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Abstract: Periodicity is one of the most common phenomena in the physical world. The problem of periodicity
analysis (or period detection) is a research topic in several areas, such as signal processing and data mining. However,
period detection is a very challenging problem, due to the sparsity and noisiness of observational datasets of periodic
events. This paper focuses on the problem of period detection from sparse and noisy observational datasets. To
solve the problem, a novel method based on the approximate greatest common divisor (AGCD) is proposed. The
proposed method is robust to sparseness and noise, and is efficient. Moreover, unlike most existing methods, it does
not need prior knowledge of the rough range of the period. To evaluate the accuracy and efficiency of the proposed
method, comprehensive experiments on synthetic data are conducted. Experimental results show that our method
can yield highly accurate results with small datasets, is more robust to sparseness and noise, and is less sensitive to
the magnitude of period than compared methods.
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1 Introduction

Periodicity is one of the most common phenom-
ena in the physical world. Many natural phenom-
ena, such as tidal patterns, sunspots, temperature
changes, manifest strong or weak periodicity. Ani-
mals migrate annually, and people commute between
their working places and home daily. Period and pe-
riodic patterns are important features, which can be
used to detect anomalies, and predict the trend of
periodic events. Thus, the problem of periodicity
analysis is of research interest, such as bit synchro-
nization in communications, pulse repetition inter-
val (PRI) analysis of radar, hop rate estimation of
frequency-hopping spread spectrum (FHSS) signals,
period detection of light curves of variable stars in
‡ Corresponding author
* Project supported by the National Natural Science Foundation
of China (No. 60673082)

ORCID: Juan YU, http://orcid.org/0000-0001-9562-1325
c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2015

astronomy (Huijse et al., 2011; 2012), periodic be-
havior analysis of animals or humans in data mining
(Li et al., 2010; 2012), periodicity analysis of DNA
sequences or gene expression data in bioinformatics
(Junier et al., 2010).

Period detection is a challenging problem in
practical application. First, the acquired datasets
or sample sets of periodic events are often incom-
plete, due to the limitations of data collection. In
other words, datasets used for periodicity analysis
are usually sparse and unevenly sampled. For exam-
ple, receivers for passive radar surveillance may not
be able to observe each consecutive pulse emitted by
the radar from the third party. Second, datasets of
periodic events are often noisy, due to the intrinsic
oscillation of periodic processes, and extrinsic factors
such as environmental noise or poor time resolution.

The period detection problem has been inves-
tigated in signal processing for decades. Fourier
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transform and autocorrelations are typical methods
for analyzing the periodicity of signals. However,
these traditional methods are sensitive to noise and
sparsity. These methods are based on a typical as-
sumption that datasets are abundant and evenly
sampled in time. Thus, these traditional meth-
ods cannot be directly applied to sparse and noisy
datasets.

To cope with sparse and noisy datasets, sev-
eral period detection methods have been proposed.
Fogel and Gavish (1988) considered the problem of
period estimation from noisy datasets. They mod-
eled the observations as a periodic point process, and
proposed a periodogram-based method to discover
the unknown period. They returned the value max-
imizing the periodogram as the estimated period.
Gray et al. (1994) devised a maximum likelihood pe-
riod estimator for the independent and identically
distributed (i.i.d.) Gaussian noise case. But they
did not consider missing measurements or outliers.
Sidiropoulos et al. (2005) formulated the period de-
tection problem as a maximum likelihood estimation
problem, and proposed a family of estimators called
separable least squares line search (SLS2) estima-
tors. Following Sidiropoulos et al.’s work, Clarkson
and McKilliam showed that the maximum likelihood
(ML) estimator for the sparse and noisy period esti-
mation problem can be understood as a lattice prob-
lem, and proposed the lattice line search (LLS) esti-
mators to solve the problem (Clarkson, 2008; McKil-
liam and Clarkson, 2008).

The above mentioned methods operate by sam-
pling an objective function over an interval derived
from the range of the true period. That is to say,
these methods require the prior knowledge about the
rough range of the period. Thus, they are not suit-
able for period detection applications in which the
prior knowledge is impossible to acquire. In addition,
the determination of the required sampling interval
is also a challenging problem. If the chosen sampling
interval is too small, then the optimized period value
will never be selected. Otherwise, the computational
cost will be high.

Unlike above mentioned methods that need
prior knowledge about the range of the period, Casey
and Sandler presented a family of methods based on
the modified Euclidean algorithm (MEA) (Casey and
Sadler, 1996; Sadler and Casey, 1998). The MEA
methods are motivated by the fact that the period is

an approximate greatest common difference of differ-
ences between consecutive observations, and directly
calculate the period from datasets using the MEA.
The time complexity of these methods outperforms
that of most of existing methods, which is O(N logN)

in the best case, where N is the number of observa-
tions. Although the MEA methods are efficient, they
are sensitive to noise and sparsity.

