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Abstract:    In this paper, an improved low-complexity sum-product decoding algorithm is presented for low-density parity-check 
(LDPC) codes. In the proposed algorithm, reduction in computational complexity is achieved by utilizing fast Fourier transform 
(FFT) with time shift in the check node process. The improvement in the decoding performance is achieved by utilizing an op-
timized integer constant in the variable node process. Simulation results show that the proposed algorithm achieves an overall 
coding gain improvement ranging from 0.04 to 0.46 dB. Moreover, when compared with the sum-product algorithm (SPA), the 
proposed decoding algorithm can achieve a reduction of 42%–67% of the total number of arithmetic operations required for the 
decoding process.  
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1  Introduction 
 
Error correcting codes (ECC) are used in nearly 

all forms of electronic communication and storage 
systems to facilitate error free transmission of data 
within a specified bandwidth. Low-density parity- 
check (LDPC) codes (Gallager, 1962) are one of the 
very few next generation error correcting codes that 
allow transmission of data at a rate close to Shannon’s 
limit (Chung et al., 2001). Since their rediscovery 
(MacKay and Neal, 1997), LDPC codes with their 
simple decoding procedure can correct the channel 
errors at a relatively low signal-to-noise ratio (SNR) 
with feasible complexity. Due to the superior error 
correcting capability and inherent parallelism for 
hardware implementation, LDPC codes have been 
preferred for advanced wireless communication 
standards such as DVD-S2 (Morello and Mignone, 

2006), Wi-MAX (IEEE, 2009), WLAN (IEEE, 2015), 
and International Telecommunication Unit Transmis-
sion Systems (ITU-T). 

Among various decoding algorithms, the con-
ventional sum-product algorithm (SPA) (Fossorier et 
al., 1999) based on the concept of iterative message 
passing (Richardson and Urbanke, 2001) achieves the 
best decoding performance compared to other de-
coding algorithms. Although SPA achieves the best 
bit error rate (BER) performance, the check node 
process requires a lot of logarithmic and multiplica-
tive computations to exchange log likelihood ratio 
(LLR) information between the nodes. This in turn 
leads to very high computational complexity, and thus 
makes it unsuitable for hardware implementations. 
The simplified sum-product algorithm (SSPA) (Lee et 
al., 2008) and modified sum-product algorithm 
(MSPA) (Papaharalabos et al., 2007) have been pro-
posed with an objective to eliminate the high com-
putational complexity of the conventional SPA. These 
algorithms focus on modifying and simplifying  
the nonlinear functions by dividing them into  

Frontiers of Information Technology & Electronic Engineering 

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com 

ISSN 2095-9184 (print); ISSN 2095-9230 (online) 

E-mail: jzus@zju.edu.cn 
 

 

 ORCID: Michaelraj Kingston ROBERTS, http://orcid.org/0000- 
0002-1484-703X 
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2015 

Guo Yunlong
CrossMark

http://crossmark.crossref.org/dialog/?doi=10.1631/FITEE.1400269&domain=pdf


Roberts et al. / Front Inform Technol Electron Eng   2015 16(6):511-518 
 

512

approximated quantization regions. These method-
ologies, however, slightly reduce the computational 
complexity at the expense of performance degrada-
tions. A simple hard decision based low-complexity 
decoding algorithm for LDPC codes (Chandrasetty 
and Aziz, 2011) was proposed with a view to reduce 
the implementation complexity of the conventional 
SPA. Recently, a fast Fourier transform based 
sum-product algorithm (FFT-SPA) for decoding 
LDPC lattices (Safarnejad and Sadeghi, 2012) and 
Abelian groups (Goupil et al., 2007) was proposed to 
reduce the computational complexity of SPA. How-
ever, the main drawback of utilizing the conventional 
FFT (Sorensen et al., 1986) is that it increases the 
computation time required for processing the large 
data sets of information. Furthermore, the conven-
tional FFT is unreliable for the processing of large 
data sets over the channel with a large bandwidth. 

In this paper, an improved low-complexity 
sum-product decoding algorithm is proposed for 
LDPC decoding. The objective of this proposed al-
gorithm is to reduce the total number of computations 
required in the check node process. The following 
modifications are carried out in the check node and 
variable node processes: (1) A fast Fourier transform 
with time shift (FFTh) (Johnson and Frigo, 2007; 
Yuan et al., 2011) is incorporated in the check node 
process to reduce the multiple nonlinear operations; 
(2) An optimized integer weight constant is incorpo-
rated in the variable node process to improve the 
decoding performance (Chandrasetty and Aziz, 
2011). The performance of the proposed algorithm is 
validated with Wi-MAX (IEEE, 2009) and WLAN 
(IEEE, 2015) standard LDPC codes. The decoding 
performance of the proposed algorithm is compared 
with those of SPA, SSPA, and MSPA. 

