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Abstract:    The symbolic representation of time series has attracted much research interest recently. The high dimensionality 
typical of the data is challenging, especially as the time series becomes longer. The wide distribution of sensors collecting more 
and more data exacerbates the problem. Representing a time series effectively is an essential task for decision-making activities 
such as classification, prediction, and knowledge discovery. In this paper, we propose a new symbolic representation method for 
long time series based on trend features, called trend feature symbolic approximation (TFSA). The method uses a two-step 
mechanism to segment long time series rapidly. Unlike some previous symbolic methods, it focuses on retaining most of the trend 
features and patterns of the original series. A time series is represented by trend symbols, which are also suitable for use in 
knowledge discovery, such as association rules mining. TFSA provides the lower bounding guarantee. Experimental results show 
that, compared with some previous methods, it not only has better segmentation efficiency and classification accuracy, but also is 
applicable for use in knowledge discovery from time series. 
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1  Introduction 

 
Advances in data collection and storage tech-

nologies achieved in recent decades have massively 
broadened the variety of sensory data. Accumulated 
data from a large-scale sensor network can easily 
exceed a storage capacity of thousands of gigabytes. 
One purpose of collecting the data is to reveal useful 
hidden information and connections. Undeniably, the 
analysis and mining of such data should be automated, 
particularly, in the emerging and dynamic applica-

tions of patient health evaluation, or smart city and 
power grid management. Each sensor node collects 
physically measured data or multimedia information, 
which can be interpreted and stored in the form of 
time series. Techniques such as knowledge discovery 
can be used efficiently in the data management and 
classification of time series to aid relevant decision- 
making. Knowledge discovery refers to the mining of 
previously unknown rules that can be understood and 
interpreted, and that can be automatically validated 
and evaluated (Guimarães and Ultsch, 1999). 

The explosion of interest in knowledge discov-
ery from time series was sparked by a requirement to 
extract sequential patterns from a database of trans-
actions (Agrawal and Srikant, 1995). This was further 
extended to discover frequent episodes and episode 
rules (Mannila and Toivonen, 1996). The application 
of unsupervised neural networks to the mining rules 
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between temporal patterns generated temporal 
grammatical rules for a symbolic knowledge repre-
sentation (Guimarães et al., 2001). Villafane et al. 
(2000) proposed a mining technique to discover 
containment relationships in a series of interval 
events derived from a numerical time series by a 
quantization step. Mining knowledge from time series 
has been applied to distinguish underlying temporal 
processes or anomalous behaviors, and to predict 
more intelligently through the use of historical data. 
However, most time series merely explicate the po-
tential information of using themselves, and many 
more underlying rules are derived by mining algo-
rithms. Another noticeable feature is that most sensor 
data exist as collections of consecutive values varying 
continuously in time. As a prerequisite, the consecu-
tive data need to be discretized for data mining algo-
rithms. The symbolic representation of time series is a 
compatible method, which has proved useful in fa-
cilitating the manipulation of discretized data in many 
areas, such as trend analysis of meteorological data 
(Mellit et al., 2013), fault diagnosis of remote sensing 
data from space (Sarkar et al., 2013), consistency 
checking in medical data (Vullings et al., 1997), and 
anomaly detection in GPS positioning (Bu et al., 
2009). 

The basic concept of time series symbolic rep-
resentation is to convert the numerical form of a time 
series into a sequence of discrete symbols according 
to designated mapping rules. Many researchers have 
proposed high-level representations of time series, 
including discrete Fourier transform (DFT) (Falout-
sos et al., 1994), discrete wavelet transform (DWT) 
(Chan and Fu, 1999), piecewise aggregate approxi-
mation (PAA) (Keogh et al., 2001), and singular value 
decomposition (SVD) (Korn et al., 1997). The 
transformed sequences are characterized as discrete, 
non-real numbers with reduced dimensionality. So, a 
reasonable symbolic method can improve the effi-
ciency of time series data mining. In this paper, we 
propose a generalized method for the entire process of 
knowledge discovery from long time series. First, the 
time series is partitioned using a two-step segmenta-
tion mechanism resulting in pieces whose intervals 
can be unequal. Then the trend feature symbolic ap-
proximation (TFSA) is used to symbolize these in-
tervals. Finally, an apriori-based algorithm is used for 
discovering association rules from the symbol item-

sets. The original contributions of this paper are an 
improvement in the segmentation efficiency of long 
time series, and the TFSA method which focuses on 
preserving the trend features of the original time se-
ries and interprets the rules obtained from mining 
time series.  

 
 
2  Problem statement 

 
The high dimensionality of time series is re-

sponsible mainly for increasing the access time and 
computation load of data mining algorithms. Also, the 
meanings of terms such as ‘similar to’ and ‘cluster 
forming’ are not definitive in high dimensional space. 
This complicates the application of knowledge dis-
covery techniques to raw time series. To discover 
knowledge from long time series, there are two 
problems that need to be addressed: segmentation 
efficiency and validity of knowledge (or rules).  