Most recently, Li et al. (2012) proposed a new
method to detect periods from sparse and noisy
datasets. This method exhaustively tries all pos-
sible periods combined with a process of segmenting
and overlapping, and finally chooses the trial pe-
riod maximizing the periodicity score as the result
period. The datasets they considered are binary se-
quences, which denote the periodic events happen-
ing or not at the corresponding relative timestamps.
Compared with other existing methods, the method
they proposed makes use of both positive observa-
tions (events that happened) and negative observa-
tions (events that did not happen) in the course of
period estimation, which makes it more accurate and
more robust to noise and sparseness than other meth-
ods. However, the high accuracy of this method de-
pends on large datasets. Besides, both the accuracy
and efficiency of this method are very sensitive to the
magnitude of the true period. Time complexity of
the method in Li et al. (2012) is O(n2), where n is
the length of the given binary sequence. It is obvious
that n is closely related to the true period p, and
we have n ≈ N/(1− α) · p, where N is the number
of observed observations, and α is the proportion of
missed observations. Therefore, its time complexity
can be represented as O((N/(1 − α))2 · p2).

In this paper, we propose a novel period detec-
tion method to effectively solve the problem of pe-
riod detection from sparse and noisy datasets. Our
method is motivated by the fact that the true period
is actually the approximate greatest common divi-
sor (AGCD) of the given observational dataset. The
main idea of the proposed method is that it calcu-
lates and counts the occurrence times of all possible
AGCDs by exhaustively searching noise space, and
then selects the AGCDs with the highest occurrence
times as the estimate. That is to say, our method is
to find the most frequently occurring AGCD. Both
our method and the MEA-based methods consider
the period detection problem as finding the greatest
common factor of given observations. The difference
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is that the MEA-based methods calculate the period
through repeated subtractions, whereas our method
is based on the noise exhaustive search procedure.

Compared with existing period estimation
methods, our proposed method has the following
advantages. First, our method does not require
the prior knowledge of the rough range of the hid-
den period, which makes it more general in appli-
cations than most existing methods. Second, it is
more robust to sparseness and yields higher accuracy
than other methods under the same circumstances.
Third, it can achieve high accuracy with smaller
datasets than what other methods need. Accord-
ing to the theorem introduced in Casey and Sadler
(1996), given N randomly chosen positive integers
{k1, k2, ..., kN}, and P{gcd(k1, k2, ..., kN ) = 1} =

[ζ(N)]−1, where ζ(N) is the Riemann Zeta func-
tion, P{gcd(k1, k2, ..., kN ) = 1} converges to 1 very
quickly as N increases. Fourth, the performance
of our method is less sensitive to the magnitude of
period p than the other methods, which makes it
applicable to various periodic events. Finally, the ef-
ficiency of our method outperforms those of most ex-
isting methods. The high efficiency of our proposed
method results from the quick convergence of the
AGCD algorithm, as the search space of the AGCD
algorithm is the noise space rather than the period
space and the noise space is generally much smaller
than the period space.

2 Data model and approximate great-
est common divisor

2.1 Data model

The observations on a periodic event or behav-
ior can be modeled as a chronological sequence of
timestamps, i.e., T = {ti}Ni=1, where each element ti
records the time at which the periodic event was ob-
served. Following the definition of Fogel and Gavish
(1988) and Casey and Sadler (1996), each element ti
in T is defined as

ti = ki × p+ ϕ+ ri, (1)

where p is the period (p > 0), ϕ is a uniformly dis-
tributed phase (0 ≤ ϕ < p), {ki}Ni=1 are indices rep-
resenting which occurrences have been observed, and
{ri}Ni=1 are zero-mean i.i.d. error terms.

Without loss of generality, we assume that all
the samples and parameters are integers. For the

noise terms, we assume that they have i.i.d. sym-
metric probability density distributions, such as uni-
form distribution U [−r, r] and white Gaussian dis-
tribution N (0, σ2). Furthermore, we assume that
|ri| < p/4 for all i. This assumption makes sure that
the difference of two error terms is less than p/2.