 
 

2  Related work 

2.1  Sum-product algorithm 

The conventional SPA (Fossorier et al., 1999) is 
an iterative message passing algorithm which utilizes 
high-precision LLR messages as the input for the 
decoding process (Richardson and Urbanke, 2001). 
The decoding operation of SPA is carried out in two 
phases of message passing between the edges of 
check nodes and variable nodes in a Tanner graph. 

Due to the utilization of a soft decision based message 
passing process, the iterative decoding process of SPA 
relies solely on the updated information between the 
two nodes. 

Let qnm be the message passed from the nth 
variable node (bit node) to the mth check node (VTC), 
and rmn the message passed from the mth check node 
to the nth variable node (CTV). For the conventional 
SPA, the VTC message can be split into its sign and 
magnitude: 

 

qnm=μnm·λnm,                           (1) 
 

where μnm=sign(qnm) and λnm=|qnm|. 
In the beginning of the decoding process (at it-

eration 0), the nth VTC message (0) 22 /nm iq y   is 

initially assigned to the LLR information, where yi 
denotes the received input and σ2 the variance of the 
binary-input additive white Gaussian noise (AWGN) 
channel. The intrinsic information obtained from the 
channel is passed over to check nodes from variable 
nodes to start the decoding process. 

The CTV information updated at the check node 
unit (CNU) can be computed as 
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where N(m) denotes a set of bits participating in the 
mth check. This updated message rmn is sent to the 
corresponding variable nodes for further processing. 

The VTC information updated can be computed 
using the following equation: 
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where M(n) denotes a set of checks participating in 
the nth bit. The hard decision of LLR for a variable 
node n can be computed as 
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which gives approximated codewords that are re-
quired to satisfy appropriate parity-check equations.  
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The decoding process is continued until parity- 
check conditions are satisfied by the estimated 
codewords or until the maximum number of iterations 
is reached. When compared with the other soft deci-
sion based LDPC decoding algorithms, SPA achieves 
the best BER performance. However, the very high 
computational complexity issue of SPA makes it un-
suitable for efficient hardware implementation.  

2.2  Modified sum-product algorithm 

To overcome the computational complexity of 
the conventional SPA, MSPA was proposed (Papa-
haralabos et al., 2007). It focuses on modifying the 
hyperbolic tangent (tanh) and inverse hyperbolic 
tangent (arctanh) functions to reduce the computa-
tional complexity. This process is carried out by 
splitting the hyperbolic tangent functions into seven 
regions and representing it by eight quantization 
values (He et al., 2002), respectively.  

MSPA utilizes multiplication and division oper-
ations in the check node update process to update the 
soft LLR information. Compared to SPA, the com-
putational complexity of MSPA is significantly re-
duced by utilizing the quantization values (Papahar-
alabos et al., 2007) with a modified hyperbolic tan-
gent function and its inverse. The expressions for the 
modified hyperbolic tangent function and inverse 
hyperbolic tangent function are given as 

 

o
modified

o o

tanh( ), | | ,
tanh ( )

sign( ) tanh( ), | | ,

x x x
x

x x x x
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   

(6) 

 
where x is the bipolar value and xo the clipping value. 

However, MSPA suffers from severe BER per-
formance degradation (0.25 dB) compared to SPA due 
to the approximation errors caused by quantization 
schemes. In addition to performance degradation, the 
approximation error increases the total number of 
decoding iterations required to correct the channel 
errors at a relatively low SNR. 

2.3  Simplified sum-product algorithm 

The simplified sum-product algorithm (Lee et 
al., 2008) rectifies the drawbacks of MSPA (Papa-

haralabos et al., 2007). It reduces the computational 
complexity of the check node process by removing 
additional shifting operations required for updating 
check node information. Moreover, in SSPA the total 
number of arithmetic computations is reduced by 
replacing multiplication and division operations with 
addition and subtraction operations along with addi-
tional logarithmic and exponential functions. These 
arithmetic functions are then concurrently computed 
along with the hyperbolic tangent function and its 
inverse in the quantization table. Due to these modi-
fications, the negative part of the quantization table 
can be eliminated compared to MSPA. The check 
node process of the SSP algorithm is given as  
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The variable node process of SSPA is similar to 

that of the conventional SPA. By replacing multipli-
cation and division by addition and subtraction oper-
ations respectively, SSPA outperforms MSPA in terms 
of computational complexity. Moreover, by utilizing 
only the positive part of the quantization table SSPA 
achieves BER performance closest to SPA and out-
performs MSPA by 0.8 dB (Lee et al., 2008). 