Time series segmentation is essential for 
knowledge discovery from time series. Existing 
segmentation algorithms can be divided into three 
categories: 

1. Constrained length: In this type, the number of 
segments after division is pre-defined. For example, 
to obtain a fixed segmentation number N, the time 
series can be divided into equal widths without con-
sidering other conditions. This segmentation method 
is used in many data representation methods, such as 
PAA, because of its simplicity. 

2. Given fitting errors: This type of method splits 
time series by controlling the segmentation error to 
find the appropriate segmentation points. Common 
methods include: sliding window (SW), top-down 
(TD), and bottom-up (BU).  

3. Segmentation based on key points: Splitting 
time series by some key points, such as local extreme 
points, edge points, or turning points, can avoid 
missing important information from the original time 
series. Existing methods include important points (IPs) 
(Phetking et al., 2008), perceptually important points 
(PIPs) (Yeh et al., 2004), and turning points (TPs) 
(Bao and Yang, 2008). 

Most high-level segmentation algorithms have 
to consider the challenges caused by the length of 
time series. For example, the time complexity of TD 
is O(N2) (N is the length of the time series). If N is 
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extraordinarily large (e.g., N≥107), it will require a 
considerable amount of computation. In this paper, a 
two-step segmentation mechanism is proposed to 
reduce the computational complexity. 

To obtain the desired rules, a symbolic form is 
usually preferred for knowledge discovery from time 
series. Though many discretization methods convert 
numeric time series to symbols, they ignore the trend 
features of the original series. Hence, symbols pro-
duced by the general discretization methods are not 
suitable using efficient mining rules that can be ex-
pressed in a natural language and used for predicting 
the future behavior of the time series. For example, 
symbolic aggregate approximation (SAX) (Lin et al., 
2003) is a prevailing symbolic method because of its 
simplicity and high computational efficiency. SAX is 
also reputed to have reliable performance when used 
for the data mining tasks of clustering, classification, 
indexing, and anomaly detection. However, these 
methods are unsuitable for use in knowledge discov-
ery processes, such as association rule mining. For 
example, SAX uses the mean value of subsequences 
to represent the time series intervals, thereby ignoring 
many of the trend features. To improve knowledge 
use and interpretability, it is very important that the 
symbolic results of intervals should describe these 
trend features. In this paper, trend features are used to 
symbolize time series for two purposes. First, trend 
features are an important characteristic of a time se-
ries. In some applications, the way that time series 
values vary is considered to be very important, be-
cause it enables useful conclusions to be drawn 
(Kontaki et al., 2005). For example, in a satellite fault 
monitoring system it is important to know which 
telemetry parameters show an increasing trend and 
which show a decreasing trend to avoid serious fail-
ures. Second, trend-based representation of time se-
ries is more closely aligned to human intuition 
(Kontaki et al., 2008). Results from symbolic repre-
sentation are very useful for making quick and valu-
able decisions in practical applications, such as 
medical diagnosis or financial analysis. The TFSA 
method, based on the trend features, is suitable for 
meaningful discretization of numeric time series. 
TFSA is focused on preserving the trend features, 
which are used in symbolizing intervals after seg-
mentation. This approach improves the validity of the 
rules obtained. Note that monotonically increasing or 

decreasing time series is not considered in this paper 
because of their simplicity. 

 
 
3  Two-step segmentation mechanism 

 
For time series analysis, the sequence length is 

an important factor. The longer the time series, the 
more slowly the algorithm runs due to its computa-
tional complexity. When the length of time series N is 
huge, the computational burden becomes serious. The 
two-step segmentation mechanism first splits a long 
time series into k shorter segments, reducing the time 
complexity to O(N2/k2). So, shorter subsequences 
after division can be segmented in the second step. 

3.1  First step: searching for the key points of time 
series 

The purpose of time series segmentation is to 
divide the original series into a set of independent 
subsequences. After division, a high-level represen-
tation of the processed series can be derived, and 
further mining techniques such as indexing, cluster-
ing, classification, and the association rule, become 
more efficient. To clarify the following presentation, 
the following definitions of time series properties are 
given. The definitions of ‘time series’ and ‘subse-
quence’ are based on those in Esling and Agon 
(2012). 
Definition 1 (Time series)    A time series T=t1, t2, …, 
tm is a sequence of real-valued data collected at reg-
ular intervals over a period of time, where m is the 
length of the time series. 
Definition 2 (Subsequence)    Given a time series T of 
length m, a subsequence Q of T is a sampling of 
length n (n≤m) with contiguous positions from T, that 
is, Q=tp, tp+1, …, tp+n−1, 1≤p≤m−n+1. 
Definition 3 (k-segmentation of a time series)    Time 
series T is divided into k subsequences T=Q1Q2…Qk, 
where Qi (i=1, 2, …, k) is not null. A group of segment 
boundaries is defined as u0, u1, …, uk, ui{1, 2, …, m}, 
1=u0<u1<…<uk=m. So, Q1=T(u0, u1), Q2=T(u1+1, u2), 
Q3=T(u2+1, u3), …, Qk=T(uk−1+1, uk). 