For missing observations, they are often mod-
eled through the distribution of the {ki}Ni=1. The
Bernoulli process B(λ) is a commonly used model,
determining whether a measurement is missing or
not, i.e., P (ki+1 = ki + 1) = 1 − λ, where λ is
the probability that the (i + 1)-th observation was
not observed. In addition, missing observations can
be modeled by taking the jumps in the ki as uni-
formly distributed on the discrete interval [1,M ],
where M is a positive integer. That is to say,
ki+1 = ki + xi, i = 1, 2, . . . , N − 1, where xi ∈ [1,M ]

is a uniformly distributed random integer variable.
In the data model, the period p, indices {ki}Ni=1,

phase ϕ, and noise terms {ri}Ni=1 are all unknown
parameters. The problem we consider is to estimate
the latent period p from the given sparse and noisy
observations. In other words, given a sequence of ob-
servations T = {ti}Ni=1 satisfying Eq. (1), which is in
ascending order as each observation {ti}Ni=1 is a rel-
ative timestamp, we concentrate on the estimation
of period p. This is due to the fact that, once p has
been estimated, the estimation of other parameters
is straightforward. Note that although our method
focuses on integer period estimation, it can be easily
extended to real number period scenarios. We can
scale up the real number observations by using finer
time granularity, thereby turning into an integer pe-
riod estimation problem.

2.2 Approximate greatest common divisor

The problem of AGCD was first proposed by
Howgrave-Graham (2001), which refers to recovering
an unknown integer p from given two near multiples
x1 and x2 of an unknown integer p, where x1 = q1p+

r1 and x2 = q2p + r2, r1 and r2 are unknown error
terms, and q1 and q2 are unknown positive integers
smaller than x1 and x2 respectively (q1 and q2 are
used to factorize x1 and x2 with p, and we are not
interested in them in this study). It has been proved
that p can be accurately recovered from x1 and x2

when the error terms |ri| < √
p (i = 1, 2).

The typical solution to the AGCD problem for
two near multiples is the GCD exhaustive search.
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The algorithm tries each noise (r1, r2) in the error
space and checks whether the greatest common di-
visor gcd((x1 − r1), (x2 − r2)) is large enough. The
whole procedure requires r2 Euclidean algorithm cal-
culations, where r is the noise threshold and r <

√
p.

Thus, the complexity is O
(
r2 log t

)
, where log t is the

time complexity of the Euclidean algorithm. We can
further measure the time complexity of the AGCD
algorithm in terms of period p. According to the def-
initions, t is a near multiple of period p, and r <

√
p.

Finally, the complexity of the algorithm is O (p log p)

from the perspective of period p.

3 Period detection using the ap-
proximate greatest common divisor
algorithm

The problem we consider is to estimate the la-
tent period p of a periodic event from its observa-
tional dataset, which is not fully equivalent to the
approximate integer common divisor problem intro-
duced in Section 2.2. One significant difference is
that the period detection problem does not make
such assumptions that ki and p are very large in-
tegers and approximate to

√
ti. That is to say, we

do not have the prior knowledge about the range of
the unknown period p to help us determine the right
answer among a lot of common divisors resulting
from the GCD exhaustive search procedure. With-
out prior knowledge about the range of latent period
p, it is hard for us to correctly estimate p with only
two observations.

Fortunately, we have a large set of observations
available, not just two, and those extra observations
can also give information about the latent period
p. We execute the AGCD exhaustive search for
each pair of observations, and record the number
of occurrences of each common divisor. Finally, we
find that the number of occurrences will peak at the
real period p or multiples of the real period p, i.e.,
2p, 3p, · · · . In other words, the true period p and its
multiples appear much more frequently than other
non-period values. Fig. 1 gives an example about
the occurrence times of part of the common divisors
resulting from one of the experiments in Section 4,
where the true period of the testing data is 100. From
Fig. 1 we can see that the period value and its multi-
ples appear more frequently among all the estimated
values.

This observation motivates us to propose a novel
period detection method based on the AGCD algo-
rithm, which executes the AGCD algorithm on all
pairs of observations and records the occurrence of
each common divisor, and then estimates the divisor
with the highest occurrence as the period. The pro-
posed method is presented in detail in the following
subsections.
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Fig. 1 Frequency of candidate greatest common divi-
sors (GCDs) (p = 100)

3.1 The approximate greatest common divi-
sor algorithm

The core algorithm of the proposed period de-
tection method is depicted in detail in Algorithm 1.
It consists of three steps.

The first step is to adaptively obtain the noise
threshold. There are two common ways for determin-
ing the threshold. One way is to set the threshold
according to some prior knowledge. In that case, the
first step can actually be omitted. The other way is
to adaptively choose the threshold according to the
given sample set. In this paper, the data-adaptive
method is adopted.