 
 

3 An improved low-complexity decoding al-
gorithm for regular LDPC codes 

 
Although the computational complexity of SSPA 

is better than that of MSPA and the conventional SPA, 
the decoding performance is still average when 
compared to a conventional SPA. The quantization 
levels used in LLR values significantly impact the 
decoding performance. Recently, FFT-SPA for de-
coding LDPC lattice (Safarnejad and Sadeghi, 2012) 
has been proved to achieve good decoding perfor-
mance with reduced computational complexity for the 
elements in the lattice subgroup. However, for the  
transmitting and processing of a large set of input 
sequences with a small number of non-zero elements 
over a channel with a large bandwidth, the conven-
tional FFT method is unsuitable. This is mainly due to 
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the sparseness property of LDPC codes which require 
longer execution time and additional memory re-
sources to store the temporarily processed data. 
Therefore, to reduce the computational complexity 
without degrading the decoding performance, modi-
fications have been done in both the check node and 
variable node processes of the proposed algorithm. In 
the check node process, FFTh is utilized to reduce the 
overall computational complexity. In the variable 
node process, an optimized integer constant is used to 
improve the decoding performance of the proposed 
algorithm. 

For an (N, K) regular LDPC code, both the var-
iable node degree (dv) and check node degree (dc) are 
small compared to the block length (N) and infor-
mation length (K). Let C=(C0, C1, ..., CN−1){GF(2)}N 
denote the codeword C which is mapped into the 
bipolar sequence x=(x0, x1, ..., xN−1) before transmis-
sion, where xn=2Cn−1 with 0≤n≤N−1. Let y=(y0, y1, ..., 
yN−1) be the soft decision received at the receiver. For 
0≤n≤N−1, yn=xn+wn where wn is the Gaussian random 
variable with zero mean and variance σ2 and is inde-
pendent of xn. Assuming that AWGN has a power 
spectral density No/2 (No is the noise spectral density) 

 for a code rate of Rc, we have σ2=(2Rc·Eb/No)
−1, where 

Eb is the energy per bit. Let the corresponding binary 
hard decision of the received sequence be Zn=1 (if 

( ) 0k
nq ). Then S=(S0, S1, …, SM−1) gives the syndrome 

of hard decision sequence Z(0).  
The check node and variable node operations of 

the proposed algorithm are described as follows: 
Initialization: The initial iteration number is set 

as k=0 and the maximum number of decoding itera-

tions is set to kmax. For 0≤n≤N−1, let (0)
nmq  be the LLR 

of a prior probability of bit n. Then set 
 

(0) 22 / .nm iq y                            (8) 
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where F and F−1 denote the discrete Fourier transform 
and its inverse, respectively, and u denotes the al-
phabet size. Similarly,  
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where FFTh and FFTh

−1 denote the fast Fourier 
transform with time shift and its inverse, respectively. 

Step 2 (variable node update): For 0≤m≤M−1 
and 0≤n≤N−1, qnm can be computed as 
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where 
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Xi is the optimized integer constant and mi denotes the 
bit suggestion from the ith check node. Then 
 

qi=sign(qnm−Xi).                       (14) 
 
Therefore, the simplified variable node update 

equation is given as 
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where ˆ
nC  is the hard output of the decoder and 
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(m, n)th entry of the parity-check matrix H and ˆnc  
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denotes the syndrome of the hard decision sequence). 
Then we have 
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Step 3 (decision): The hard decision 
(0) (0) (0) (0)

0 1 1( , , ..., )NZ Z Z Z  is determined by ( ) 0k
nZ  if 

( ) 0,k
nq  and ( ) 1k

nZ  if ( ) 0.k
nq  If Z(k)·HT=0, output 

Z(k) as the decoded codeword and the decoding pro-
cess is stopped; otherwise, go back to step 1. 

