, 
thus, facilitating their use in a forskolin-induced swell-
ing assay. Moreover, the organoids from corrected iPSCs 
showed expression of cystic fibrosis transmembrane con-
ductance regulator (CFTR) and functional recovery of its 
activity, as compared to non-corrected ones. In a separate 
study, patient-specific SIOs and COs were generated by dif-
ferentiation of iPSCs, derived from healthy and inflamma-
tory bowel disease (IBD) patients (adult-onset and very early 
onset IBD) [126]. The developed organoids were used for 
in vitro assessment of pro-inflammatory cytokine-induced 
alterations in the barrier functions of healthy and diseased 
patients.

Additional studies in this domain are summarized in 
Table 3.

Conclusion and outlook

The present article depicts superiority of the intestinal tis-
sue models with biomimetic 3D architecture (crypt-villus or 
crypt-lumen) over the conventional 2D models; in reflecting 
native-like apicobasolateral cell polarity, functional pheno-
type (xenobiotic metabolism and TEER values), and cellu-
lar compartmentalization (differentiated cells at the villus/
luminal end, while less differentiated/stem cell niches in 
the crypts). However, the future of these patterned intesti-
nal models lies in integrating native-like biochemical cues 
(such as matrix composition and biochemical gradients), 
biophysical cues (such as matrix stiffness), mechanobiologi-
cal aspects (such as shear stress and peristaltic motion), and 
opting for suitable coculture strategies.

In this regard, microfabrication methodologies (like 
photolithography and laser ablation) have a limited scope 
of development as they are majorly employed for creating 
the primary molds to mirror the 3D intestinal pattern in the 
bulk hydrogels. Apart from primary mold fabrication, con-
trol over the distribution of biochemical and biophysical 
cues as well as cellular components is quite challenging. 
Interestingly, 3D printing could prove to be quite handy and 
advantageous in this context. The recent developments in 

tissue engineering and regenerative medicines have already 
validated that 3D bioprinting provides better spatiotemporal 
control over the distribution of different cues and cellular 
components [59, 137, 138]. 3D printing strategy is still in its 
infancy for the development of 3D intestinal models; in fact, 
to date, only SLA [58] and VMEPS (a type of extrusion-
based 3D printing) [61] have only been employed. However, 
exploring newer modalities such as scaffold-free bioprinting 
[139], freeform bioprinting in suspension bath [140], digital 
light processing (DLP)-based bioprinting (an advanced ver-
sion of SLA) [141], aspiration-assisted bioprinting [142], 
and 4D bioprinting [143] could further widen our horizon 
and ensure a promising future ahead.

Besides, innovative strategies for integrating native-like 
fluid flow and peristalsis with these 3D patterned mod-
els are also needed. Bioreactor [55] and microfluidic [72] 
technologies have already been explored to address these 
avenues; however, they still exhibit limited clinical applica-
bility. Notably, working with hydrogel-based 3D tissue con-
structs is challenging as they are fragile and often undergo 
disintegration under continuous mechanical stress. A criti-
cal consideration should also be paid to the biodegradation 
susceptibility of these hydrogel-based platforms. Improv-
ing the mechanical properties of the hydrogel system (via 
crosslinking) is a potent strategy, but the impact of these 
biomechanical cues on intestinal cell behavior should be 
examined as well. Moreover, current research in this domain 
is mostly limited to use of either human cancer cell lines or 
intestinal crypts (derived from rats or mouse), which can-
not accurately predict drug pharmacokinetics that occur in 
the human system. Owing to the source and ethical limita-
tions associated with human ISCs, the use of patient-derived 
iPSCs, instead, may add precision to these studies. Besides, 
developing strategies for high-throughput platforms with 
multifaceted applicability is also needed and demands pro-
found investigation.

On a concluding note, we upbeat that endeavors guided 
toward integrating biomimetic architectural cues with the 
necessary biophysicochemical and mechanical cues along 
with the aspects of stem cell engineering would accord for 
more physiologically relevant intestinal model and could 
further open up new vistas in the domain of personalized 
medicine in the near future. Breakthrough in this field 
could be witnessed at faster rates via dedicated collabora-
tive efforts from engineers, material scientists, biologists, 
and clinicians. Policymakers and stakeholders are also an 
essential part of this collaborative network.
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