The second step simplifies the problem by elim-
inating the unknown parameter ϕ. There are several
methods to eliminate ϕ, such as taking pairwise dif-
ferences and taking adjacent-sample differences. We
tried these eliminating methods, and found that the
method used in this paper is most suitable for our
AGCD based method.

The third step executes the AGCD exhaustive
search procedure over the dataset D to detect the
hidden period. Specifically, we calculate AGCDs
for every pair of observations in D, and determine
the most frequently occurring AGCD as the result
period.
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Algorithm 1 AGCD period estimation
Require: a set of observations T = {t1, t2, . . . , tN}.
Ensure: period p.
1: Set noisy threshold r:

(1) Take adjacent-element differences, given by
t′i = ti+1 − ti;

(2) t = min {t′i}N−1
i=1 ;

(3) Set noisy threshold r =
√
t;

2: Eliminate phase ϕ, and form a new set
D = {d1, d2, · · · , dN−1}, where
dj = tj − t1, 1 ≤ j ≤ N − 1

3: Estimate period according to frequencies of occur-
rence of all possible GCDs:
(1) G = ∅;
(2) Compute the pairwise AGCDs among
{d1, d2, · · · , dN−1}

for all possible ri ∈ (−r, r) and rj ∈ (−r, r)

g = gcd(di + ri, dj + rj);
if g ≥ t

if g ∈ G

occur[g] = occur[g] + 1;
else
occur[g] = 1;
G = G ∪ g;

end if
end if

end for
(3) Find the GCD g with the highest frequency as
the period, i.e., p = g.

3.2 Problem simplification

Since we focus on the estimation of period p,
Eq. (1) can be further simplified by eliminating the
unknown parameter ϕ. To this end, we let each
sample subtract the minimal sample of T , i.e., ti−t1,
and obtain a new sample set D = {di}N−1

i=1 , where

di = k′i × p+ r′i, (2)

k′i = ki+1 − k1, and r′i = ri+1 − r1. According to
the assumptions on the original observations, it can
be easily derived that samples in D are also in as-
cending order, and that the error terms r′i also have
i.i.d. symmetric probability density distributions.

Now, the problem becomes estimating period p

from sample set D. When noise terms r′i are zero, pe-
riod p will be the GCD of all the samples in D with
a high probability. Casey and Sadler (1996) have
proved that gcd(k′1p, k′2p, · · · , k′N−1p) → p which
converges quickly as N → ∞. In the noise case, the
simplified problem can be considered as a general
version of the approximate common divisor problem

in Howgrave-Graham (2001), and we can name it an
AGCD problem for multiple samples.

3.3 Computational complexity

In our AGCD period detection algorithm, the
first step requires O(N) calculations to identify the
noise threshold r, the second step takes O(N) cal-
culations to eliminate the unknown phase ϕ, and
the third step invokes the AGCD algorithm approx-
imately N(N − 1)/2 times to calculate the period in
the worst case, where N is the number of observa-
tions. Of the three steps, the third one is the core
and the most time-consuming. Finally, the whole
complexity of the proposed AGCD algorithm is ap-
proximately O

(
N2p log p

)
.

In practice, the complexity of our proposed
method could be further refined through the follow-
ing tricks. First, the execution time of the AGCD
algorithm of the third step can be further reduced by
grouping the samples into several clusters according
to a given threshold on the gaps between two con-
secutive samples, and then choosing samples from
different clusters to calculate their common divisors.
Therefore, the required number of AGCD calcula-
tions could be remarkably reduced from N2 to N .
Therefore, the complexity of our method could be
reduced to O (N · p log p).

Furthermore, the dataset size N can be consid-
ered as a constant, and the time complexity can be
further reduced to O(p log p). One reason is that the
proposed algorithm could detect the accurate period
with only a small set of observations, such as N = 30.
According to the theorem introduced in Casey and
Sadler (1996), given N randomly chosen positive in-
tegers {k1, k2, ..., kN}, P{gcd(k1, k2, . . . , kN ) = 1} =

[ζ(N)]−1, where ζ(N) is the Riemann Zeta function,
and thus [ζ(N)]−1 converges to 1 from below very
quickly as N increases. Thus, there is no need to use
large or infinite datasets to detect the period. An-
other reason is that the observational datasets that
we can collect are seldom very large under many cir-
cumstances, let alone approaching infinite.