Step 4: This process is repeated until the maxi-
mum number of decoding iterations is reached or 
parity-check conditions are satisfied by the estimated 

codewords, i.e., 
Tˆ .  0c H  

A unique difference between the proposed algo-
rithm and SPA is that the proposed algorithm does not 
require the complex hyperbolic tangent function 
during the check node update process. Instead of 
utilizing the hyperbolic tangent function, it is replaced 
by FFTh (Johnson and Frigo, 2007; Yuan et al., 2011) 
in the check node update process. The main difference 
between FFTh and FFT (Sorensen et al., 1986) is that 
in FFTh the input data are shifted circularly before 
transmission. A unique advantage of utilizing the 
FFTh function when compared to the FFT function 
and hyperbolic tangent function is that it requires less 
computation time to process large data sets of infor-
mation. Moreover, the FFTh function does not require 
additional memory resources to store the temporarily 
processed data obtained during each iteration. How-
ever, the utilization of the FFTh function brings per-
formance degradation of more than 0.1 dB, which is 
compensated for by introducing an optimized integer 
constant during the variable node update process. 
These optimized integer constant values found 
through heuristic simulations are added to the LLR 
values to improve the decoding performance of the 
proposed algorithm. Furthermore, in the decoding 
process of the proposed algorithm, the original LLR 
values are required for initialization of the decoding 
process. The original LLR values are then updated 
during each step of the decoding process and are 
subsequently utilized for the remainder of the de-
coding process. 

4  Simulation results 
 
To illustrate the decoding performance of the 

proposed decoding algorithm, (N, K) regular LDPC 
codes belonging to the WLAN standard (IEEE, 2015) 
and Wi-MAX standard (IEEE, 2009) have been con-
sidered. (648, 324) and (1296, 864) regular LDPC 
codes belonging to the WLAN standard and a (2304, 
1152) regular LDPC code belonging to the Wi-MAX 
standard have been utilized for simulation. The 
MATLAB simulations were carried out assuming that 
the encoded information bits were binary phase shift 
keying (BPSK) modulated and transmitted over an 
AWGN channel. The LDPC codes were designed by 
the procedure as described by Jiang et al. (2012). For 
all simulation results of this work, the maximum 
number of decoding iterations was chosen to be 20 
(Lee et al., 2008). 

4.1  Decoding performance 

Fig. 1 shows the decoding performance of a 
(648, 324) regular LDPC code with the code rate of 
1/2 belonging to the WLAN standard. The simulation 
results show that SPA and the proposed decoding 
algorithm exhibit better decoding performance with 
20 decoding iterations compared with FFT-SPA, 
SSPA, and MSPA. At a BER of 10−4, the proposed 
algorithm achieves a coding gain improvement of 
0.04, 0.09, and 0.19 dB when compared with 
FFT-SPA, SSPA, and MSPA, respectively. Similarly, 
at a BER of 10−4, the proposed algorithm exhibits a 
performance degradation of 0.02 dB when compared 
with SPA. However, the performance degradation 
suffered by the proposed algorithm is much less when  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Bit error rate performance comparisons for 
a (648, 324) regular LDPC code under various SPA 
algorithms 
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compared with the performance degradation of 0.06, 
0.11, and 0.21 dB suffered by FFT-SPA, SSPA, and 
MSPA, respectively. 

Fig. 2 shows the decoding performance of a 
(2304, 1152) regular LDPC code with the code rate of 
1/2 belonging to the Wi-MAX standard. The simula-
tion results show that SPA and the proposed algorithm 
exhibit better decoding performance with 20 decod-
ing iterations compared with FFT-SPA, SSPA, and 
MSPA. At a BER of 10−5, the proposed algorithm 
achieves a coding gain improvement of 0.06, 0.25, 
and 0.27 dB when compared with FFT-SPA, SSPA, 
and MSPA, respectively. Similarly, at a BER of 10−5, 

the proposed algorithm exhibits a performance  
degradation of 0.04 dB when compared with SPA. 
However, the performance degradation suffered by 
the proposed algorithm is much less when compared 
with the performance degradation of 0.10, 0.29, and 
0.31 dB suffered by FFT-SPA, SSPA, and MSPA, 
respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 shows the decoding performance of a 

(1296, 864) regular LDPC code with the code rate of 
2/3 belonging to the WLAN standard. The simulation 
results show that SPA and the proposed decoding 
algorithm exhibit better decoding performance with 
20 decoding iterations compared with FFT-SPA, 
SSPA, and MSPA. At a BER of 10−5, the proposed 
algorithm achieves a coding gain improvement of 
0.10, 0.28, and 0.46 dB when compared with FFT- 
SPA, SSPA, and MSPA, respectively. Similarly, at a 
BER of 10−5, the proposed algorithm exhibits a per-
formance degradation of 0.04 dB when compared 
with SPA. However, the performance degradation 
suffered by the proposed algorithm is much less when 

compared with the performance degradation of 0.11, 
0.32, and 0.50 dB suffered by FFT-SPA, SSPA, and 
MSPA, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
The overall decoding performance comparisons 

of the proposed decoding algorithm with SPA, 
FFT-SPA, MSPA, and SSPA are shown in Table 1. 
The proposed decoding algorithm achieves decoding 
performance close to SPA by outperforming FFT- 
SPA, MSPA, and SSPA. Moreover, the proposed de-
coding algorithm achieves BER coding gain ranging 
from 0.04 to 0.46 dB when compared with FFT-SPA, 
MSPA, and SSPA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Analysis of computational complexity 
 