It is very important to search for key points of 
time series where the series pattern changes. The 
important key points include extreme points, local 
extreme points, important points, and turning points. 
Many methods have been proposed for key point 
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searching, but not all of them consider the global 
extreme points or global turning points due to the 
complexity of the algorithms. The significance of the 
key points, from a global perspective, especially for 
long time series, will be greatly reduced if they are not 
considered globally. In this paper we propose a 
method to find global key points, called CUSUM- 
based turning points (CBTP), based on cumulative 
sum control chart (Yeh et al., 2004). This approach 
fully considers the global series change information, 
and thus is useful for identifying the turning point 
from one pattern to the next changed pattern. Accu-
mulating the changes in the series and amplifying 
small shifts in the process of series change, is a par-
ticularly efficient way to find abrupt changes. Be-
cause of its simple computation, the algorithm is more 
efficient. The searching algorithm of CBTP is given 
in Algorithm 1. 

 
Algorithm 1  CUSUM-based turning point searching 
Input: time series T=t1, t2, …, tm. 

Output: turning points uj, uj{1, 2, …, m}. 

Calculate the mean value of time series: 
=1

= / .
m

i
i

t t m  

Set the initial CUSUM: s0=0. 

Calculate CUSUM of each points: 1+( ),i i is s t t   

i=1, 2, …, m. 
Set smax=max{|si|}, i=1, 2, …, m, and the output point 

is uj=i. 
 
A numerical example of a time series (Fig. 1) is 

used to illustrate the CBTP algorithm. First, the mean 
value of the time series is calculated, t   
 
 
 
 
 
 
 
 
 
 
 
 
 

19

1

/i
i

t m

 =11.4. Then the cumulative sum si of each 

point is computed iteratively, which results in a da-
taset of si={−0.4, 1.2, 1.8, 2.4, 4.0, 7.6, 11.2, 12.8, 
17.4, 17.0, 15.6, 14.2, 13.8, 9.4, 7.0, 3.6, 4.2, 1.8, 0.4}. 
The maximum value of si is 17.4 when uj=i=9. Hence, 
t9 is one of the turning points of the time series. The 
results are shown in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The CBTP algorithm does not need any pre- 

defined parameters, such as fitting error, which will 
change the segmentation results due to the different 
values. So, the performance of CBTP is stable. The 
above process can be repeated recursively to find 
other turning points of subsequences obtained from 
former segmentation until the pre-defined k segmen-
tations are finished. 

3.2  Second step: segmentation of shorter series 

In the first step, a long time series is split into 
several shorter series to which the complicated seg-
mentation algorithms can be applied without reducing 
efficiency greatly. Using the CBTP algorithm, the 
turning points that divide the original series into 
segments with different patterns can be obtained. At 
these points, a significant change has occurred in the 
latter part compared with the former. However, there 
is a drawback in that the recursion will produce a lot 
of repeated calculations if only the CBTP algorithm is 
used. So, after the first step of segmentation using 
CBTP, an adaptive segmentation algorithm based on 
the sliding window is attempted. Not only will the 
efficiency of segmentation be improved due to the 
shorter length, but also the parallel mechanism can be 
considered on these segmentations. 

 
Fig. 1  An example time series 
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Fig. 2  Cumulative sum of every point 
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Definition 4 (Number of initial segmentations)    
Division of the time series into k pieces in the first 
step is made according to a pre-defined number of 
segments k.  
Definition 5 (Sliding window)    Given a time series T 
of length m, a subsequence of length n can be ob-
tained using a window of size n sliding on the time 
series. 

So, the process of the two-step segmentation is 
as follows: first, according to the initial segmentation 
k, the CBTP algorithm is used to segment the time 
series into k subsequences. Special consideration is 
given for the divided subsequences to avoid those of 
extreme length (too long or too short). Second, further 
segmentation can be based on the adaptive segmen-
tation algorithm (Lavielle and Teyssière, 2006). To 
generate an approximation based on trend features, 
least squares regression (LSR) is used to fit a straight 
line through segmentation. The least squares method 
assumes that the best-fit line is the line where the sum 
S of squared residuals is a minimum: 

 

2

1

= [ ( )] .
n

i i
i

S y f x


  

 

The general idea of the algorithm is as follows: 
Given a window size (fit) and an angle tolerance 
(angle.tol), the segmentation algorithm starts by 
finding the slope of the first fit points of the series 
through LSR. The window slides over one point and 
the new slope is computed for the points included by 
the new window. Comparing the new slope with the 
old one, if the change in slope exceeds angle.tol, a 
change-point is recorded as the rightmost point of the 
previous window. The routine then picks up again 
starting at the point just to the right of the 
change-point. If the change of slope does not exceed 
angle.tol, then the old slope will be updated. The 
algorithm continues until the sliding window reaches 
the edge of the time series. The adaptive segmentation 
algorithm is given in Algorithm 2. 