4 Evaluation

4.1 Experimental settings

In this section, we compare our method with
the single iteration MEA method (Casey and Sadler,
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1996) and the exhaustive trial of period method pro-
posed in Li et al. (2012). We name these methods
AGCD, MEA, and ETP, respectively. These algo-
rithms were implemented in C++. All the experi-
ments were conducted on an Intel Core i5 3.0 GHz
machine with 4 GB RAM. As we could not find real
datasets to evaluate our method, we designed a data
generator according to the data model given in Sec-
tion 2. The designed generator can generate differ-
ent synthetic datasets through the settings of period
p, sample size N , noise threshold r, and sparsity
of observational datasets λ (i.e., the probability of
a missing observation). In our generator, the de-
fault values of these parameters were set as follows:
p = 100, N = 40, r = 10, and λ = 0.8.

We compare the performance of the three meth-
ods in terms of accuracy and efficiency. For each ex-
periment, we report the results with one of these four
parameters varying while the others are fixed. For
each setting of parameters, we independently ran the
experiment 100 times. The accuracy of the methods
is quantified as the success rate and the mean error.
The success rate is the percentage of accurately es-
timated experiments over the 100 trials. The mean
error is the average of the estimated errors over 100
trials, i.e., ME = 1

n

∑N
i=1 |p̂i − p|.

4.2 Accuracy

In this set of experiments, we examine the accu-
racy performance of the three methods under various
parameter settings.

4.2.1 Accuracy with regard to the noise threshold

Figs. 2a and 2b depict the accuracy perfor-
mance curves of the three methods with regard to dif-
ferent noise threshold r. The accuracy of the AGCD
method is remarkably higher than the other meth-
ods when the noise threshold r ≤ √

p. The AGCD
method is less accurate than the ETP method in
some cases when the size of dataset is N = 80. The
reason is that the ETP method takes advantage of
both positive and negative information during the
period detection process, whereas our method uses
only positive information. However, the high accu-
racy of ETP relies on large datasets, whereas our
method needs fewer observations and can achieve
similar accuracy with smaller datasets than the ETP
method.
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4.2.2 Accuracy with regard to sparseness

Figs. 3a and 3b show the accuracy performance
of the three methods in terms of their robustness to
sparsity. The proposed method always outperforms
the other methods, and keeps a steadily high accu-
racy when the sparsity of datasets increases. Thus,
our method is more robust to sparsity than the other
two methods.
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4.2.3 Accuracy with regard to the number of
observations

Figs. 4a and 4b show the accuracy performance
of the three methods as the size of datasets N varies.
Obviously, the more observations that can be used
for the period estimation, the higher the accuracy
that can be achieved. Our method can achieve
high accuracy with smaller datasets than the other
two methods. Our method accurately estimates the
period with only 40 observations, while the ETP
method needs at least 80 observations to achieve the
same accuracy. This means that our method can be
used in the situation where large datasets are hard
to acquire.

0 20 40 60 80 100 120
-10

10

30

50

70

90

110

S
uc
ce
ss
ra
te
(%
)

0 20 40 60 80 100 120
-10

10

30

50

70

90

M
ea
n
er
ro
r

Sample size

Sample size

(a)

(b)

ETP MEA AGCD

Fig. 4 Success rate (a) and mean error (b) with regard
to sample size (p = 100, r = 10, λ = 0.8)

4.2.4 Accuracy with regard to different periodic
events

Figs. 5a and 5b show the accuracy of the three
methods over various periodic events with differ-
ent periods. The proposed method keeps a steadily
high accuracy as the magnitude of period p becomes
larger, while the accuracy of the other two methods
significantly degrades, especially the ETP method.
This indicates that the accuracy of our method is
independent of the magnitude of the period, which
makes it applicable for various periodic events with
different periods.

4.3 Efficiency

The time performance of the three methods is
shown in Fig. 6. The running time of the proposed
method is close to that of the MEA method, which
is currently the fastest periodic estimation method
to the best of our knowledge. And the efficiency
of our method is much less sensitive to the size of
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datasets and the magnitude of the period. Among
the three methods, the ETP method is the most
time-consuming one, whose running time grows dra-
matically as the size of datasets or the magnitude of
period increases. Although our method costs a little
more time than the MEA method, the accuracy of
our method is much higher.

5 Conclusions

In this paper, we propose an efficient and ef-
fective method for detecting latent periods from fi-
nite, sparse, and noisy observational datasets of peri-
odic events. The good performance of the proposed
method is demonstrated via comprehensive experi-
ments. Through the experiments we can see that the
AGCD method outperforms the other two methods
in most situations. The AGCD method is less sen-
sitive to the size of datasets and the magnitude of
period than the compared methods, and it has high
efficiency which is close to the fastest period detec-
tion method, MEA. All these benefits of the proposed
method make it more general in application than the
other methods.

In our future work, we will consider extending
our method to more complicated scenarios, such as
periodic events with multiple periods or with multi-
ple phases, which are also common situations in the
real world.
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