The total number of arithmetic operations re-

quired at the check node process determines the 
overall complexity of the decoding algorithm. The 
conventional SPA suffers from high computational 
complexity due to the utilization of the hyperbolic 
tangent function. Furthermore, SPA requires large 

Fig. 2  Bit error rate performance comparisons for a 
(2304, 1152) regular LDPC code under various SPA 
algorithms 
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Table 1  Overall decoding performance comparisons of 
various SPA  algorithms 

Decoding 
algorithm

SNR (dB)  BER 

C_1* C_2** C_3*  C_1* C_2** C_3*

SPA  2.38 2.08 2.47  10−4 10−5 10−5

Proposed 2.40 2.12 2.51  10−4 10−5 10−5

FFT-SPA 2.44 2.18 2.58  10−4 10−5 10−5

SSPA  2.49 2.37 2.79  10−4 10−5 10−5

MSPA  2.59 2.39 2.97  10−4 10−5 10−5

SNR: signal-to-noise ratio; BER: bit error rate. C_1: (N, K)=(648, 
324); C_2: (N, K)=(2304, 1152); C_3: (N, K)=(1296, 864). * WLAN 
standard; ** Wi-MAX standard 

Fig. 3  Bit error rate performance comparisons for 
a (1296, 864) regular LDPC code under various SPA 
algorithms 
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amounts of look-up-tables to store the large set of 
processed soft information which is obtained during 
the iterative message passing process. 

In the proposed algorithm, the hyperbolic tan-
gent function is replaced by FFTh without the re-
quirement of reducing the nonlinear function to an 
approximated quantization table. The overall com-
putation complexity comparison for the proposed 
algorithm, FFT-SPA, and the conventional SPA is 
shown in Table 2. The formulae for calculating the 
computational complexity of the conventional SPA, 
FFT-SPA, and the proposed algorithm are given as 
dc[4u2+(dc−2)u], dc[2(4ulog2 u−6u+8)+(dc−2)u], and 
dc[4ulog2 u−6u+ 8+(dc−1)u], respectively. 

 
 
 
 
 
 
 
 
 
 
It can be observed from Table 2 that the pro-

posed algorithm requires fewer arithmetic operations 
in the decoding process compared with FFT-SPA and 
SPA. Moreover, it is evident that the proposed algo-
rithm achieves up to 67% and 42% reductions in the 
total number of arithmetic operations required for the 
decoding process when compared to SPA and 
FFT-SPA, respectively. It can be concluded from 
Table 2 that as the alphabet size increases, the com-
putational complexity also increases gradually. 
However, the computational complexity of the pro-
posed algorithm is still lower than those of the con-
ventional SPA and FFT-SPA. In addition to the 
computational complexity, the proposed decoding 
algorithm achieves better decoding performance 
compared with SSPA, FFT-SPA, and MSPA for (648, 
324), (2304, 1152), and (1296, 864) regular LDPC 
codes. 

 
 

5  Conclusions 
 
In this paper, an improved low-complexity sum- 

product decoding algorithm is presented for LDPC 

codes. In the proposed decoding algorithm, the high 
computational complexity issue in the check node 
process is sorted out by utilizing the FFTh function. 
This modification in the check node update process 
significantly reduces the overall arithmetic computa-
tions required for updating CTV messages compared 
to SPA. However, the modification in the check node 
process degrades the BER performance by more than  
0.1 dB compared to that of SPA. Therefore, to im-
prove the decoding performance of the proposed 
algorithm, an optimized integer constant is employed 
in the variable node update process. In the variable 
node update process, the proposed algorithm com-
pletely utilizes the high-precision LLR information 
using an optimized weighted integer constant for 
improving the BER performance. The simulation 
results show that the proposed algorithm achieves an 
overall coding gain improvement of 0.04–0.46 dB. 
Moreover, when compared with SPA, the proposed 
decoding algorithm can reduce the total number of 
arithmetic operations required for the decoding pro-
cess by 42%–67% for an alphabet size 2, 4, or 8. 
Therefore, the proposed algorithm with a simple de-
coding process and good error correcting perfor-
mance is most suited for long-haul optical WLAN and 
Wi-MAX communication systems. 
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