 
Algorithm 2    Adaptive segmentation 
Input: subsequence Qi=q1q2…qj. 
Output: change-points ui (1≤i≤j). 
Step 1: set the size of sliding window fit=l.  
Step 2: compute the slope of the first fit points of 

series k1. 

Step 3: slide over one point and compute the new 
slope k2. 

Step 4: if |k1−k2|>angle.tol, a change-point ui=ql+1 and 
k1 are recorded, the window slides to the point ql+1, 
and the routine goes to step 2. 

Step 5: if |k1−k2|<angle.tol, k=(k1+k2)/2, the routine 
goes to step 3. 

Step 6: continue until the sliding window reaches the 
edge of series. 

 
The adaptive segmentation algorithm not only 

can be used to find the key points of a time series, but 
also is very suitable for recognizing periodic features. 
This is important for time series with periodicity, such 
as remote sensing space data or medical data. Taking 
the time series in Fig. 3 as an example, the data are 
composed of several series following a normal  
distribution. 

Using Algorithm 2 to segment the series gives 
the results as shown in Fig. 4. From the results, the 
key points for recognizing the periodic features are 
obtained, and the data are shown to be composed of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Example data composed of a series obeying a 
normal distribution 
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Fig. 4  The periodic features obtained using the adaptive 
segmentation algorithm 
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six series obeying a normal distribution with different 
mean values. 
 
 
4  Symbolic representation based on trend 
features 

 
In practice, many time series are not stationary or 

monotonous. Therefore, most time series will show 
different ‘trends’ as time progresses and these trends 
are important features of a time series. A trend should 
have a direction. That is, it should have a higher or 
lower value at the end of the series, so that it will seem 
generally to increase or decrease over time. Trend- 
based approximations have been studied extensively  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in the last decade. For example, Kontaki et al. (2005) 
used piecewise linear approximation (PLA) to trans-
form a time series into a vector of symbols (using U to 
indicate an upward trend and D for a downward trend). 
In this paper, three kinds of trend (Fig. 5) are con-
sidered: increasing, decreasing, and stationary. Other 
trends, like fast increasing and drastic decreasing, are 
supplemented by the slope coefficient which is used 
to measure the magnitude of a trend change.  
Definition 6 (Increasing trend)    Given a time series 
T of length m, if {ti<tj|i<j<m} for all i, and j is suffi-
ciently large, then T has an eventually increasing 
trend. 
Definition 7 (Decreasing trend)    Given a time series 
T of length m, if {ti>tj|i<j<m} for all i, and j is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  The basic trends of the time series 
(a) Concavely decreasing; (b) Convexly decreasing; (c) Linearly decreasing; (d) Concavely increasing; (e) Convexly increas-
ing; (f) Linearly increasing; (g) Concavely stationary; (h) Convexly stationary; (i) Stationary 
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sufficiently large, then T has an eventually decreasing 
trend. 
Definition 8 (Stationary trend)    Given a time series T 
of length m and a pre-defined minimum θ, if 
Δt=|ti−tj|<θ, i, j=1, 2, …, m for all i, j, then T has a 
stationary trend. 
Definition 9 (Increasing local trend)    Let a, b be 
integers such that 0≤a≤b≤m. If ti<tj for all a≤i≤j≤b, 
then T has an increasing local trend on [a, b].  

Other local trends could be defined according to 
Definition 9, but here we omit them for brevity. Fig. 5 
shows the basic trends that will be used in the fol-
lowing symbolic representation, and a symbolic rep-
resentation using trends after segmentation is illus-
trated in Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1  Symbolization of intervals 

After the two-step segmentation of the time se-
ries, the intervals obtained become imbalanced in 
length but the key points are retained.  

The next steps involve extracting trend features 
from each of the intervals and representing the in-
tervals by a set of symbols. In this paper, the trend 
features of interval series include: trend, slope, and 
last point. To symbolize the trends, symbols ‘01’, ‘10’, 
and ‘00’ (or ‘11’) are used to represent increasing, 
decreasing, and stationary trends, respectively. The 
slope is computed using LSR to fit the interval. Given 
an interval series S of length n, it is a finite set {(vi, ti)}, 
0≤i≤n, which is composed of a value vi and a 
timestamp ti. The slope a can be computed as  

 

2

1 1 1 1 1

2 .
n n n n n

i i i i i i
i i i i i

a n v t v t n v v
    

   
      
   
       (1) 

The last point b of the intervals is an important 
feature, which not only represents the key points 
obtained from segmentation, but also can ensure the 
unique mapping between the symbolic results and the 
intervals.   

The TFSA method provides specific symbolic 
representations of intervals (Table 1). A given exam-
ple will illustrate the operation of our approach, and 
the original time series used for experiment is shown 
in Fig. 7. The long time series is not considered in the 
example for the conciseness of illustration. 

Numerous studies have appreciated the im-
portance of standardizing the time series before 
clustering, classification, and comparison of the sim-
ilarity. Accordingly, our method normalizes the time 
series before symbolization into a standard sequence 
with zero mean and standard deviation. Using the 
two-step segmentation method to split the time series 
gives the results shown in Fig. 8. 

In the process of segmentation, the slope a of the 
interval and the segmentation points b are retained. So, 
according to the symbols defined in Table 1, the 
symbolic results are: 1.28

1 0.02 1 1=01 , =1.28, ( )= 0.02,Q k T u   
1.29

2 0.59 2 2=10 , = 1.29, ( )= 0.59,Q k T u
   5.32

3 1.75=10 ,Q k3=5.32, 

T(u3)=1.75, and so on. So, the symbolic representa-
tion of the time series is:  

 

1.28 1.29 5.32 0 2.02 0 2.15 0.26
0.02 0.59 1.75 1.75 0.64 0.64 1.25 0.99

1 2 3 4 5 6 7 8

01 10 01 11 10 00 10 01 .

Q Q Q Q Q Q Q Q
 

   
 

 
From the results of symbolization, it is easy to 

see that the time series initially tends to move up-
wards, and then drops downwards to −0.59. Then 
there is a drastic increase to 1.75. After a flat section, 
the time series declines until another flat region is  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6  Symbolic representation using trends after 
segmentation 

0 10 20 30 40

25 

20 

15 

10 

5 

Time

V
al

ue
 

Table 1  Trend symbols from trend feature symbolic 
approximation 

Symbol Meaning 

01a
b  An upward trend interval 

10a
b  A downward trend interval 

0 000 ,11b b  A flat trend interval, using 011b  to represent 

stationary after 01 ,a
b  and 000b  to represent

stationary after 10a
b  (the slope is zero) 

a: degree of change, the value of which is the slope of the interval; 
b: the last point value of the interval after standardization 



Yin et al. / Front Inform Technol Electron Eng   2015 16(9):744-758 751

reached. The descent of the time series continues 
before reaching a turning point at −0.99, followed by 
a slow rise to the finish. The trends are characterized 
and symbolized using the TFSA method (Fig. 9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Lower bounding guarantee 

All symbolization methods need to be evaluated 
based on how closely the approximated symbol can 

represent the features of the original series. An im-
portant conclusion is drawn to ensure no false dis-
missals in the distance measure between the symbolic 
string and the true distance (Faloutsos et al., 1994) 
The following condition must be satisfied: 

 

Dsymbolic(Q, C)≤Dtrue(A, B),               (2) 
 

where A, B are the original time series measured by 
the true distance Dtrue, and Q, C are symbolic se-
quences of A, B measured by Dsymbolic, respectively. 
This theory is also known as the lower bounding or 
the contractive property. The distance after symboli-
zation should not exceed the true distance. In this 
study, the true distance was measured using Euclidean 
distance: 
 

2
true Euclidean

=1

( , ) ( , ) ( ) .
n

i i
i

D A B D A B a b        (3) 

 

According to the symbolic representation TFSA, 
Dsymbolic(Q, C) is defined by  

 

symbolic TFSA

2

=1

( , )= ( , )

||qa | |ca ||
= (qb cb ) ,

max (|qa |, |ca |)

w
i i

i i i
i i i

D Q C D Q C

n
T

w


  

       (4) 

 

where w is the number of intervals after segmentation, 
n is the length of the original time series, Ti is the 
distance coefficient between different trends (a pen-
alty coefficient, with its value shown in Eq. (5)), qbi, 
cbi are the last points of the ith interval of Q and C, 
respectively, and qai, cai are the slopes of the ith in-
terval of Q and C, respectively. 
 

2
0, cb 0,

,
1, cb 0,qb cb

i
i

ii i

Q C
T f

f

  
        

      (5) 

 

where Q  and C are the mean values of time series Q 

and C, respectively. 
In the following section, the distance of the 

symbolic series generated using TFSA will be com-
pared with the Euclidean distance of the original se-
ries to verify if the TFSA distance lower-bounds the 
Euclidean distance, i.e., if DTFSA(Q, C)≤DEuclidean(A, B). 
This proof will be based on the condition where there 
is a single TFSA frame, i.e., w=1. A more generalized 

Fig. 8  Segmentation of a time series using two-step 
segmentation 
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Fig. 9  Representation of trend features using trend 
feature symbolic approximation 
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Fig. 7  The original time series 
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proof for w>1 can be obtained by applying the single- 
frame proof to each frame. 
Proof    Substituting Eqs. (3) and (4) into DTFSA(Q, C) 
≤DEuclidean(A, B) gives 
 

2 2

=1

||qa | |ca ||
( ) (qb cb ) .

max (|qa |, |ca |)

n
i i

i i i i i
i i i

a b n T


       

(6) 

Squaring both sides of inequality (6) gives 

2 2

=1

||qa | |ca ||
( ) (qb cb ) .

max (|qa |, |ca |)

n
i i

i i i i i
i i i

a b n T


       

(7) 
 

Because ai can be represented as ,i ia Q a    the 

same applies to i ib C b   . Thus, the left side of 

inequality (7) can be rewritten as 
 

2 2

1 1

[( ) ( )] = [( ) ( )] .
n n

i i i i
i i

Q a C b Q C a b
 

          

 

Furthermore, the left side of inequality (7) can be 
expanded as 
 

2 2

1
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n

i i i i
i
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
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Using the distributive law gives 
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(8) 
 

Because ,i ia Q a    then ,i ia Q a    and thus 

.i ib C b    Therefore,  
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Hence, the left side of inequality (7) becomes  

2 2

1

( ) ( ) .
n

i i
i

n Q C a b
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,
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||qa | |ca ||

1,
max (|qa |, |ca |)

i i

i i


  

the right side of inequality (7) satisfies  

2 2||qa | |ca ||
(qb cb ) ( ) .

max (|qa |, |ca |)
i i

i i i
i i

n T n Q C


       

 

So, inequality 2

1

( ) 0
n

i i
i

a b


     is established, and 

inequality (6) holds true. The proof is complete. 

4.3  Preprocessing for knowledge discovery 

Due to the trend features, one feature of TFSA 
that distinguishes it from previous symbolization 
methods is that it facilitates subsequent data mining 
work, such as knowledge discovery. If the angle space 
of the slopes is (−90°, 90°), the space can be divided 
into a series of non-overlapping intervals. Each in-
terval corresponds to a number (from 1 to 9) that 
indicates the change in the steepness or degree of 
trends. The angle space and corresponding numbers 
are defined in Table 2. It is observed that the slopes of 
the interval series can be transformed from infinity 
numbers into a limited set of symbols.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

However, the last point value b after standardi-
zation is still in infinity, so it is necessary to transform 
the infinity numbers to limited symbols for 
knowledge discovery. Given that normalized time 

Table 2  Degree of trends and the corresponding angle 
ranges 

Degree of trends Angle range 1 Angle range 2 

1 [0°, 10°) (−10°, 0°] 

2 [10°, 20°) (−20°, −10°] 

3 [20°, 30°) (−30°, −20°] 

4 [30°, 40°) (−40°, −30°] 

5 [40°, 50°) (−50°, −40°] 

6 [50°, 60°) (−60°, −50°] 

7 [60°, 70°) (−70°, −60°] 

8 [70°, 80°) (−80°, −70°] 
9 [80°, 90°) (−90°, −80°] 
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series has highly Gaussian distribution, some ‘split 
points’ can be found, which will determine n equal- 
sized areas under the Gaussian curve. The split points 
are a sorted list of numbers β1, β2, …, βn−1 such that 
the area under an N(0, 1) Gaussian curve from βi to 
βi+1 is equal to 1/n (β0 and βn are defined as −∞ and ∞, 
respectively). These split points can be found in a 
statistical table. Table 3 gives the split points for the 
value of n from 3 to 9. 

Once the split points have been obtained from 
the lookup table, the value of the last point b can be 
discretized using the following method. First, the 
value of b is standardized. Then all points b that are 
below the smallest split point are mapped to symbol 
‘A’, all points b greater than or equal to the smallest 
split point and less than the second smallest split point 
are mapped to symbol ‘B’, and so on. Fig. 10 illus-
trates the idea. 

In this way, time series can be converted to a se-
ries of trend symbols, each with an understandable 
meaning. Take the series illustrated in Fig. 10 as an 
example. The results of symbolization can be further 

expressed as 6 6 8 0 7
1 2 3 4 5 6 7 8 B B D D C01 10 01 11 10Q Q Q Q Q Q Q Q    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 7 2
C A A00 10 01 . So, for knowledge discovery of the time 

series, the preprocessing is finished. 
 

 
5  Experimental evaluation 

 
The goal of these experiments was to demon-

strate the efficiency and accuracy of TFSA used in 
long time series compared with those of other sym-
bolic representation methods. Finally, the performance 
of TFSA for knowledge discovery was evaluated. 

5.1 Efficiency of the two-step segmentation 
mechanism 

In this experiment, satellite telemetry parameter 
data were chosen as the test data, whose characteris-
tics are given below: 

Large size: The size of the original satellite  
dataset was more than 4 GB for one day. 

Multiple parameters: The number of parameters 
was more than one thousand. 

The top-down (TD) and sliding window (SW) 
methods were selected to compare with two-step 
segmentation. For SW, the window size was set as 20 
and the sliding step 1. The two-step segmentation was 
run with different numbers of initial segmentations k, 
pre-defined as 50 and 100, respectively. In the second 
step of segmentation, the intervals were split in par-
allel using Algorithms 1 and 2. So, the execution time 
of the two-step segmentation was computed as  
follows: 

 

1 2first-step max{ , , ..., }.
kQ Q QT t t t t             (9) 

 

The length of the time series varied from 1000 to 
1 000 000. As the length of the time series increased 
beyond 100 000, two-step segmentation was clearly 
faster than TD and SW (Table 4). When the length of  
 
 
 
 
 
 
 
 
 
 

Table 4  A comparison of segmentation efficiency with 
different time series lengths 

Algorithm 
Execution time (s) 

1000 10 000 100 000 1 000 000

TD 1.80 10.38 120.12 1570.35

SW (fit=20, step=1) 1.13 3.01 70.93 648.51

Two-step segmentation    

k=50 2.29 4.49 10.52 21.86

k=100 2.18 3.72 7.75 15.68
 

Table 3  A lookup table containing the split points which 
divide a Gaussian distribution into equiprobable regions 

βi n=3 n=4 n=5 n=6 n=7 n=8 n=9

β1 −0.43 −0.67 −0.84 −0.97 −1.07 −1.15 −1.22
β2 0.43 0.00 −0.25 −0.43 −0.57 −0.67 −0.76
β3 − 0.67 0.25 0.00 −0.18 −0.32 −0.43
β4 − − 0.84 0.43 0.18 0.00 −0.14
β5 − − − 0.97 0.57 0.32 0.14
β6 − − − − 1.07 0.67 0.43
β7 − − − − − 1.15 0.76
β8 − − − − − − 1.22

 

Fig. 10  The last point b mapped to symbols (n=4) 
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the series reached 1 000 000, the two-step segmenta-
tion was about 72 to 100 times faster than TD (with 
the number of initial segmentations set as 50 and 100, 
respectively). 

From the results in Table 4, when the length was 
1000, SW was apparently the fastest algorithm and 
TD the second fastest. SW efficiently handled short 
time series thanks to its lower complexity (O(n)). 
When the length of the time series was less than 
10 000, two-step segmentation was not as competitive 
as the other two approaches due to the allocations of 
tasks for parallel implementation. However, the ad-
vantage of two-step segmentation was gradually but 
increasingly unveiled with a slight increase in pro-
cessing time as the time series length extended up to 
1 000 000. Conversely, the TD and SW algorithms 
showed their weakness in handling time series longer 
than 100 000. In this experiment, the sliding step of 
SW was set as 1. Clearly, a longer sliding step would 
reduce the execution time of the algorithm, but it 
would also lead to the loss of key points. 

5.2  Accuracy of TFSA 

The accuracy of TFSA was examined using the 
classification results from a set of time series. TFSA 
was compared with the Euclidean distance and shape 
description alphabet (SDA) (André-Jönsson and 
Badal, 1997) methods. In the classification experi-
ments, a synthetic dataset, cylinder-bell-funnel (CBF), 
was considered, as it has also been used in similarity 
comparison and clustering by Manganaris (1997) and 
Kadous (1999). The dataset contains three classes, 
resulting from the following equation: 
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a b

c t X t t

b t X t t a b a t

f t X t b a b t t

t a

X a t b

t b

 

 

 




   
    



     

   (10) 

 
Fig. 11 shows some examples of the cylinder, 

bell, and funnel classes classified by the three meth-
ods. The time series A to E are members of the funnel 
class, a to e are members of the bell class, and 1 to 5 
are members of the cylinder class.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Although the Euclidean distance can be calcu-
lated quickly, the Euclidean distance approach is 
incapable of fully distinguishing the three classes. For 
SDA, prior knowledge of the data distribution of the 
time series is needed to set the split points and the 
discretized time series, but it does not preserve the 
general shape of the data. So, the accuracy of SDA 
was reduced, and only the funnel class was correctly 
classified. However, because it considers more trend 
features, the classification results obtained by TFSA 
were more acceptable. TFSA preserved most of the 
trend information. In this experiment, with a com-
pression ratio of 80%, its classification results were 
the best. 

Fig. 11  Classification by Euclidean distance (a), shape 
description alphabet (b), and trend feature symbolic 
approximation (c), with a compression ratio of 80% 
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5.3  Experiments for only long time series 

Section 5.1 confirmed that TFSA is very suitable 
for symbolizing long time series. In this experiment, 
the datasets were changed to test the classification 
accuracy of only long time series. Some examples of 
the electrocardiogram (ECG) dataset (Moody and 
Mark, 1983) are shown in Fig. 12, including record-
ings of many common and life-threatening arrhyth-
mias along with examples of normal sinus rhythm. 

Parts of the dataset were chosen for this exper-
iment, including three heartbeat classes. The numbers 
of series belonging to the three classes are shown in 
Table 5. The length of each series was about 100 000. 
Because different numbers of segmentations lead to 
different classification results, to guarantee the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fairness of the experiment, SAX and TFSA used the 
same number of segmentations. 

SAX, which is an excellent symbolic represen-
tation method, was selected for comparison with 
TFSA. The classification accuracy of TFSA was 
higher than that of SAX with the same number of 
segmentations (Fig. 13). In each class, SAX misclas-
sified more series than TFSA. Although SAX can 
convert long time series very easily, it does not pay 
enough attention to their trends and will generate 
similar results for completely different time series. 
For long time series, the two-step segmentation 
mechanism is very useful for finding key points, and 
using trend symbols to represent these features will 
make TFSA more accurate in classification.  

5.4  Knowledge discovery from time series 

In Section 4.3, preprocessing for knowledge 
discovery has been proposed, and using the symbolic 
results, data mining of time series can be improved. 
The test data in the experiment came from the Second 
International Diagnostic Competition (DXC’10) (Poll 
et al., 2010), and the data were from the ADAPT-Lite 
Electrical Power System (EPS) (Fig. 14). The sensors 
for the EPS are shown in Table 6, which illustrates the 
rate at which the data were collected. Anomaly de-
tection and association rules mining were chosen to 
test the mining efficiency of TFSA for time series. 

Anomaly detection: A common anomaly detec-
tion method for time series is to build a model by 
learning from previously observed normal data. 
Newly obtained data can be compared with those of 
this model and any lack of conformity is considered 
an anomaly (Dasgupta and Forrest, 1996). In this  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5  The heartbeat classes and the number of series 

Number of records for su-
praventricular ectopic beat  

Ventricular 
ectopic beat 

Fusion  
beat 

200 300 V 200 F 

 

Fig. 12  Example series for a ECG dataset (for simplic-
ity, only parts of the dataset are plotted) 
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Fig. 13  Classification results from trend feature symbolic approximation (a) and symbolic aggregate approximation
(b), with the same number of segmentations 
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study, the model was built on the symbols of trend 
features. Symbols ‘01’, ‘10’, ‘00’, ‘11’ were used to 
represent the trends, and the numbers ‘1, 2, …, 9’ the 
slopes. The n in Table 3 was set as 10 in this experi-
ment, and thus the alphabetic series ‘A, B, …, J’ rep-
resents the areas to which the last points of intervals 
belonged. In Fig. 15, the data collected by the IT240 
sensor are shown, and the abrupt increase indicates a 
fault. 

Using TFSA to symbolize the series, the results 
were ‘10D1’, ‘01F1’, ‘01A1’, ‘10D1’, ‘01H1’, ‘01I3’, 
‘10B1’, ‘10E1’, ‘10A1’, ‘01H1’, ‘10I1’, ‘10C1’, 
‘01B1’, ‘01G1’, ‘10E1’, ‘10A1’, ‘01C1’, ‘10H1’, 
‘10G1’, ‘01H1’, ‘01E1’, ‘10I1’, ‘10B1’, ‘10G1’, 
‘01B1’, ‘10I1’, ‘01I1’, ‘01J1’. The normal data were 
from the interval of ‘10D1’ to ‘01H1’, and a simple 
model is that the slopes of these intervals are all 1, 
which indicates that the status of the sensor is stable. 
After these intervals, symbol ‘01I3’ was not con-
forming with the model, and it means that a fault 
occurred in the interval (the time axis is [719,722]). 
The detection result was right, according to Fig. 15.  

Association rules mining: To mine the associa-
tion rules, multiple time series were considered, and 
the symbols were prefixed using the sensor name, 
such as ‘E265-10A1’. The apriori algorithm (Borgelt 
and Kruse, 2002) was used for mining association 
rules, and the symbols with their prefix were the items. 
To generate the itemsets as the input of the algorithm, 
the time axis was divided into 24 equal-sized areas, 
where the symbols and faults belonging to the same 
time area were gathered to form an itemset. For 
brevity, only parts of the experimental results are 
shown in Table 7. 

Rule 1 describes the relationship between the 
sensors IT240 and IT267, and means that when the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
state of IT240 is ‘10J1’, the state of IT267 is ‘01F1’ 
with a probability of 100%. This kind of rule is very 
important, and can be used for monitoring the sensor 
IT267. If the state ‘10J1’ of IT240 appears, but the 
state of IT267 is not ‘01F1’, it is very likely that some 
fault has occurred in IT267. A rule about faults is also 
found, such as rule 2, and this kind of rule can be used 
to prognose the relevant fault, which is a sensor offset 
fault in this rule. 
 
 
6  Conclusions 

 
With huge amounts of data continuing to emerge, 

the length of time series tends to increase. In this 
paper, we propose a two-step segmentation mecha-
nism which can be used in parallel to improve the 
segmentation efficiency for long time series. Unlike  

Table 6  The sensor rate group 

Frequency (Hz) Sensor 

1 TE228 

2 E265, E281, IT267, IT281, ST516 

10 E240, E242, ESH244A, ISH236, IT240

Fig. 14  ADAPT-Lite Electrical Power System (sensors are marked with circles) 

Fig. 15  Data from the IT240 sensor (the abrupt increase 
indicates a fault) 
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other symbolic methods, TFSA focuses on retaining 
most of the trend features and patterns of the original 
time series, and represents time series using trend 
symbols which are also suitable for knowledge dis-
covery. Experimental results show that, especially for 
long time series, the segmentation efficiency and 
classification accuracy of TFSA are better than those 
of other methods. 

The aim of this paper is to provide a new 
knowledge discovery method for time series. In sec-
tion 5.4, we introduce how to use TFSA for simple 
association rules mining. The next step for the work is 
to consider massive data mining, and to study how to 
mine association rules from large time series sym-
bolized using TFSA. 
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